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Methods of Measuring the Resistivities of Anisotropic
Conducting Media in Situ
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Several static boundary value problems involving anisotropic media have been solved

and the results are presented here.

The solutions have been applied to simple electrode

configurations to obtain formulas for in situ determinations of the resistivities of anisotropic

conducting media.
shapes.

The boundaries treated include infinite, semi-infinite, slab and spherical
The media are anisotropic with a common resistivity in two orthogonal directions

and a lower resistivity in the third orthogonal direction.

1. Introduction

In the following, field solutions and measurement
equations suitable for finding the electrical resistivi-
ties of anisotropic conducting media and analogous
parameters are derived for several boundary con-
ficurations. The results have been applied to the
measurement of the resistivities of living muscle
tissue in situ but they may also be used for the
measurement of the electrical properties of other
anisotropic media, for example; the conductivities
of earth formations and semiconductors and the
dielectric constants of uniaxial crystals. The meas-
ured values of muscle resistivity and descriptions of
the physical apparatus will be reported elsewhere.

The anisotropy of musecle is correlated with the
directions of muscle fibers. These appear to consist,
electrically speaking, of high resistivity tubular
membranes surrounded within and without with low
resistivity fluids. The membranes have a common
orientation in a given muscle, yielding one direction
of low resistivity parallel to the fibers and two
directions of high resistivity transverse to the fibers.
To maintain the muscle in its natural state during
the measurements, the measuring electrodes were
placed on the muscle surface sather than in the
tissue interior. With one exception, the equations
developed here reflect these conditions.

When applied to the measurements of skeletal
muscle in living animals the precision of the methods
to be described were limited by the inhomogeneities
of the tissue and the difficulties of obtaining exact
alinement of the electrode structure with the axes of
anisotropy.

2. Potential Field of a Spherical Current
Source in an Infinite Anisotropic Medium

The potential field of a spherical current source,
and its specialization to a point source, in a linear,
homogeneous, infinite, anisotropic, conducting medi-
um with sink at infinity, forms the basis for all the
results to be derived. For anisotropic media having
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one direction of high conductivity and two directions
of low conduectivity, the solution to the stated prob-
lem can be obtained by a procedure given by Smythe. *

The electrostatic equation of continuity can be
written in rectangular coordinates as

2V

—Vd =0, Y to

0%}
T ()1/~

+o.2b=0

in which J is the current density, V the potential and
o4, 0,5, and o, are the conductivities in the z, 9, and z
directions respectively. The origin of coordinates
is taken at the center of the sphere, figure 1. In the
medium of interest, ¢,=0¢,=0c; and o,=oa, o is
defined as al/a,,<1 Equation (1) becomes Laplace’s
equation in a new coordinate system in which
p=ay as

2 Smythe, W. R.,

Static and Dynamic Electricity, 2d ed. (M cGraw-Hill Book
Co., 1950), p. 248.

X y

Ficure 1. Coordinate relations for calculating¥the potential
of a spherical electrode in an anisotropic medium.

0z=0:<0y.
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The spherical electrode surface defined by *-/*
+22=R,*> becomes, in the z, u, z coordinates, an
oblate spheriod defined by

2! Mz 22
+oamt =l (3)
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Smythe shows that the solution to eq (2) may be
expressed as
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in which » is the confocal ellipsoid parameter of the
equation
2 ~2
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At the electrode surface defined by »=0, eq (5)
reduces to eq (3). Hence a=R, and b=aR, By
changing the variables of integration in eq (4) to
v’ =a*-F», the integrals can be evaluated by Dwight ?

192—11, giving
B (bz—a?—}—y’)”? ©

V=W 6
Ty G )T .
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which reduces, upon insertion of the limits, to
p
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Solving eq (5) for » and substituting in eq (7),
yields the potential outside the spherical electrode
in the original coordinates;

Vo
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(2A4)V? 3
[p/2+a2y2+A+[<a2y2+p,2_A)2+4a2y2A]1/2] 1] (
in which A=Ry? (1—a?) and p’=(2*+2%)'2 Equa-

tion (8) also applies to a hemispherical electrode in a
semi-infinite conducting medium; ie., z>0 an
insulator in figure (1).

The point source solution is of particular interest
and is found from eq (8) by assuming y and p’ very
large as

T ()2
_Sin_l(l—a2)1/2 (p'2+a2y2)1/2 (9)

Equation (9) can also be written in terms of the total
current, /, leaving the electrode by integrating the
normal conlponont of J over a closed surface. By

3 Dwight, H. B., Tables of Integrals and Other Mathematical Data, (Mac-
Millan Co., New York) 3d edition,

expressing J in terms of V' and integrating over a
cube of edge 2w, symmetrically disposed about the
origin, we have

V, (A)W

Tsin— ] 2)”Zl: th J—u
v [ dy dz
+thj_u.f_w(w2+272+6¥2,7/2)3’/2

+ f J dx dz :I
“o ] ) @y et

The bracket reduces to 4w (s,0,)'?. For a semi-
infinite medium, ¢; and ¢,=0 where z >0 and the
bracket becomes 2z (s,0,)'?. Thus, in the latter
case, eq (9) becomes

dedy
(@ +w oy

V=Il4rc,0,(p"*+ay)] 71/ (10)

The measurement of o,, o,, and ¢, of a semi-
infinite anisotropic medium can conveniently be
made by applying eq (10) to a simple electrode
arrangement. Assume the semi-infinite insulating
boundary (usually air), ficure 2, is at the z=0 plane;
i.e., the conductivities are zero for z>0. Medium
(1) is assumed anisotropic such that ¢,=¢,=0, and
o,=ay. The electrodes are shown schematically in
figure 2 and consist of four, equally spaced, approxi-
mately spherical, conductors of small size. The
dimensions of the electrodes must be such as to
make eq (10) a good approximation to eq (8) at a
distance, @, from the origin; and to eliminate for
practical purposes, perturbations by the remaining
conductors of the potential field of the source or
sink. The potential difference between points ¢
and h due to electrode ¢ can be found from eq (10).
Noting that electrode f doubles this potential differ-

Z

LOW
CONDUCTIVITY

HIGH
CONDUCTIVITY

Ficure 2.
the resistivities of an anisolropic, semi-infinite, conducting
medium.

Arrangement of four point-electrodes for measuring

2>0 is an insulator.
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ence and expressing the result in polar coordinates,

see figure 2, the potential difference, V,,, can be

~written

Valp)=147%0 0, (cos® p-+a” sin ¢)|"2.  (11)
Two measurements of V,,, at ¢=0 and ¢—=x/2,

give o; and o, from eq (11) as follows:

a=I[2raVp (x/2)] (12)

on=01[ Ve (1/2)[V e (0) . (13)

3. Measurement of the Resistivities of an
Anisotropic Conducting Slab

It may happen that the anisotropic material of
interest, z< 0, figure 2, has a limited extension in
the negative z direction; the shape being referred to
as a ‘slab.”  When slab thickness, A, is less than twice
the electrode spacing, a, the effectsof the boundary
may make eqs (12) and (13) poor approximations
to the slab resistivities.

If the boundary at z=—#h is either a perfect con-
ductor or an insulator, however, exact mathematical
expressions for the resistivity of the slab as a func-
tion of quantities measurable with the electrodes of
figure 2 can be derived. To obtain these expressions,
we find first the following potential fields:

The potential on the surface of an anisotropic
conducting slab arising from a point current source
on the surface and sink at infinity. The slab has
a high conductivity in the y direction and low
conductivity in the z and z directions, is bounded
at z=0 by an insulator and at z=—h by (a) an
insulator and (b) a perfect conductor.

Generalizations of the method of solution to include
arbitrary field point and source locations in the
slab will be apparent.

Figure 3a represents a section of the given problem
in the yz plane; figure 3b, a system of images located
in an infinite homogeneous medium having the slab
conductivities. The image system satisfies the
boundary conditions at z=0 and z=-—h and can
therefore be used to obtain the field within the slab.
As shown in figure 3b the images extend to infinity
- in the plus and minus z directions, spaced a distance
2h apart. They are equal in strength to the source
plus its image in the z=0 plane; i.e., 27 and are of
the same sign if z=—/h is an insulator and alternate
in sign if z=—Ah is a perfect conductor. The
potential on the slab surface can be written by
mspection using the principle of superposition and
~eq (10) suitably modified for a source not at the
origin. The resulting potential on the surface
2=0, 1s

+2§<i1>"{w2+a2y2+<2nh>21-“2]- (14)

(a) yz-plane section of an anisotropic slab of thick-
ness, h, with current source at the origin.

(b) System of images of strength, -+ 21, which
match boundary conditions at slab surface.

Ficure 3.

Images are infinite in number and spaced a distance, 2k, apart. The minus

signs appear at alternate images when z<—h is a perfect conductor.

The plus sign applies when the z=—4Ah boundary is
an insulator and the minus sign when it is a perfect
conductor, each term in the summation being an
image contribution.*

Again considering the electrodes of figure 2, the
potential differences measured on the slab surface at
=0 (y=0) and ¢=m/2 (z=0) can be expressed as

Vgh:y:o:?;?(;{(;w I:l +2$ ( —_-}: 1 )n(‘Z[l + (27IJL/(L) 2] —-1/2
—[1 (mh/a)?]~ ”2)]§ (15a)
Vansmo—gr| 14235 (1) QL1+ @)

—[1—}—(11//1/aa)zj_”2):|- (15b)

The conductivities o; and o, can conveniently be
found from the measurements of V,,. Thus, taking
the ratio of the equations in (15) we have

"’fgh:.u:O_ al3
"71;)1:1:0—-3(“) (16)
in which B and B(«) are the terms in square brackets
in eqs (15a) and (15b) respectively. Plots of B(«)
as a function of h/aa (note that B=B(a) if a=1)

4 Although eq (14) diverges when the plus sign is used, eqs (15) do not.
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can be found in the geophysical literature.” The
graphs are reproduced here in figure 4 with minor
modifications. Using eq (16) and figure 4 it is
possible to obtain a quickly by successive approxi-
mations. As is apparent from figure 4, when
a/h>1.5, the asymptotic formula, B=1.39 (a/h), can
be used; and when «aa<.25, B(«) can be approxi-
mated as unity. Once a=(o,/0,)'? is found, eqs
(15), together with figure 4 can be used to find
o; and oy,

4. Measurement of the Resistivities of an
Anisotropic Conducting Hemisphere

Should the anisotropic material have a spherical
boundary, it is possible to obtain measurement
equations in some instances. In particular, closed
form expressions can be derived for the potential
distribution in the hemisphere of figure 5. The
source is a point current electrode arbitrarily located
on the sphere surface and the sink a perfectly con-
ducting meridian plane. The hemisphere has a
high conductivity, ¢;, in the ¢ direction and low
conductivity, o, in the R and 6 directions. Approxi-
mate expressions, based on a four-electrode measure-
ment, can be derived for ¢, and ¢, from the potential
field.

This problem arose in measuring the resistivities
of heart muscle. The muscle fibers were assumed
to be wrapped around an axis in a manner roughly
analogous to string wound into a ball. It should be
noted that the field expression is unchanged if the
hemisphere is replaced by a sphere and the con-
ducting plane electrode by a point sink at the location
of an image of the source in the plane.

As shown in figure 5, the point electrode is on the
surface at R=C, 6=60,, ¢=¢; and the plane electrode
is at ¢=-+47/2. The equation of continuity can,
with an appropriate coordinate transformation, be
expressed as Laplace’s equation in spherical coordi-

nates. The result is given in eq (17) in which
¢ =ag.
. 1.0 , OV 1 o /. o
I 2" —_— = i i,
VV=rion <R SR ) TR 6 (0 39
1 o*V
tse e O U7

The boundary value problem in the new ([, 6, ¢")
coordinate system is that of a point current source
at R=0, 0=0,, ¢’ =a¢, on a wedge-shaped section
of a sphere, and a sink at constant-potential inter-
secting (internal angle am) planes, figure 6.

An image solution for the potential field in the
wedge exists if 1/a is an integer; i.e., if the internal
wedge angle is a submultiple of m. Sources and
sinks placed on the surface of a sphere as shown in
figure 7 will make the planar wedge surfaces equi-
potentials and satisfy the remaining boundary con-
ditions as well. More general results arising from

5 Hummel, J. N., AIME Tech. Publ. No. 418 and Heiland, C. A., Geophysical
Exploration, (Prentice-Hall, New York, 1940), p. 716.

/

s 8 ,/
. PERFECTLY CONDUCTING BOUNDARY /

=0 2 / INSULATING BOUNDARY—

u
\
e

5 3 3.5

&

7
/’fvar" 722
Y
5 45

o 2 2
B (o)

Ficure 4.

Graphs used to solve for a in eq 16 (after Hummel).

Anisotropic conducting hemisphere on a perfectly
conducting meridian plane.
Electrodes are on plane and at point, P, on the sphere surface. The hemisphere

has a high conductivity, o, in the ¢ direction and equal but lower conductivities,
a1, in the 6 and R directions, C'is the radius of the hemisphere.

Ficure 5.

Hemisphere of figure 5 transformed to new coordi- )
nates 1n which ¢’ =ag.

Fi1GURE 6.
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a source mside the wedge can be obtained by similar
reasoning.

The potential due to a source-sink pair arbitrarily
located in a sphere has been given by Frank.® His
result, specialized to the case in which the source
and sink as well as the field point are on the sphere
surface and extended by superposition to ¢ source-
sink pairs, is the desired equation for the potential
arising from the system of images shown in figure 7.
This extended result, which gives the potential on
the wedge, is presented as eq (18).

2
V=k32+(1 2(, In [}4-C(1—cos ¢;)]>- (18)
i=1
(’=the radius of the sphere. :

r;=the chord distance from the 7th source (or sink)

point to the field point in the (R, 6, ¢')
coordinates. .
=C[2(1—cos ¥;]i”2
V;=the angle formed at the origin by the radius

vector to the field point ((, 0, d>) and the
ith source (or sink) point (€, 6;, ¢7).
=cos ! [cos 0 cos 0;-+sin 0 sin 0, cos (¢ —o¢))].
k=1/27(0,04)"? as can be shown by comparing
eq (10) with eq (18) as O——— .

The potential field in the original coordinates is
found by substituting a¢ for ¢" and ag¢; for ¢; i
eq (18).

When the conditions described below are satisfied,
a convenient formula for determining approximate
values of the conductivities o; and ¢,, applies to the
electrode configuration of figure 8. In this case, elec-
trode ¢ and electrode f each give rise to a set of
images. The electrodes are spaced along the arc of
a circle of radius, €, and the potential-measuring
electrodes are at distances @ and 2a from the current

6 Frank, E.,

J. of Appl. Phys. 23, 1225, 1952.

Latitudinal plane section of figure 6 showing image
construction for q=3.

The current, I, is shown entering at the point, P. The radius of the circular
section is, C sing;.

Ficure 7.

electrodes. If the source is located far from the
constant-potential sink plane, figure 5; i.e., in a
region defined by —=/4<¢<7/4, 37r/4<0<7r/4, and
the electrode spacing @ is small compared to the
sphere radius, the contribution of the images to the
potential difference measured by the electrodes of
ficure 8 can be reduced to the order of one percent.
From (18) the potential differences, neglecting im-
ages, measured by electrodes g and h, figure 8, due
to the current electrodes ¢ and f, reduce to conven-
ient expressions at two particularelectrode alinements;
1.e., when the electrodes lie along a line of constant ¢
or constant 6. In fact

vah:mms tant ¢~ /v 17 1/2
Cr (ay0,) "

X’:(?Il == cosl(@=0p) = ([IE=CoSI(=0p)] it

+.l)l = :’ cos (6,—6) |”:+llﬂ<)§ —)]7 (19)
27 [2—2 cos (6, —0,)]Y*4-[1—cos (9 *ﬁg)l

Here we have used 6, for the polar angle of the
source point, electrode ¢; and 6, and 6, for the polar
angles of the field points, electrodes g and A respec-
tively. It is clear from the form of eq (19) and the
angular relations shown in figure 8 that the factor
of two used in eq (19) correctly accounts for the
effects of the sink electrode, /. Noting that the de-
nominators of the first two terms in brackets on the
right are chord lengths, @ and 2a respectively, eq (19)
becomes

[ ‘)(1~|>(I/(Y)\
= 77[' 1/% +‘)(v

2a

(14-a/20)

7
V gh:constant ¢~
(20)

In a similar way, when the electrodes are alined along
a latitude line, and if the sines of angles «; and «y,
figure 8, subtended at the sphere center by the cur-
rent and potential electrodes are approximated by
the angles, we have

2(14a/0)\
' (1Faa/20)

Ll

m (on0,)

‘/ gh:constant 6 \2(1(1/

(21)

Fiacure 8.  Electrode arrangement for measuring the resistivi-
ties of the hemisphere of figure 5 using eqs (20) and (21).
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In the ratio of eq (20) and eq (21), « is the only
unknown and may be found by successive approxi-
mations; after which ¢, and ¢, can be obtained from
either eq (20) or eq (21).

5. Resistance Between Two Small Spheres in
an Anisotropic Medium

An “apparent resistivity” of an anisotropic me-
dium has been obtained by comparing the resistance
measured between two small spherical electrodes in
an anisotropic medium with the resistance between
similar electrodes in an isotropic medium of known
resistivity.” When the two resistances are equal, the
apparent resistivity is defined to be the known iso-
tropic resistivity. The apparent resistivity, in addi-
tion to being a function of ¢; and ¢, is a function of
the orientation of the axis connecting the spheres.
An approximate formula for this functional depend-
ence will be derived. The coordinate relations are
shown in figure 9. A first approximation to the re-
sistance, Q, between two spheres is well known to be®

=2(V(Ro)—V (d)]/1 (22)

in which V(R,) is the potential on the surface of the
sphere of radius, /2, centered at the origin and V(d)
is the potential due to the sphere at the origin at the
center of the second sphere (at radius vector d),
neglecting the perturbing effect of the second sphere.
Rewriting eq (8) in polar coordinates with z?+ 1%+ 2

=d* and the constant Vysin"!(1—a?)'? as [/4x
(0,0,4)"?, we have
5 2\ 11/2
Z(d)= ! S -1£Q,[;1, ) )Y y (23)

4rr (o0, A)172 s Kid

, Circulation Research 4, 664 (1956).

7 Schwan, H. P., and Kay, C. F.
, OP. (ll,]. 38,

S Smythe, W. R.

Ficure 9. Coordinate relations for evaluating approzimate
resistance between two spheres of radii, Ro, and center-to-
cenler distance, d.

in which

K=| 1—(1—a?) sin? ¢ sin® 0—{-(%")L (1—a?)

2 ctiaf .y I\ 2
+< [:1_(1*042) sin? ¢ sin? 0—<_d.> (1_a2>:|
5 e 8o [ DN L\
40 sin® ¢ sin 0<7> (1_a>> :I

V(R,) is a special case of eq (23) obtained by letting
d=R, with the result

Isin™! (1—a?)V2

V(Ro)= 47 (opoA)Y?

(24)

Comparing eq (22) for an isotropic medium in which
Q= (2mo) ' (1/Ry—1/d), with the equivalent isotropic
expression obtained from eqs (22), (23), and (24),
the apparent resistivity, p,, 1s given by

R2(1—a?)]'?

- Kd
A1/Ry—1/d)

—1 (1‘—‘01)1/2 S —l

p— 2"
P Rl =] =

The two extreme values of K occur when the elec-
trode axis is perpendicular and parallel to the y axis.
In these cases, we have

=(2)"

‘ Ro\? 1/2
Kﬁnw/2,¢:r/2=[2a2+2 ((—]> (1—042)] .

Insertion of eq (26) in eq (25) gives the extreme
values of p,, hence some estimate of the mean of p,
over all angles. The latter quantity can be ob-
tained more precisely by numerical integration of eq
(25) over 6 and ¢. When Ry/d<<a, the terms in
K containing £/d can be set to zero and the calcu-
lation of the mean considerably simplified. Finally,
by taking the ratio of eq (22) at the extreme values,
an expression containing « as the only unknown can
be obtained and from this ¢; and o, determined.

(26)

These results were obtained as part of a general
investigation of tissue resistivity carried out in
collaboration with Dr. J. A. Abildskov. The work
was supported by Research Grant H-3241 from the
National Heart Institute of the National Institutes
of Health, Public Health Service, and by a grant
from the Heart Association of ()non(lzmgu. County.
The author also wishes to express his appreciation
to Dr. Richard McFee for assistance in formulating
the problems treated and for helpful manusecript
criticism.
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