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A large-signal equivalent circuit for the Esaki or tunnel diode is presented that charac-

terizes the dynamic and static response of this semiconductor device.

Nonlinear differential

equations are written on the model and a graphical-numerical solution technique is deseribed.
Analog computer solutions for the nonlinear equations are also discussed for various modes

of operation.

1. Introduction

Most of the equivalent circuit models presented
for the tunnel diode have been small-signal types.
The small-signal operation of this semiconductor
device can be correctly characterized by its incre-
mental resistance at a fixed bias point and some
associated reactive elements. However, the large-
signal departures from this bias point which typify
bistable switching and relaxation oscillations make
the model inadqeuate. In digital systems the active
circuit elements are typically required to operate
over extended ranges of their voltage-current charac-
teristics. This paper presents a large-signal equiva-

lent circuit for the tunnel-diode (fig. 1). This
circuit characterizes both the static and dynamic

responses of the device for all modes of operation.
The network enclosed in the dashed box simulates
the static V-I characteristic of the tunnel diode.

Nonlinear differential equations are produced from
the model and a graphical-numerical solution tech-
nique 1s described that is applicable to driven or
self-excited systems. The equations are readily
solved by analog computer techniques, particularly
when curve following is employed on a monotonic
curve that is presented in this paper.

An example of the graphical-numerical solution of
the nonlinear equations for the relaxation oscillation

ase 1s presented in detail. Some comparisons are
made between the graphical and analog computer
solutions of bistable switching and sinusoidal oscilla-
tion modes of operation.

2. Tunnel Diode Large-Signal Equivalent
Circuit and Solution Techniques

The validity of the small-signal tunnel diode model
[1]" has been extended over a large-signal range by
incorporating the static terminal characteristics of
the device into the model shown in figure 1. The
lead inductance, L;, the series body resistance, 72,
and the barrier capacitance, () are assumed to main-
tain constant values over the operating range of
interest [2]. Measurement techniques for these
elements are described in the literature [3].

1 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1. Large-signal tunnel diode equivalent circuil.

This study was made using the GE ZJ
peak current) tunnel diodes.
L, R, and Cin this device are:

-H6 (1 ma
Typical values for

Jb =0 il

C=5.0 pf

Figure 2 shows a static V-1 plot of the terminal
characteristics of the ZJ-56 tunnel diode. Curve A
i figure 3 is a broken-line approximation to this
static plot which is simulated by the #(») current
generator and resistance, 7, of ficure 1 (dashed box).
The output from the () current generator (see ap-
pendix) 1s defined by either

1()=1,(v) —1,(v) (fig. 3 curve B) (1)

or by an analytic approximation to curve B

1(w)=k[1—exp (—kx?)] (fig. 3 curve C). (2)
71(1) is defined by the linear O({ll‘ltl()l] relating » and 2
in region 1 of curve A. ,(») 1s defined by the linear
equations relating # and 7 in each of the jlinear regions
(7=1,2,3,4) of curve A.  The resistance r, is set equal
in value to the inverse slope of region 1 of curve A
in figure 3.

The following pair of equations can be written on
the tunnel diode circuit in figure 4 with which all
principal modes of operation such as switching and
oscillating can be realized:
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Fraure 2. Static V-I characteristic for the GE ZJ-56 tunnel
diode.
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Ficure 3. Curve A: Approximation to the GE Z.J-56 tunnel
diode static V-1 characteristic.

Curve B: Broken-line approximation to the current from the
i(v) generator.

Curve C: Analytic approximation to the current from the

i(v) generator.
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E(t) is'the applied voltage, R=R,+ R,and L=L,+L,.

_Combining eqs (3) and (4) produces a nonlinear
differential equation whose solution yields the junc-
tion voltage, v, i.e.,

Po 1[/1,R d
Gito (T )—2hke v (< |
1
—E(t)? ®)

Ficure 4. Tunnel diode circuit containing external Ry and i
elements.

0

Frcure 5. Typical construction increment in the ¥F(v) versus
v plane.

where wj= This equation does not lend itself

1
I0
to a closed form solution. It falls into the class of
nonlinear equations of the type [4]

d* dv

TatI(0) 9@ =h(). (6)

After some investigation a graphical solution for this
form was found and techniques for its application
were worked out [5]. The solution process begins
with an integration of eq (5) with respect to the time
which yields

dv

WL FO)+ f g@)di=H(t)+K @)

where,

= 1 (7 1, RC ;
F (@) =—C—,L [(r—l-i— }, )—~2klkzv exp (—kzz;‘)] dv  (8)

o0 =ai[ () o—REn—ew0 ()] ©
H(t)=w§ﬁt Et)dt (10)

K=integration constant.
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Equation (7) is then converted into incremental
form

R F (1) +8,() =H (At — K (D

where,

S, ()= f glo@)]dt. (12)

A fixed value of At is chosen heuristically and an angle

(13)

a=arctan —1—
At

is determined. It may be necessary to multiply
equation (11) through by some constant in order to
produce useful «’s. « is corrected to accommodate
the departure of the abscissa-to-ordinate scaling of
F(») versus » from a one-to-one numerical relation-
ship per unit length. Equation (11) is then rewritten
into its final form preparatory to graphical solution as

Av tan a+F (v,)=HnAt) +K—S,(t). (14)

The angle a 1s constructed physically on a template.
Vertical lines of length F(nAt)—S,(t)+ K are con-
structed in the F(») versus » plane as the solution
proceeds. The successive Av,’s are determined by the
construction technique shown in the typical segment
in figure 5. S,(t) is determined at each step of the
process by applying the trapezoidal rule to the values
of g(»,) and g(v,:1). This will be further detailed in
the following section.

3. Example of a Graphical-Numerical
Solution of Equation (5), Relaxation
Oscillation Case

The circuit parameters were chosen to produce
relaxation oscillations, i.e.,

<J / (,andR<] 7|

where —7 is the value of the inverse differential slope
at each point in the negative resistance region of the
V-1 characteristic (|—7»|=1502). A type GE ZJ-56

tunnel diode was employed in the circuit shown in
ficure 4. The values of the parameters were

=200
L=100uh
C=10 pf

E= 0.25v (step)
7"1:5889

klz 0.008
k,=11.0

wg=10" rad/sec.

These numerical values were put into eq (5) which
was then integrated in respect to time. In order to
produce angle «’s of reasonable size the equation was
multiplied through by 30>107°. This yielded (in
the form of equation (11))
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(30><10 >+30[1 7v—.8 [1—exp(—11.007)]]

L
+30><106f [1.34v— .16 [1—exp(—11.00%)]] dt
0

=7.5(10%) (nAt) +K. (15)
Since
Av, tan a=Av, (M— (16)
therefore
=arctan (_0><_10_ . 17)

For example, if At=30<X10"" sec is chosen as the
construction increment then a=45°.  The At chosen
depends on the predicted response of the device. If
At is too large, the construction will be extremely
coarse. If At is too small, the solution will proceed
very slowly. The value of At may be easily altered
during the solution process in order to achieve
optimum speed and resolution. The analytical error
between the exact solution of eq (7) and its graphical
solution is of the order of —1/24%, in each interval.
At this point the F(z) versus » and ¢g(») versus
» plots were drawn where
F(»)=30[1.70—.8[1—exp(—11.00%]] (18)
and

g(©)=30>10°[1.3400—0.16 [1—exp(—11.00%)]]

(19)

Figures 6 and 7A show these plots.

\alucs of H(nAt)=7.5(10%) (nAt) n=1, 2, 3
were tabulated.

Since the F(2) versus » curve was found to be
reasonably plotted on a 10:1 physical scale, the angle
a was adjusted to compensate for this departure from
a 1:1 relationship. This resulted in

y e e .

a=5°4" for At=30X10"° sec
a="71°34" for At=1X10"? sec
a=85°15" for At=0.3X10"? sec.

Three templates were constructed containing these
angles.

The integration constant A, which is equal to » at
t=0, was set equal to zero. The actual value of K
was sufficiently small to make this completely
reasonable.

The S,(t) term is evaluated at each step of the
graphical solution by the trapezoidal rule. Values of »
as a function of time such as »(nAt) and o[ (n-1)At]
are determined by the successive constructions in the
F(») versus » plane. Then the values g[v(nAt)] and
glo[(n+1)At]] are directly obtained from the g(»)
versus » plot. As the construction proceeds each
quantity
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FicUre _6. g(v) versus v plot employed in graphical solution of
relaxation oscillator case.
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is added on to the preceding total value of S,(¢) and
this new total is subtracted from the next applied
I (nAt). This gives the length of the vertical con-
struction line, F/(nAt)—S,(t) (as shown in fig. 5).

As each construction is made, the time required
for each A», to occur is known from the relationship
of At to the angle o employed in the construction.
When the H(nAt)—S,(t) line falls below the F(»)
curve the construction reverses direction and pro-
ceeds towards the origin.

The angle « was changed during the construction
process in order to produce maximum resolution and
solution speed. For example, in the jump region the

angle «=85°15" (for At=0.3X10"° sec) was
employed.

Figure 7A displays the H(nAt)—S,(t) locus in
the F(») versus ©» plane for the relaxation

oscillation case. Figure 7B shows the junction volt-
age, v, versus time that was derived from the graphi-
cal construction. A single pulse from the actual
7ZJ-56 relaxation oscillator pulse train is shown super-
imposed upon a pulse produced by the graphical
method which was based upon the analytic approxi-
mation of eq (2). The graphical process will produce
a train of similar pulses if it is continued.
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Frcure 7. (A) F(v) versus v plot employed in the graphical
solution of the relaxation oscillator case (solid line).

The dashed line is the locus of F1(nAt)—Sa(t) obtained during the graphical
construction.
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(B) Junction voltage, v, versus teme oblained from graphical
solution (solid line) superimposed upon actual pulse (dashed
line).

4. Comparison of Analog and Graphical
Results

Equations (3) and (4) were mechanized on the
National Bureau of Standards Mid-Century 500
Analog Computer employing curve-following tech-
niques for both the broken-line and analytic i(»)’s
as defined by eqs (1) and (2). The method of con-
structing the broken-line i(») function is described
in the appendix. Since these curves were relatively
smooth and monotonic, (as compared to curve A,
fig. 3) the curve-following operated well. The R,
L, and C elements were adjusted to produce bistable
switching and (nearly) sinusoidal oscillations.
Graphical solution technigues were then applied for
these same operating conditions. Figure 8 displays
the response of the system to a ramp driving function
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Fraure  10. (A)  Semulated  bistable switching circuit with
additional pulse triggering source.

(B) Analog computer mechanization for circuit in figure 10A.

with the circuit operating in the switching mode,
i.e., R >|—r[, R=470Q, L=5.0 nh and C=2.0 pf.
Figure 9 shows the sinusoidal response to a voltage
step with 2<7|—r|, =109, L=7.5 nhand C=2.0 pf.

The bistable switching case was simulated on the
analog computer for another ecircuit configuration
(fig. 10A). Here the tunnel diode was steadily
biased with a voltage, [, that produced a stable
singular point near the peak in region 1 (curve A,

49

10[i(v)]

MOSELEY
CURVE — FOLLOWER

OUTPUT TO RECORDER
50 x JUNCTION VOLTS, v

- 50E ' =
@IAS voLTS) L
LEGEND

O
>
>

VOLTAGE DIVIDER

AMPLIFIER AND
SIGN INVERTER

INTEGRATOR WITH
SIGN INVERTER



fig. 3). The circuit was then triggered over to the
second stable singular point in region 4 by an injected
current pulse, 7,. It was possible to observe the
effects of pulses of different duration and amplitudes
on the triggering process. This technique can be
used to study the optimum trigger requirements for
the tunnel diode and other negative resistance
devices. Figure 10B shows the analog computer
mechanization. The i(») function eq (1) was plotted
with a conducting material and curve-followed
during the simulation process.

5. Appendix

Crisson [6] has presented a method for producing
a voltage-controlled negative resistance at the input
terminals of an “ideal amplifier” with feedback. It
can be shown that the network enclosed by the
dashed line in figure 1 displays the same character-
istics as the “ideal amplifier.”

The “ideal amplifier’” shown in figure 11A can be
represented by the circuit shown in figure 11B.  The
resistance, 7;, seen looking into the 1-2 terminals of
the circuit is

R\R,

=—————— (j=1,2,34.
R1+R2—Mj (.7 ’ yS; )

(21)

rj

where M, is a variable mutual impedance term.
When M, >R+ R, then 7;< 0 which produces a nega-
tive resistance at terminals 1-2. M, can therefore
be the basis for the simulation of the tunnel diode
static V=T characteristic with its alternating positive
and negative regions. Resistance 7 (see fig. 1) is
set, equal to the inverse slope of region 1 in curve A
figure 3. Therefore, if A, is set equal to zero in
this region, then the parallel combination of R; and
R, is chosen to be equal in value to 7;. In any one
of the other three regions the variable M; can be
be determined from

rl)_

T

M,— (R4 1) (1—
A conversion can be made from the circuit in
figure 11B to the circuit enclosed in the dashed box
in figure 1 in which the current generator output is

(22)

i0)] =i (0) (1—’1

i (23)

=1, (0) —15(v)

where, 7:(v) and 7;(») are defined by the functional
relationship of the current to the voltage in each
linear region of curve A in figure 3 and each region
is bounded by the breakpoints on the curve. Curve
B in figure 3 is the monotonic i(») curve that is
produced by eq (24). This curve is easily followed
by curve-following analog techniques. An analytic
approximation to curve B was also produced for use
in obtaining a total differential equation for the
junction voltage, », of the tunnel diode. The
approximation is

(24)
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Fraure 11. (A) Ideal amplifier.
(B) Network equivalent to the “ideal amplifier.”

1(0) =k, [1—exp (—kx?)] (fig. 3curve C)  (25)
where, £,=0.008 and ky=11.0 for the GE ZJ-56
tunnel diode type that is used in this study.

The 7(v) curve B for use in analog simulation is
constructed by differentiating eq (24) in respect to
» which gives

di(v)

dv

diy(v)  diz(v)

; dv dv

(26)

For each of the 7 linear regions (7=1,2,3,4) of curve

dv(v)| . .
L0 is drawn from region

dv |,
breakpoint-to-breakpoint starting at the origin.

Note that 2 =0.
1

dv

B a line with slope

i
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