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The principal problem considered is that of determining which pilacement of n disks

of equal radius will cover as much as possible of a circular area A.

Extensive computer

experiments were performed to find the optimal arrangements and to compare the perform-

ances of several “black box” maximization methods as applied to this problem.

A second

version, in which A is divided into subregions and each disk is regarded as contributing to

the coverage of only one subregion, is also treated.

questions are discussed.

1. The Problem '

1.1. Description of Covering Problem

We are given a circular area A of radius R, cen-
tered at the origin of the XY-plane, and a specified
number 7 of circular disks €; (1<7<n) all having the
same radius »< . How should the n disks be placed
so that they cover as great a portion of A as possible?
And for this optimal placement of the disks, what is
the ratio between (1) the area of the portion of A
covered by the disks, and (2) the total area of A?

To describe the problem more precisely we shall
make the following definitions. A placement or con-
Siguration of n disks is uniquely determined by spec-
ifying the (X,Y) coordinates of centers of the disks.
If we suppose that the n disks are ordered by their
indices C,C,, . . (’,, we may construct the vector
X=(X,Y,X,,Y, ., X, Y,) where (X;,Y)) de-
notes the center of the disk 7;. This vector X with
2n components completely determines a configuration
of the n disks with respect to the large area A. The
configuration of figure 1 would be represented by
the vector.

i |

X=(—11,6,—1,12,—3,3,—5,—4,6,1,12,7).

Now for each vector there is a uniquely determined
area of that region of the plane which is within A and
at least one of the disks ;. In set theoretic notation

n
this region would be givenas <‘U1 C; )N A. In figure
\1=
1 the region we want is shaded. It should be clear
that the ratio referred to above is a function F(X).
If we restrict the pairs (X, Y) by requiring that the
centers of all disks lie within A, then our problem is
that of maximizing the function #(X) over some
bounded subregion of 2n-dimensional Euclidean
space.

*Supported in part by the U.S. Army Signal Air Defense Engineering Agency.
i The author is especially indebted to A. J. Goldman (NBS Operations Re-
search Section) for many helpful suggestions during this research.

| solved problem (¢) in the case n=5.

Related mathematical results and

1.2. Some Related Problems

There are several problems that are closely related
to our problem and which seem to be somewhat more
interesting from a purely mathematical viewpoint.
Since their solution for the most part involves ob-
taining a solution to the general problem stated in
section 1.1, we shall briefly mention these others:

(a) Given disks of radius »< R, what is the mini-
mum number of them required to cover A com-
pletely?

(b) Given »< R, what is the maximum number of
disks of radius » that can be packed into A so that
there is no overlap between disks and each disk lies
entirely within A? See figure 2.

(¢) Given the number n of disks, what is the mini-
mum radius 7 for which these disks can completely
cover A?

(d) Given the number n of disks, what is the maxi-
mum radius 7 consistent with packing?

(e) Given the value of P=n»* what
and 7 determine the best coverage?

Certain of the above classes of problems lend them-
selves to direct analytical solution. For example,
problem (a) above with 2 7=1/2 can be solved briefly
as follows: For complete coverage it is required that
the circumference of A be covered. Remembering
that a regular hexagon inscribed in a cirele of radius
R has edges of length R, we see that at least six disks
are required to cover the circumference. But if
exactly six are used then the center of A is left un-
covered and a seventh disk is required. It can then
be shown that seven disks are in fact sufficient and
the problem is solved. A similar argument can be
used to show that »=1/2 is the solution to (¢) when
n="7. Problem (b) in the case r=1/2 can also be
solved easily.

Probably the least trivial analytical solution in
this class of problems is due to Neville [1] % who
He showed

ralues of n

? We assume R =1 for convenience; it should be noted that the ratio of coverage
depends only on r/R and therefore our assumption involves no loss of generality.
3 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1.

Coverage by six disks.

(3, %g)

Ficure 2.  Loose packing of three disks.

that the minimum radius required is approximately
0.609. It is interesting to note that the configura-
tion of disks that achieves complete coverage with
this radius does not have central symmetry. In
fact the boundaries of three disks (see fig. 3) pass
thru a point near the center of A, whereas the
other two disks are considerably displaced from its
center. If three of the disk-boundaries are required
to pass through the center of A, the minimum radius
needed for complete coverage increases to 0.610, and
it rises to 0.618 if all five boundaries are required
to pass through the center.

Neville’s result indicates that our intuitive expecta-
tions, concerning the symmetry of solutions of such
problems, are not necessarily reliable. Accordingly
no symmetry conditions were pre-imposed in the
following work. It would be interesting to investi-
ate further what symmetry properties can be
asserted for the configuration maximizing F(X),
and for the configurations yielding “local maxima.”
It would be quite helpful, for possible subsequent

(5,60942)
1,000

Ficure 3. Neville’s five disk covering.

(5,%%4=.60938)
1999942

Fiaure 68.  Computer configuration for Neville case.

research, to be assured that the maximizing con-
figurations within certain restricted classes of
symmetric patterns actually do represent at least
local maxima for the covering problem. Many of
the accompanying drawings (discussed later in the
text) display a high degree of regularity, and the
deviations from symmetry may well be due to our
use of a discrete grid (see sec. 3), as well as the
inevitable inexactitude of draftmanship.

1.3. Some Related Mathematical Literature

The several paragraphs that follow contain
references to some mathematical papers that are
relevant to the problems discussed in this paper.
We hope the interest of these topics will be an
adequate compensation for the lumpiness of their
presentation.

An interesting result concerning coverage by disks
of equal size 1s the following theorem of R.
Kerschner [2].
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If N(r) is the smallest number of disks of radius
7 needed to cover a plane set of area A, then

Lim 72N ()

r—0

=21+/3 A/9.

This formula suggests the possibility of using
Ny(r)=2m+/3/9r2

as an estimate for the minimum number of disks of
radius 7 required to cover completely a large disk
whose area 1s 7 (i.e., whose radius 18 R=1). FOl
example, N, (i/\)f9 to the nearest integer wherea
10 disks at this radius can be made to cover 99
percent of the area A, as indicated in table 1

The following theorem of Verblunsky [3] relates to
how fast the convergence is in Kerschner’s result:

There i1s a number ¢ >1/2 such that, for all small
enough 7

N(r)— (2+/3/972) > (2+/3¢/9r),

where N(r) is the least number of disks of radius »
required to cover a square of area 1. This means
that the approximation Ny(r) suggested above con-
verges at best on the order of (1/7). In the absence
of other knowledge, however, this might be used to
get some idea of what sort of coverage mlv‘ht reason-
ably be expected with a particular pair (n 7). The
Verblunsky result applies to coverage of a square
but it seems quite likely that the convergence is
similar for the circular coverage problem.

The following result [4] establishes a relationship
between the problems of packing and covering. If
7, and 7, denote respectively the maximum #» for
packing and the minimum 7 for covering with =
disks then

3ry >4r,.

This is true whenever the region to be covered or
packed is convex. We can use this result to get a
lower bound on 7, if we know 7, and vice versa.

The two-dimensional case of a more general
theorem of D. Gale [5] implies that any plane set of
diameter 2 can be covere(l by three properly chosen
sets each of diameter <v/3. ’I‘he author also points

out that no three sets each of diameter <y/3 will
cover a disk of diameter 2. This essentially solves
problem (¢) for the case n=3 and indicates that a
disk is the “hardest” set to cover among sets of
equal diameter.

An interesting related problem arises if the n disks
C; are “thrown down” independently at random, i.e.,
with their centers uniformly distributed subject only
to the condition that they overlap the circular area A.
Here #(X) becomes a random variable whose mean
is an appropriate reference point in deciding which
values of /(.X) might be considered high ones. The
value of such a reference point is enhanced if one
also has at hand the standard deviation ¢ of F(X),
which can be obtained from

oo=M,— (M,)*

where M, is the second movement of #(X) and M,
is the mean (i.e., the first moment).

Such ploblvms of “random coverage” have been
treated in the technical literature. The basic
theorem on this subject, due to A. Kolmogoroff [6]
can be stated for our purposes as follows: Suppose
one has a probability distribution over a specified
class of sets § in m-dimensional Euclidean space.*
Then the measure® u(S) of a set S is a random

variable. If points of the KEuclidean space are
denoted z= (x,, ., &, and 1/*(]/1, o Yn), then
the mean of u(S) is given by °
M, = fProb (z1sin S) dr, dux,,,
its second moment by
] [;zIJ Prob (zis in S and y is in S)
dey . . . dr,dy, iy,

and similarly for higher moments.

This theorem was rediscovered by H. E. Robbins

[7], who used it to study the one-dimensional analog
of our problem, i.e., random coverage of a linear
interval by smaller intervals. He calculated M, and
M, for this case, and observed that his formula for
M, remains valid for the two-dimensional (“circles’)

case that concerns us here.  Subsequently J. Bronow-
bl\l and J. Neyman [8] treated the random coverage
of a fixed rectangle by smaller rectangles with sides
parallel to those of the fixed one. Robbins [9]
solved the m-dimensional generalization of the
problem for rectangles, and also treated random
coverage of a rectangle by ecircular disks. [. A.
Santalo [10] treated “random coverage of an m-
dimensional rectangle by spheres,” and also the
coverage of a (two-dimensional) rectangle by rec-
tangles of random orientation. He also solved the
problem of random coverage of a sphere in m-
dimensional space by smaller spheres, which for
m=2 1s the problem that concerns us.

Of the many formulas derived in these papers
only two will be cited here. Both refer to the ar en
of a circular region A of radius =1, which is cov-
ered by the union of n circular disks (’; of radius »<_1,
whose centers are independently chosen and uniformly
distributed over a disk of radius 147 concentric
with A.

The first formula, due to R()l)l)llls, gives the mean ®
of this “random covered area’ as

My=n [1 —<1 —(123)3] ;

4 In our case m=2 and the sets S are non-empty intersections of the eircular
disk A with the union of n circular disks of radius r.

i*“Measure’ is here a generic term which means “length’ in one-dimensional
situations, “‘area’ in two dimensions, and ‘“volume’ in three.

6 The integral formally extends over the entire Euclidean space, but in most
applications the integrand is zero outside some bounded region.

7 Note that a ““sphere” is just a linear interval in one-dimensional situations,
and is a circular disk in two dimensions.

s See table 0 for values of M;/x pertinent to this study.
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this must be divided by the area = of A to obtain
the mean of the ratio /(X). The second formula,
due to Santalo, gives the corresponding variance as

P J‘z’ [1—2xr2—2r* arc cos (¢/2r) 43t (4r2—t2)'/2
" m(1+r)?

(2 arc cos (t/2))—3t(4—1t2)V2)t dt

+(1 ~(12—_§72) "{m*—2m(2(2r*—1) arc cos r

—3r(1— 1) 242 (1—12)3

—are sin r) } —? (1 _(#)2)2";

this must be divided by #? to obtain the variance
of F(X).
2. Attempts at Analytical Solution
2.1. Formula for Maximand

Returning to the main problem presented in sec-
tion 1.1, we shall describe some attempts that were
made to obtain an analytical solution. Problems

Ficure 4. Paramelers in the two disk case.
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F1GURE 5.

Approximaling the coverage.

involving the maximization of a function of several
variables can usually be handled by calculus if the
function F(X) can be written as an expression in-
volving the components of X and familiar functions
of them. The first step in any attempt at an ana-
lytical solution to our problem is to obtain some
“formula” for that portion of the area of A that is
covered by the configuration X=(X,,V,, ..., X,,V,).

2.2. The Two-Disk Problem

An initial attempt was made to derive a “formula”
for the area covered by two disks of radius »<R=1.
The parameters describing the placement (see fig. 4)
of the disks were

(1) dy and d,, the distances from the center of A
to the centers of disks ) and (), respectively,

(2) 6, the angle between these two distances (6<m).
It was thought that with these parameters in place of
(X, Y1, X,,Y5), it would be easier to obtain the for-
mula desired.® It was found that a single formula
could not be obtained for the area covered but an
algorithm was devised which uses no less than eight

9 Every configuration of n dis%s can actually be specified by only (2n—1)
variables, by arbitrarily setting X;=0. This involves no loss in generality, for
if we are given a configuration where X0, then a rotation of the coordinates
can be performed so asto make X;=0. Such arotation will not alter the coverage
of the configuration.
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Ficure 6. Reflection short-cut.

Ficure 7. Points to be scanned.
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“formulas,” depending on certain geometric proper-
ties of the covering configuration.'

2.3. Abandonment of Analytical Methods

The impossibility of obtaining any reasonable
“formula” for the function we are trying to maximize
in the relatively trivial case n=2 seems to indicate
the futility of the analytical approach especially
when 7 is larger. On this sad note the general
analytical approach was abandoned and another
method of a somewhat experimental nature, using
high-speed electronic computers, was adopted.

3. Black Box Maximization

3.1. General Description

collectively known as “Black Box
Maximization” have been used recently to search for
the maximum value of a function [11-14]. They are
employed when the following conditions exist:

(1) It is required to maximize a certain function
F(X), where X ranges over some finite set of
objects S.

(2) For each individual X it is possible to calculate
F(X), but there is no neat analytical expression for
F(X).

(3) The function /' has some sort of continuity
which makes it possible to define, for each X in S, a
subset N(X) of the points of S in such a way that
the value of F at X differs from the value of F at
any point of N(X) by a small amount. This set
N(X) is called the set of neighbors of X.

In one such method, the search for the maximum
of Fover S proceeds as follows: Pick some point X,
in S as a starting point and calculate #(X;). Then
determine the points belonging to N(X,) and com-
pute # for each of these points. Among the members
of N(X;) select one that yields the highest function
value. If this point X, has a higher function value
than X7, then repeat the process with X, replacing .X.
However, if F(X,)<F(X,), then X, is a relative
maximum of /" and the iteration terminates.

The method we have just described is known as
the method of ‘steepest ascent,” since in selecting
the new point X, we picked that member of N(X))
with the greatest function value. Two other
methods which might be employed are worthy of
notice. If we select as X, that neighbor of X
which has the smallest value of /" among those whose
function values are greater than /'(X;), this is known
as the method of “‘slowest ascent’” or “‘least positive
ascent.” 'This method derives its rationale by
analogy with the case of searching for the absolute
maximum of a function of 2 variables where the
function can be considered as a surface in 3 space
with hills and valleys representing extrema. There
is some intuitive reason [11] for surmising that fol-
lowing a “river bed”” may lead to a higher peak than a
“steep climb” would obtain. The third method,
known as the “first positive ascent,” derives its

Procedures

10 See appendixes 1 and 2.

value from the fact that the selection of the new
point X, at each stage generally takes less computa-
tion than for the other two methods, and thus saves
raluable time when an electronic computer is being
used to solve the problem. In this method the
members of N(X)) are arbitrarily ordered into a
sequence Ny,Ny, . . ., N,. ]'(Nl) is computed and
if 1t exceeds F'(X)) thon N 1s selected as X,. If
F(N,) <F(X;) the computation is repeated with N,
and so on until one of the neighbors of X, is selected
or all the neighbors are exhausted. If the latter
occurs, then no points of N(X,;) have a higher func-
tion value than X, so X| is a relative maximum of F.
There is no known way of selecting one of these
methods as best, even given certain characteristics
of the maximand. Gleason [11] presents interesting
statistics comparing the ‘“‘steepest ascent’” with the
“slowest ascent” for one particular problem, but no
general comparison seems possible short of numerous
experiments.

3.2. Application to the Coverage Problem

We observed in section 2.2 that the function
F(X) we want to maximize could not be expressed
in any neat formula. In fact, where more than two
disks are involved, the construction of an algorithm
to calculate the lunctlon would probably be too diffi-
cult and time-consuming to be worthwhile. What
we need, first of all, is an approximation for F(X).
We assume that the circular area A is centered at
the origin and its radius R is a positive integer.
Furthermore, the radius » of the disks is also a
positive integer."! The points of the plane (p,q)
where both p and ¢ are integers are called grid-
points and the area of A is appm\mmt(\(l by the
number of grid-points n, which lie inside the bound—
ary of A. We shall also 10qunv that e: 1( h pair
(X,,Y,) determining the center of a disk (; be a
grid-point. Our estimate for th(- portion of A
covered by the disks is the number of grid-points 7,
that lie inside A and at least one of the disks (see
fig. 5). The ratio F(X) is approximated by the
quotient ny/n,.

The problem is now to maximize F/'(X) where /'
is given by the approximation, over all vectors X
such that the components are integers ; in the
range —R<j < R. In this form the pr oblem satisfies
conditions (1) and (2) of section 3.1. To satisfy the
third oond1t10n we must specily the neighborhood
N(X) for each vector X in the domain of F. We
shall define N(X) to be all those vectors in the
domain of / which can be derived from X by adding
+1 to exactly one component of X. This means
that each X has 4n neighbors except in the boundary
situations (some component of X is -+ R) where 1t
has less.

The problem as now formulated can be submitted
to the methods of maximization described above.

11 Since the function /(X) is a ratio, the value of F is not changed if R,r, and
the vector X are multiplied by a constant factor.
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Some rather slight deviations from the general
method were employed because of certain peculi-
arities of our problem, but for the most part these
methods were the techniques that were programed
for use on a computer.

3.3. Drawbacks of the Methods

At this point we should acknowledge several
rather sobering facts about our method. The black
box maximization methods described (steepest,
slowest, and first positive ascent) all find a point 2
which is a relative or ‘“local” maximum of the
function; if one were certain beforehand that the
function has only one such “local” maximum, there
would be no further problem. Unfortunately, this
is usually not the case because one is dealing primarily
with functions whose behavior is generally unknown.
The best way to increase the probability of hitting
on the true “global” maximum seems to be to
repeat the search many times with random initial
points and different schemes of ascent. Secondly,
the discretizing of the problem which was effected
in order to be able to approximate the function has
introduced some error into the numerical results.
Although theoretically the mesh can be refined *
to obtain any accuracy desired, the limitations set
by time and the size of computer memory make it
impossible to refine the mesh indefinitely.

3.4. A Related Topic

A topic related to the methods discussed in
section 3 of this paper is that of maximizing an
“unknown’ function whose every evaluation requires
physical experimentation and so, besides being
costly, involves experimental errors. Since the
classical paper of Box and Wilson [15] appeared,
much work has been published in statistical journals
on the design of efficient explorations schemes for
such ‘“response surfaces”; we mention here only
a paper of Box and Hunter [16] and those by
Brooks [17].

4. The Computer Program

4.1. Specializations and Subroutines

The technique we have described was programed ™
and coded in FORTRAN and SAP for use on an
IBM 704 electronic computer. The code has been
debugged and a large body of data has been collected.
There are several things which did not appear in the
preceding description of the method but were neces-
sary additions or at least were clearly indicated.

The procedure for choosing an initial “vector’” X
to begin a search was left unspecified in the foregoing.

12¢Point” is used here to mean an element in a vector space; i.e., a vector.

13 The mesh is refined by multiplying the appropriate variables by a constant
factor; this does not sound like refinement but it amounts to the same.

1 ‘~ec appendix 3; the FORTRAN program there reproduced is for the Cycling
First Positive (Il‘ddl(}nt described in section 4.2, paragraph 5.

As the computer code was written, the selection is
made as follows:

(1) Using “steepest ascent,”” the initial X is chosen
by randomly generating a certain number of vectors
and selecting the one that achieves the highest func-
tion value.

(2) Usmg either “slowest ascent” or “first posi-
tive ascent,” the initial X is selected by a single
random generdtlon.

(3) Using any of the methods, the initial X may
be read into the computer as an input variable.

Another variation on the general method that was
present in the program was refinement of the mesh.
In section 3.2 we required that 2 and » be positive
integers and that the centers of the disks be grid-
points (i.e., X; and Y, must be integers for all 7).
The value of R is further limited by the program to
the powers of 2, and each time a relative maximum
is achieved with some value of R the mesh is refined
by doubling R, -, and X. This s effectively the same
as if we had actually refined the mesh of grid-points
by constructing new lines halfway between those that
already define our grid-points. After this refine-
ment has been carried out, the search is continued
until a relative maximum is found. The mesh is
then refined once again and so on until the mesh is as
fine as we desire. Since the fineness of the mesh is
indicated by the value of R, we specify as an input
to the program the maximum value of £ indicating
the final mesh size. The reason for this successive
refinement is that if the search is begun with a coarse
mesh, the bulk of the searching process can be done
in a lesser amount of time; this is because the amount
of computation depends very strongly on the num-
ber of grid-points, as might be expected.

There are ten subroutines that are called for by the
main program; a listing of these and a briel descrip-
tion of each follows:

MEK2T—computes and stores in memory a table
of the Bquares of all positive integers less than 1,000.
generates 7 pairs of coordi-
nates (X; Y,) where X?+VY2<R? with X, and
Y, integers.

SUMX-—computes for the current X and mesh
size R, the number of grid-points which lie inside
the large circle A and at least one of the disks. This
number is called NSUM.

) r of grid-points in
A and divides NSUM by this number to get RATIO,
our F(X).

VECTOR—for each particular value of 7, selects
those points near the boundary of a disk which
should be scanned to determine whether some move-
ment of a disk represents a gain or loss in NSUM.*

NEAR—for each disk (J; a determination is made
of those disks near enough to (’; so that they might
overlap (' il (', were mow(l by one unit n some
direction. For example, in figure 1 it should be
quite clear that disk (; need not be considered when
we are interested in knowing what effect small
changes in the position of (; have on the value of

NSUM.

15 See section 4.2, paragraph (4), for details.
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SCAN 1-—computes the change in NSUM due to
one of the four possible changes in the position of a
particular disk (7;, when the disk is entirely within
the boundary of A and would still be so even alter
one of the four changes in its position.

SCAN  2-—performs the same computation as
SCAN 1 when the disk (; is partially outside A or
might be after a single move.

XNEW-—changes the “vector” X, to the new
“vector” X, indicated by the search procedure.

REFINE '—'multlphos the variables R, », and X
by two, thereby effecting the mesh refinement.

For each of the different methods of ascent a
separate program has been written. Each program
uses the ten subroutines to do the bulk of the work.

4.2. Shortcuts in the Program

Some special techniques and shortcuts were used
in the program and subroutines; they were devised
partly to save time in computation and partly as
a result of certain peculiarities of the specific problem
to be solved.

(1) The restrictions that were imposed on the
problem in section 3.2 may seem somewhat artifi-
cial. As a matter of fact, there was a definite rea-
son for recasting the problem in such a way that
almost all the variables involved are integers. The
computer for which the program was written (IBM
704) has separate sets of instructions to deal with
integer variables and noninteger variables, and the
time required to add two integers is two machine

cycles ' where the (floating) addition of two non-
integers takes from 7 to 11 eyeles. It was thought

that this difference \\oul(l affect greatly the total
time required for a run.

(2) The computation of the table of integer squares
up to 1000 which is done by the subroutine MK2T
was inserted into the program to save time also.
A single multiplication takes 20 machine cyeles on
the IBM 704 whereas looking up the square of an
integer from a table stored in the memory takes
only four cycles.

(3) In the calculation of NSUM, the total num-
ber of grid-points that are covered l)_\ the configura-
tion X, it 1s possible to simplify the computation
procedure by the following shortcut:

The calculation of NSUM is performed by scan-
ning all the grid-points on some vertical line x=k,
an integer. The lowest grid-point on the line that
is also inside A is the first to be scanned. For each
successive grid-point proceeding in the direction of
positive i values, a decision is made as to whether
or not the point falls in one of the disks (;, Sup-
pose that a certain grid-point (X,Y) is determined
to be inside a disk ; with center (X,,Y;), as in
figcure 6. Rather than continuing on to the next
adjacent point, we calculate the quantity (¥Y;—Y)
and draw the conclusion that all points between

(X,Y) and
(X, Y42(Y,—1))=(X2Y,—Y)

16 A machine cycle in the IBM 704 requires 12 usec.

are also inside (7, The number of points to be
scanned has thus been substantially reduced.

(4) The subroutine NEAR (see sec. 4.1) saves
some time in computation by selecting from the
set of disks, those that have no effect on small
movements of a certain disk (';,  For example, if
the program were about to determine what (~hzmg(~s
occur in NSUM as a result of moving disk (s of
figure 1 to any of the four positions possible, it
\\oul(l not be necessary to consider disks ¢, (, C},
or (; in making this calculation. When the total
number of disks is larger this shortcut in the
computation should be quite effective.

(5) The general method calls for computing the
function value F(X) for all vectors X that are
“neighbors” of the current vector X,. From our
definition of neighbor we can see that a neighbor
ol X, corresponds to a configuration derived from
that of X; by moving some (’; one mesh-unit in one
of four directions. ]401tunatol\' it 18 not necessary
to compute /' (‘\) at all neighboring points. Which-
ever method of ascent is to be usv(L the important
ralue to be computed is AF=F(X)—F(X)), and for
each X' this can be computed without computing
either //(X) or I'(.X;). We ask the questions: How
many mesh-points that were not covered by X, are
covered by X? How many points that were cov-
ered by X, are not covered by X? The answer to
the first question tells us how many points have
been gained and the answer to the second, how many
have been lost. The difference between these two
is the net gain in covered points due to changing
X, to X. In figure 7 the two separate sets of mesh-
points indicate ospv(tl\(\l\' the set of points that
could either be “lost” or “gained” by moving the
disk to the right. Furthermore, for any direction,
two similar sets of mesh-points can be selected to
scan in computing A/

(6) Using the terminology of the preceding section
(5), only points that are within A are candidates for
classification as gains or losses. Therefore, if the
disk (’; being scanned is inside A by at least a mesh-
unit (that is, all points of 7; are nside A and no
closer than one mesh-unit from the boundary of A),
then all the points on the periphery of ; are inside
A and qualify as possible gains or losses. In this
case SCAN 1 is used to compute AF. However if
C; overlaps A, we must determine for each mesh-
point being scanned whether it lies inside A. In
this case SCAN 2 is used.

4.3. Inputs and Outputs

Very few input variables are required for the pro-
gram. A list of the most important and a description
of each follows:""

N7—the number of separate cases to be done.

J7—this variable indicates whether or not
mitial “vector” is to be read in as an input.

KO-—Initial radius of large area A (this must be
some power of 2).

the

17 Integer variables in a FORTRAN code must be designated by a symbol
beginning with one of the letters I, J, K, L, M, N. This is why the radius R
of the disk A to be covered is denoted b\ KO.
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N(C—The number of covering disks.

N-—The number of random selections of a “vector”
to choose the initial vector.

KBIG—This number represents the finest mesh
to be used.

JXPO—Satisfies the equation 2**°=KO.

IRO—1Initial radius of covering disks (satisfies
TRO<KO).

N4—Number of times each case is to be repeated
with different initial “vectors.”

As far as outputs are concerned, a fairly readable
format has been devised. Initially, a general
description of the case to be done and the important
inputs are printed out. Next the initial ‘“vector”
is printed out with its function value RATIO.
Each move that occurs is printed out and the final
configuration at each mesh size is recorded with its
RATIO. The total number of moves that have
been made is also printed out when the final con-
figuration has been attained.

5. Results of Computer Runs

5.1. Description of Cases Studied

A systematic series of runs was completed of
cases Involving between 2 and 10 disks where the
ratio /R took on interesting values' between 0 and 1.
Table 1 gives the fraction of A that was covered
by the best configuration found during the search for
the global maximum. Diagrams of these con-
figurations can be found in figures 8 to 44. These
numbers are accurate to about 40.002. A detailed
explanation of the convergence properties of the
approximation is given in section 6.

5.2. Closeness of Relative Maxima

In the cases where two, three, or four disks were
used to cover, the final configurations were all global
maxima. In the other cases there were as many as

18 A case is not interesting if complete coverage is possible with a smaller number
of disks, or if all disks can be placed inside 4 so as not to overlap.

(2, %6
.600

Ficure 8. Case (2,9/16).

five different local maxima found. Two configura-
tions were considered to be different if the con-
figurations were geometrically unlike. For example,
the configurations of figures 45 and 46 are considered
to be the same whereas both are different from that
of figure 47.

Diagrams of the local maxima that were found in
several cases are depicted in figures 45 to 60. The
value of RATIO is included with each configuration.
It should be pointed out that the three best con-

TaBLE 0. Mean coverage ratio* with case (n,r)

n | \ |
2 3 4 5 6 7 | 8 | 9 ([ 10
- ‘

1 |
51— . S | I | 0373 | 0.409 | 0. 442
501 | .

3 | 0.371 | 0.418 | .461 | 838
s 442|494 | 541 | (583 | 622
| .507 .562 | .610 |_______ |
916 56 |-
9%
116
3%
1316
%
1516
1 |
| |

*The centers of the disks are randomly chosen from a uniform distribution on
the circular disk of radius (1+r7).

The entry in the table is the expected value of the ratio of coverage where n
disks of radius r are randomly placed as described.

This table contains the mean coverage for the same cases for which table 1 gives
the maximum coverage.

TAaBLE 1. Mazimum ratio of coverage with case (n,r)

n [ | |
2 | 3 4 5 | 6 | 7 s | 9 | 10
r | | |
|
gl — = = = | = — | 0.773 | 0.82¢ | 0.879
3% | — — — | 0.700 | 0.794 | 0.896 | .950 | .978 | .992
Ae| — — | 0747 | 846 .915| .979 | .999 | 1.000 | 1.000
1 — | o721 862 | 936 | .979 | 1.000 | 1000 X | X
96| 0.600 | .815| .937| .989 | 1.000 | X X | X | X
5 | .686 | .83 | .982| 1.000 | X X X | X | X
16| .762| .935| .999 | X X X | X | X
5% | 820 | 972 1000 | X X X X | X | X
13| 889 | .994 | X X X X X | X | X
% | .93 | Loo0| X X X X X | X | X
15| 979 | X X X X X X | X | X
1 1000 | X X X X X X| X | X

— indicates all disks can be packed into large circle.
X indicates total coverage is possible.

Ficure 9. Case (2,5/8).
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Fraure 10.

Frcure 11.

Figure 12.

657118—62———3

(2,"e)

762
Case (2,11/16).
(2, %)
829
Case (2,3/4).
12,'*46)
889

Case (2,13/16).
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Ficure 13.

Frcure 14.

Fraure 15.

Case (2,7/8).

Case (2,15/16).

Case (3,1/2).

(2, 7g)

(2,'%g)

.979




(5% ) (125 ¥4
815 TR

Ficure 16. Case (3,9/16).

3,%) Ficure 19. Case (3,3/4).

.883

Figure 17. Case (3,5/8).

Ficure 20. Case (3,13/16).

ficurations for the case '* (6,1/2), figures 48 and 49,
differ in function values by at most 0.006. In case
(10,3/8), figures 43 and 44, the two best local maxima
differ by less than 0.002, and in case (9,5/16), figures
57 and 58, with the mesh refined to 256, the two
local maxima differ by less than 0.0002. In the
latter case the ratios must be considered as in-
distinguishable due to the error of the approximation
at this mesh.?

18 The following notation specifies the situation n=6,lr=1/2 (and R=1). This
method of denoting cases will be used consistently in the rest of the paper.
Frcure 18. Case (3,11/16). DR L8
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1.000

Ficugre 21. Case (3,7/8).

Ficure 22. Case (4,7/16).

In general it was found that the differences be-
tween the local maxima in each case were on the
order of one or two percent of the total coverage.
The largest such difference that was observed was
in case (8,%) where peaks of height 0.905 and 0.947
were found, constituting a difference of about 4
percent.

5.3. Details for the Six-Disk Case

A more detailed study was made of the local
maxima achieved with six covering disks at radii of
Mo, %, Us, %, and %, The case (6,%) is one that we
termed “not interesting” in section 5.1. because

657118—62——4 191

Ficure 23. Case (4,1/2).

Ficure 24. Case (4,9/16).

Frcure 25. Case (4,5/8).















Ficure 50. Case (6,1/2).

Frcure 51.

Case (6,1/2).

all of the disks can be placed inside A so as not to
overlap each other; thus the ratio of coverage can be
calculated accurately. The case (6,%) is also “not
interesting” because total coverage is possible.
Figures 48 to 52 and 61 to 67 contain diagrams of the
local maximum configurations for these cases.

An interesting phenomenon occurs in these cases.
The best placement of the disks in case (6,%;) is a
“central” or “flower-petal’” configuration (see fig. 64),
but in the case (6,%) the same “central” configuration
is merely the third best. This seems to indicate that
there is an intermediate value of 7 between e and %,
where the “central” and “triangular” (see fig. 4S)
configurations both cover equal portions of the total

196

Ficure 52. Case (6,1/2).

Case (10,3/8).

Freure 53.

area. The “ring” (see fig. 63 or 65) configuration of
case (6,7%) seems to be a fairly natural analogy to
either the “triangular” configuration or the ‘“dia-
mond” (see fig. 51) configuration of case (6,%).

A further comparison was made between the
“triangular’” and “diamond” configurations. Three
cases were used—(6,'%.=0.531); (6,5%25=0.539);
(6,°%4=0.547). In each case the “triangular” con-
figuration of disks was the best, but its margin of
victory decreased as the value of 7 increased. Table
2 contains the results of the comparison.*

21 The final mesh was 256 for all cases.



Tasre 2. Comparison of two 6-disk configurations

T Triangular | Diamond | Difference
0. 531 0. 99591 0. 99496 0. 00095
. 539 . 99802 . 99768 . 00034
. 547 | . 99932 . 99928 . 00004
| |

TasLe 3.  Comparison of two 10-disk configurations

|
T Central Other Difference
0.375 0. 9924 0.9911 0.0013
. 383 . 9973 . 9957 . 0016
. 391 . 9996 . 9985 . 0011
. 398 1.0000 . 9998 . 0002
. 406 1. 0000 1. 0000 . 0000
1

Ficure 54. Case (10,3/8).

Ficure 55. Case (10,3/8).

197

Frgure 56. Case (10,3/8).

Ficure 57. Case (9,5/16).

19, %8

Frcure 58. Case (9,5/16).



Ficure 59.

Case (8,3/8).

Figure 60.

Fraure 61.

Case (8,3/8).

16,%)
.58l

Case (6,5/16).
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Ficure 62. Case (6,3/8).

Ficure 63. Case (6,3/8).

The chart shows that both configurations achieve
total coverage at approximately equal values of 7.

Runs were also made of several cases involving
10 disks at radii between 3=0.375 and %,=0.406.
The two types of relative maxima were compared
at five different values of the radius 7. Diagrams of
these relative maximum configurations for »=3% are
contained in figures 45 and 47. In all five cases
the “central” configuration (fig. 47) was the best
placement but usually by only a tenth of a percent.
This data appears in table 3.

Once again the two types of relative maxima
achieve total coverage almost simultaneously.

5.4. Comparison With Analytical Solution

A run was made to compare our method with the
analytical results of Neville for the case of five disks
which was mentioned in section 2.3. According to
Neville, the smallest value ot » for which coverage



Fraure 64. Case (6,7/16).

(6,7%6)

Case (6,7/16).

Frcure 65.

with five disks is possible is 0.609375; this is called
the “critical radius.”” The results of the run were
quite surprising. The ratio of coverage was 0.999942,
just less than total coverage. It had not been
suspected that the method we used would achieve
a configuration exactly like that of Neville (see
fig. 3), since other runs seemed to show that the
ratio of coverage for configurations that are associated
with almost total coverage is rather insensitive to
changes in the configuration. This made it seem
likely that the configuration achieved by the com-
puter run would not resemble the Neville configura-
tion too closely. The configuration arrived at by
our searching technique (see fig. 68) bears a remark-
able resemblance to that of Neville. Kach con-
figuration contains three disks that intersect in a
point very near the center of A and two others
symmetrically placed with centers substantially
displaced from the center of A.

An analytical solution to the covering problem
for the cases where n=2 and %< r<1 is contained

657118—62——5

Fraure 66. Case (6,9/16).

Case (6,9/16).

Frcure 67.
Nore: Figure 68 is located on p. 182,
in appendix 2. A comparison of the numbers gotten
from computer runs with the true values showed

excellent agreement, usually differing by less than
0.002.

5.5 Comparison of Search Methods

A comparison was made of different methods of
search to determine the frequency of occurrence of
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Ficure 69. Neighborhood of a mesh point,

N

Frcure 70. Mazimum packing.

NS

D

Ficure 71.

@A
W

Figure 72.

1 disk coverage of wall region.

Wall interrupted coverage by three disks.
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Frcure 73. 2 disk coverage of wall region.
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Fiacure 74. 3 disk coverage of wall region.
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Freure 75. 4 disk coverage of wall region.



“olobal” maxima and to get some idea of the time
wqun'e(l by the different methods. Five “methods”
were programed and run. They are all derived from
the three described in section 3.1, with minor
rariations.

(1) Plateau Steepest Ascent: This is basically the
“steepest-ascent” method with two exceptions.
First—il at some stage of the search there are no
poqmve moves * indicated for the current configu-
ration X, then the neighborhood of X is effectively
onlzu'g(‘(l by allowing each disk to move to any one
of the eight grid-points surrounding its center (points
A through I in fig. 69). This is done only when
no moves are possible under the original definition
ol “neighbor.” Second—if both of these searches
fail to obtain a positive move then a search is made
to determine if all four moves (that is, a move from
0 to one of B, D, I, H in fig. 69) of some disk are
zero moves (i.e., leave RATIO unchanged). If
such a disk is found, successive random placements
of its center are tried until the value of RATIO is
increased. If 25 trials fail to accomplish anything,
the search is abandoned, and the refinement of mesh
1s made, ete.

This second feature is what gives the procedure
the name “Plateau.”” In a f[unction of a single
rariable f(x) one says that a point z, 1s on a plateau
of the function if all points in some neighborhood of
x, have equal function values. In two dimensions
a plateau, analogously defined, can be visualized as
being a flat portion of the surface represented by the
function ¢(x,). An intuitive idea of the meaning
of “plateau’ is possible in these two cases precisely
because a “picture’” of the function can be repre-
sented in three dimensions or less.

Although we cannot visualize plateaus in higher
dimensional spaces, we nevertheless define platmu
analogously as a neighborhood of the space on which

the function is defined throughout which the
function is constant. In our case we have considered

F as a function of two variables, the coordinates of
the center of a single dise, and so we have the type
of plateau that makes sense visually.

[t should be mentioned here that this particular
feature of the “Plateau Steepest Ascent” method
did not have nearly the same significance as did
the first feature (the enlargement of neighborhood).
That is to say, the results in using the steepest
ascent method were more drastically altered by
neighborhood enlargement than by the ‘plateau”
feature.

(2) Least Positive Ascent: This is the “slowest
ascent’’” deseribed in section 3.1.

(3) First Positive Ascent: As described in section
3.1.

(4) Cycle First Positive Ascent: This is the same
as (3) except that the first disk whose moves are to
be tried is the disk immediately following the disk
that was last moved. The disks are ordered in a
cyele Oy, Oy, . . Oy, Oy, Oy, ete., for this purpose.
This variation of (3) was used because the return to

22 A positive move from a configuration X is effected by changing X to one of

its neighbors X1 such that ¥(X;)> F(X). Itisaccomplished by a change in the
position of a single disk in one of the coordinate directions by one mesh unit.

(' at cach stage seemed to introduce some bias that
was undesirable.

(5) Cycle First Positive Ascent with Kight De-
grees of Freedom: this resembles (4) except t‘lmt
throughout the search the neighborhood of X i
the onldwv(l nomhbmhood (\mplmul by the Plateau
Steep Asc ent.

Two cases, (6,%) and (10,%), were selected to be
used in the (()mp(u'ison. Each case was known to
have nonglobal local maxima that occurred quite
frequently, and the configurations were quite distinct
from a visual standpoint. Table 4 describes the
frequency of occurrence * of the global maximum
in both cases, according to which method was used.
The last column is probably the most significant
because the cost depends on the time consumed and
not the number of trials.

Tasre 4. Comparison of the 5 ascent methods for 2 cases
== - == —
| Global | Global ‘ Time Global
Method Case Trials | max- Time | maxima per maxima
‘ ima | per trial | trial per min
B —| SO | A — _—
‘ | Min. Min,
S N (67%) 25 13 44 0. 52 1.76 0.295
2 i (6,1%) 25 10 47 40 1.88 .213
B B | (6,%%) 25 11 34 ‘ .44 1.36 .324
4_ [ (6,1%) 25 7 19 | .28 .76 . 368
6. [ 6,15) 25 8 52 32 2.08 154
| (10,3%) 25 ) 5 82 | 20 3.28 061
(10,3%) 21 | 0 89 .00 4.24 . 000
(10,3%) 24 0 71 .00 2.96 000
(10,3%) 25 5 40 20 1. 60 .125
| (10,3%) 20 | 5 | 90 ‘ 25 4.50 056
| |

From this point of view, the Cycle First Positive
Ascent (4) is clearly the best. There is another
point of view, however, that may be still more
significant in a compdusml of these five methods.
l‘he point is this—the method to be preferred is the
method that tends to reach more different peaks.
Such a method would reach the global maximum
less often but one would feel more confident of the
highest peak among 5 or 10 than he would if only 2
or 3 distinet peaks had been found. Table 5 con-
tains a record of the number of distinct peaks that
were found by each method. It seems to indicate
that the variations of the “first positive ascent’”
method are better than the others at locating different
peaks.

Number of different peaks found by the 5 methods

Case (6,1/2)

TABLE 5.

Method-__.___ i 2 3 4 5
Peaks__._______ 3 4 4 3 4
Method._.____ 1 2 3 4 5
Peaks.-——--_.- 3 4 5 3

5.6. Critical Values of Radius

Considering problems (¢) and (d) of section 1.2
once again, we define the “low critical radius” of n
disks 7;(n) as the answer to problem (d) and the

23 Two final configurations are deemed equivalent, in this comparlbon if tmy
are similar geometrically and achieve nearly identical values of RATI
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“high critical radius,” 7,(n) as the answer to problem
(¢). Neville [1] refers to the latter simply as the
“critical radius” but we want to study both. For
any number of disks 7 the cases that are “interesting”’
are the cases (n,r) where 7, (n) <r<ry(n).

A determination was made of 7;(n) and rs(n) for
all 7 in the range 1<n <10 (table 6). Some of the
values were found by using the search methods and
others could be determined analytically. For ex-
ample we can calculate r,(n) for 2<n<5 by the
following argument:

We want to place the n disks in a ring around the
center of A in such a way that the disks are packed

of the n disks. If we denote the best percent cover-
age by C(n,) and remember that we have been
assuming =1 we obtain the formula for efficiency:

7C(n,r)_Cn,r)

narr? nre

Em,r)=

The values of C(n,r) are contained in table 1, and
E(n,r) in table 7. For most pairs (n,7) the efficiency
is greater than % but two cases were found where 1t
was less than %. Specifically, £(3,7/8)=0.435 and

E(4,3/4)=0.444.

in as tightly as possible without overlapping. Under TasLe 7. Eficiency of coverage, E(n,r)
these conditions each disk requires a sector cut off | _ .
by an angle 6=2x/n. Referring to the diagram in | ~ 1 ‘ j
figure 70 we can immediately write N |
- AN 2 3 4 5 6 7 8 9 10
. U
r/(1—r)=sin 6/2 and §=2x/n, N [
%6 il 1 1 1 1l 1 0.985 | 0.934 | 0.900
. . 36 1 1 1 0.989 | 0.936 | 0.907 | .842 | .772 | .706
which reduces finally to e 1 1 0.974 | 883 | .796 | .731 | .653 | .580 | .52
G 1% 1 0.961 | .863 | .749 | 653 | .571 | .500 | X | X
e 0.988 | o | 70 | e | oam | X XD XX
1 8 .878 753 . 629 . 512 X X C X
. Sin (x/n) Wio | mor | s as) XTI X | X | X | XX
g / 3 37| s | 44| X | X | X | X | X
1+sin (x/n) i3 | 64| 52| X | X | X | X | X | X | X
7% | .614| .435 | X X 3% X X 3 X
134 56| X | X | X | X | X | X | X |X
TaBLe 6.  Low and high critical radii for up to 10 disks 1 500 | X2 2 A X X X | X
w T B e n e
;TR 1 2 3 | 4 ‘ 5 ‘ 6 . 7 8 9 } 10 X indicates total coverage is possible, so increases in P=nr? are just wasted.
|
D N s . 3 . .
OO I 10| 0.50 0.464 (0414 0.370 0.333 0.333 0.302 0.276 | 0.266 | LABLE 8. Comparison of covering efficiency with nr? held
18 1.0 | .866 | .707 | .609 | .555 | .500 | .437 | .422 | .398 constant
0 .500‘.402\.:93} 1239 67 | 1135 | 1146 | (132
(4,390 | (5,39%64)|  (6,15)| (7,1940)| (8, )| (9, 1342)|(10, 2564)

and this formula is valid so long as the ring configura-
tion is clearly the optimum packing.

For small values of n, r,(n) can be calculated by
noting that to achieve total coverage, all of the cir-
cumference of A must be covered. For a given n
the minimum 7 required to cover the circumference
is given by:

r=sin m/n.

If total coverage is in fact achieved at this value
of 7 then 7,(n) has been found. This argument was
found to be valid for n=2,34.

Table 6 shows that the length Ar of the interval
(r1(n),r2(n)) shows a tendency to decrease with 7,
although not monotonically. Thus for larger =
there 1s a smaller range of interesting cases. In
fact when n=10 the interval is (0.266,0.398) whose
length is only 0.132, whereas when n=2 the interval
is (0.50,1.0) of length 0.500.

5.7. Efficiency of Covering Configuration

It was thought that some measure of the efficiency
of a covering might be useful in some applications.
The efficiency should give some indication of ratio of
coverage versus total covering area available. We
therefore define the efficiency K(n,) as the ratio
between the maximum area (not percent!) coverable
by n disks of radius », and the total composite area

0.973409| 0.980666| 0.979418| 0.995094| 0. 999432| 0.999130| 0.999626
-| 1.485 1.495 1. 500 1. 538 1. 531 1.485 1. 526
0. 655 0. 656 0. 653 0. 647 0. 653 0.673 0. 655

Several runs were made to obtain data pertaining
to problem (e) of section 2.2. The value of P=mnr*
was set at 1.5 (or as nearly as possible)** and the
corresponding efliciencies were calculated. At first
it was suspected that efficiency would always be
better when n was larger, but the results in table 8
contradict the conjecture. The efficiency of (5,35/64)
is 0.656 and that of (6,1/2) is only 0.653. This
discrepancy could hardly be due to the errors in-
volved in the approximation because the approxima-
tion tends almost always to be an under estimate of
the true value (see sec. 6).

The Kerschner result cited in section 1.3 can be
rewritten slightly to read:

lim
0
n—re

A =
o—5=9/2m/3=0.827.
e e

The expression on the left is the limit of the
efficiency 1n the case of total coverage as the number
of circles increases and 7 decreases.

Denoting \=2y3/9 we get the following corollary
to the Kerschner theorem:

2 The possible values of r are restricted to numbers of the form k/64 where kis a
positive integer <64,
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Given a set S of area P/N and e >0, there exists a
number 7,>0 such that [72N(r)—P|< e when »<r.

This follows immediately by writing Kerschner’s
theorem as:

lim r2N(r)=X(P/\)=P.
0

If we define the potential P of a set of N disks of
radius » as P=Nr? the above corollary says that
any set of area P/\ can be covered by a set of disks
with potential arbitrarily close to P.

In particular, if the set is a disk of radius R, then
we have 7R?=P/\ or R= (P/x\)"?* where 1/7A=0.827.
If we put P=1.5 we get R=1.114 and this means
that a disk of radius 1.114 can be “almost’ covered
by disks with a potential of 1.5.

6. Convergence of the Approximation

Some estimates of the accuracy of the approxima-
tion used in the search methods have been
determined. The approximation was introduced in
the calculation of the ratio of coverage (RATIO).
The convergence of the approximation as the mesh is
refined was studied by an auxiliary computer pro-
gram called RATIO CONVERGENCE which cal-
culates the value of RATIO for a particular con-
figuration at mesh sizes 8, 16, 32, 64, 128. Several
of the configurations were simple enough so that the
ratio of coverage could also be calculated accurately
by analytical methods. Table 9 gives the results of
several runs performed to estimate the convergence.

The configuration of the first case in table 9 con-
sists of a single disk of radius »=1/2 centered at the
center of A. This means that the ratio of coverage
should be exactly 0.250. The table indicates that at
a mesh of 64 the approximation differs by only
0.0006 'flom the correct ratio of coverage.” At a
mesh of 256 the difference is only 0. 00016,

In the first three cases the change in RATIO
between mesh 64 and mesh 128 was less than or equal
to 0.0004.

In the fourth case the configuration involved two
disks and the correct ratio of coverage was computed
using the algorithm referred to in section 2.2. The
true ratio of coverage was found to be 0.40225, which
means the approximation differs by less than 0.001
from the correct value at mesh 64.

Two other configurations were tried in which all
disks lie entirely inside A and no overlap occurs.
The cases were (6,5/16) and (6,2/8). In the former
case the approximate ratio at mesh 256 was 0.584940
and the true ratio was 0.585937, a difference of
0.001. In the latter case the approximate ratio
was 0.374503 and the exact value 0.375000, a
difference of 0.0005.

These tests of the accuracy of the approximation
seem to indicate that at a mesh of 64 one can expect

2 A final mesh of 64 was the one used in most of the computer maximization
experiments.

Tasre 9. Comparison of ratio convergence at different meshes

~ 1 J
\ Mesh
\ 8 16 | 32 64 128
\\
Case L ‘
_ N . S
0.233161 0. 243380 4 0.247426 | 0. 249436 0. 249840
. 865285 . 894073 .897972 | . 899681 . 899998
. 860104 . 882724 885179 | . 886295 . 885882
. 378238 . 401354 . 402049

. 392182 I . 398440 }

accuracy ® on the order of -+£0.002. Furthermore,
the approximation was usually an underestimate
of the true value. At a mesh ol 256 the accuracy
is usually about twice as good. Most runs used a
final mesh of 64 since the additional time required
to increase to a mesh of 256 did not seem to be
warranted by the additional accuracy obtained.

An attempt was made to obtain rigorous limits
for the error involved in approximating the covered
area by the number of grid-points.

Let L(r), denote the number lattice points
inside the disk defined by #*+3*<7s? and let

D(r)=|mr*—L(r)|.

It is easily shown [18] that ID(r) converges to
zero as r—o, but the question of just how fast
is another matter entirely.

Hilbert and Cohen-Vossen show that

D(r) <4+/2m
or in other words
=0
Landau [19, pp. 183-278] shows that
D(r)=0(8),
in fact [19, p. 271],
D(r)=0(@*"%%¢) for any ¢>0,
but that
D(r) #0(r'?).
These have been somewhat improved [20] to read,
D(r)=0(r*/%1¢) for any ¢>0.
The best result to date seems to be
1) =)

which was shown by Loo-Keng Hua in 1940 [21].
The “conjectured” result is

D(@r)=0(r"2*¢) for e>0

26 This refers to the error in estimating ¥(X) by the approximation na/n; defined
in section 32. The error involved in estimating a relative maximum of #(X) by
one of the final configurations produced by the computer program is somewhat
larger.
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and it has already been pointed out above that this
is the best result possible.

Obtaining numerical upper bounds for D(r) from
these results would involve a great deal more effort
than seems worthwhile here. The problem is clearly
tied in with fairly abstruse number theoretical in-
vestigations. Furthermore, the error bounds that
may e derived from the Hilbert and Cohen-Vossen
inequality are so bad that there is some real doubt
as to whether the subsequent tightening of this
inequality is substantial enough to help us out.

There is also the problem of estimating the error
for n possibly (and indeed probably) overlapping
disks. The above results pertain to the estimation
of the area of a single disk without any bites taken
out of it, whereas we have a considerably more in-
volved situation, especially since we really want as
ticht an inequality as possible.

A recent paper by H. L. Mitchell 111 [22] gives a
large amount of numerical results concerning L(r),
the number of lattice-points (grid-points) in a circle
of radius . The paper includes calculations of D(r)
and also D(r)/r'”?. The latter values were calculated
to get some evidence for the conjecture that
f)(r) 0(r'#t¢) for every e >0 mentioned above.

7. A Conjecture Retuted by the Study

During the research on the (‘ovenno problem the
following conjecture, essentially a “law of diminishing
returns,” was formulated:

If C(n,r) denotes the mazimum ratio of coverage
attainable with n disks of radius r, then

Cin+1,)—Clny) <Cnr)—Cln—1,r).

This means that the successive gains in coverage
by the addition of disks one at & time are monotoni-
cally nonincreasing.  Unfortunately two of the cases
that were studied produced results that contradict
the conjecture. Table 10 gives the values of the
ratio of coverage for the cases involved and the differ-
ences. Accmdlng to the conjecture the second dif-
ference should be a negative number, but table 10
shows the two cases found in which it is positive.
The amount by which it is positive is large enough
so that the error of the approximation could not be
responsible for the sign of the second difference.

Tasre 10. Resulls of several cases showing posilive second
difference in C(n,r)
- — T =
Case Ratio (mesh | First differ- Second diffe-
of 256) rence rence

IS — | — 7¥*‘/_AA77'7777 ~ —
(5,3/8) oo - ‘ 0. 700365 ‘ 0. 093803 =+0. 007942
(6,3/8) .- . 794168 +.101745
(7,3/8) - oo . 895913 |
(8,5/16) < - - ‘ 773017 4. 051449 +. 004903
(9,5/16) . - _ , | . 824466 +. 056352
(10,5/16) 880818

|

8. The Second Covering Problem

8.1. Description of Problem

The second covering problem that was studied is
somewhat more complex. We are given a circular
area A of radius 2 and a certain number of straight
lines which intersect the area A and divide it into m
regions [2;(1 <2<m). In addition, we are given a
(‘ertam numbel n of circular disks of radius »<R.
The problem is to find that placement of the n disks
which “covers’ the largest amount of the area of A
subject to the following restriction:

A point vs considered to be covered if and only if it lies
inside some disk whose center lies within the same region
as the point in question.

For example, the area of A that is covered by the
three disks of figure 71 is shaded. Note that the part
of disk () that is in [} 1s not covered because (] is
not centered in 22, but rather in R..

8.2. Analysis of Problem

A configuration of n disks that maximizes the cov-
erage will necessarily have a given number n; of disks
centered in each region ;. Furthermore, the place-
ment of the n; disks in R; constitutes the best cover-
age of I%; by n; disks independently of what occurs in
other regions.

This observation enables us to separate the prob-
lem into two parts and solve it as follows:

(1) For each pair (4,7) subject to 1<i<m and
1 <j< n, calculate the maximum area of region I2;
that can be covered by j disks. Denote this area

(2) Let @ be the family of m-dimensional vectors,
V= (n1,n,, ., N, such that the n, are all non-

m
negative integers and >3 n;=n.
=

Now for each Ved

define the sum,

Sa= ZA)N

the maximum coverage we seek is then given by

Snax=Max {S(V): Ved}.
Portion (2) of the solution is a purely combina-
torial problem whose solution depends only on the
ralues of the entries in the matrix A(7,7). We shall
return to this problem later.

8.3. Computing A(7,7)

According to the above formulation, the first step
in a solution to the problem is the calculation of the
matrix A(z2,7) for 1 <1 <m, 1<7<n. For a particular
(1,7) this means finding the maximum area of a spe-
cific region R2; that can be covered with 7 disks. If
the region [, were circular, then the calculation
would be that of the problem described earlier (sec.
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1). This strong similarity suggested the possibility
of using a similar method to calculate A(7,7). As it
turned out, only very minor changes were necessary
to transform the methods of solvi ing the earlier prob-

lem into methods which will (mn])utc A(,7). The
changes essentially amount to restricting the centers

of disks to grid-points inside £2;, and not counting
points outside /2; when computing the coverage of a
particular configuration. So far as the computer
programs were concerned, these changes were effected
with a minimum of difficulty, considering the usual
complications which arise i modifying computer
codes. The basic reason for this was that the new
problem differed from the former only in the region
to be covered, and therefore many of the complexities
of the program were unchanged.

The program accepts as inputs certain parameters
specifying the lines that, along with the boundary of
the large circle, form the boundaries of each region
R, in question. A line is specified as a “lower slope”
or an “upper slope” at input time, according as the
region f2; lies above or below the line. As is well
1\110\\'11, any line in the plane (excepting vertical lines)
can be written in the form

Y=pT1q.

We assumed further that our lines have rational
slopes and y-intercepts. That is, p=p,/p. and
q=q1/q= where py,ps,q1,q2 are integers with p, >0,q, >0.
This will be true whenever the line passes through
at least two grid-points.”” Our equation then can be
written as,
Yy=p12/p2+q/q>
or
(P2q2) Y= (P1g2)z+ (q1p2),

which is of the form
ay=bz+te,

where @,b,c are integers and a=p,q, >0. These three
integers a,b,c are the input parameters that specify
a line Z. If L were further specified as a lower
slope for the region £2,, then any point (z,7) which
lies in 12; must satisfy

y=pr+g=(b/a)z+(c/a),

that is, ay>bx+ec. It should be noted that this in-
equality can be tested by the computer using integer
arithmetic. This is precisely why we required that
p and ¢ be rational. For any (z,7), only a finite
number of tests need be made to decide if (z,7) lies
in R;.

An example of the results of using this program to
compute A(z i,7) for a particular region R,(r=3%) is
given in figures 72 to 75. The only 1nterosl1ntr cases
are _}—1,2, 3,4 since total coverage would (',01tmnly be
possible with five disks of the same radius. Since
the computer program is essentially the same as
that used in the solution of the former covering prob-
mlino y=pr+q goes through points Py=(r,s) and Py=({,u); then

it can be shown easily that p=(u—s)/(t—r) and g=s—pr. Therefore if r,s,t,u
are integers, then p and ¢ are rational.

lem, there seemed no need for an exhaustive examina-
tion of cases. The particular difficulties in the sec-
ond problem may in fact lie in the combinatorial
question described in section 8.2.

8.4. Combinatorial Aspect

Returning to the second part of the problem
described in section 8.2 we find that the combina-
torial problem can be reformulated * as an integer
linear programing problem. We shall use a;; instead
of A(7,7) below, where "’ indexes subregions includ-
ing a fictitious zeroth subrowlon to absorb. any unused
disks. Let the matrix (xu) 0<i<M, 0<j<N be
defined as follows:

=il i exuctlyj disks are allotted to the 4th
subregion and z;,=0 otherwise. We can then express
the problem as follows:

Maximize 2; ; a;;x;; subject to constraints
(a) ;>0 0<1<M, 0<7<N
(b) i.ruzl 0<i<M
=
(c) Z})J ry=N
(d) z;; an integer 0<i<M, 0<j<N.

As such, the problem can be handled at least in
principle by the methods developed by Gomory [23].
Perhaps an especially effective algorithm can be
constructed for the special problem involved here.
This remark is added because the general method of
Gomory has been found to converge unacceptably
slowly 1n some cases.

9. Appendix 1. Algorithm and Analysis for
Two-Disk Coverage Formula

9.1. Description of Parameters

Suppose given a circle A of radius »=1, and two
other circles B and () of radius »<_1, whose centers
are at respective distances d; and d, from the center of
circle A.  Let 6 be the angle between

(1) the segment joining the center of B to that
of A, and

(2) the segment joining the center of ' to that

of A (see fig. 4).
We construct an algorithm to compute the area * of
the “coverage set” M which is common to circle A
and at least one of the two circles B and C,
M=AnBUO).

We may assume that the interiors of B and € both
meet the interior of A (i.e., both AnB and AnC are
nonempty). Further restrictions on parameters
(r,0,dy,d,) are as follows:

(1) 0<r<1

2) di—r<l1;

nonempty.

dy—r<1 since ANB and ANC are

28 This intezer prozraming formulation was suggested by A. J. Goldman (NBS
Operations Research Section).
20 | X| shall mean-the area of X; thus area of M=|M|, etc.
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Ficure 78  Calculation of angles 6, 0, 6;.

Ficure 76. Area common to two disks.

FI1GURE 77. Area common to three disks. Figure 79. Computation of u and v.
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Fraure 80. Area bounded by four arcs.

(3) 0<6<m since replacing 6 by (27—86) or (—0)
does not change area.

(4) d,<d,; we may assume for convenience that
B’s center is no further from A’s center than (s
center is.

We shall create an additional parameter ¢ (de-
pending on 6,d,,ds),

c= (i +di—2d,d; cos 6)'%

then ¢ is the length of the segment joining the center
of B to that of ('as can be shown easily from the law
of cosines.

There follows an analysis, case by case, of the
various configurations that require different treat-
ment when calculating the coverage area in terms of
the given parameters », 6, d;, dy, and the defined
parameter c.

9.2. Intersection of Two Disks

We begin by calculating the area common to two
disks of radii 7 and R respectively with distance of
centers d;<r+R. In case a<w/2 (see fig. 76a)
the area may be calculated as follows: *

Area=Sector (Q,0,Q:) —AQ,0,Qy+Sector (Q.0,Q,)

- 1V2\2,
Sector (Qu0,Q) — (28/2m) mR:—R*8,
Sector (QzOle) = (2&/27[')7!’1'2:7‘2&,
AQl 01(22+ AQ102QQ:2 (A()l()g(zg) :(11]{ Sill B.

We finally get the formula
Area=R?8+r*a—d, R sin B.

30 The symbol AQ;0,Q: means the triangle with these vertices. Sector (Q10:Q:)
shall denote the area of the sector taken in a clockwise sense from Q; to Q2 about
01.

&

Ficure 81.  Geometry of two disk cases.
In case a>m/2 (see figure 76b) the area is:

Area==Sector (Q,0,0Q,)+ (Sector (Q,0,Q,)
—2(A0,0:Q,)).

This formula reduces to the same formula as the
case a<m/2 by a similar argument.

Furthermore in case a==/2 our formula gives
Area=R*8-+7r*/2—d R sin 8 which is correct also.
We have thus shown that for 0<a<m,

Area= R?*8+r’a—d,R sin B. (1)

Use of the law of cosines on A0,0,Q, yields

r’=di+ R*—2d,R cos B

2 J2 o Y
R*=d}+r*—2rd; cos a,
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whence we get a and g as
a=arc cos ((r*+di—R?) [2rd,)
B=arc cos ((R*+d:—r*) [2Rd,).

In particular we notice that if both disks are of
equal radius 7, and d, =¢, then we get

Area =277 arc cos (¢/2r)—cr sin (arc cos (¢/2r)). (2)
If R=1 and <1, the common area becomes
Area=pg-+1r*a—d,; sin B, 3)
where o and 3 are given as
a=arc cos ((*+di—1)/2rd,), 4)
B=arc cos ((1+di—r?)/2d,). (5)
9.3. Intersection of Three Disks

We now calculate the area common to three disks
where the common area is bounded by three circular
arcs (see fig. 77a). In this figure A, B;, and ()
represent the respective centers of A,B, and ¢ and
P,Q,S represent the points of intersection of the three
circular arcs. The common area will be calculated
by adding together the area of APQS and the three
areas each bounded by one of the ares and its
associated chord. We call these slivers (see fig. 77h).

First we must calculate 8, the angle subtended at
A, by the arc PS of disk A. Using the law of cosines
on AABS and AA,C\P, remembering that B,S=r

— (1P and putting * R=1, we get
a+B=arc cos ((di—r*+1)/2d,)
B+4~vy=arc cos ((d53—r*+1)/2d,).

Adding the two equations and subtracting the
equation a-+B+y=0, we get
B=arc cos ((Z—r*+1)/2d,)+arc cos ((dz—r?
+1)/2d;) —9.
Referring to figure 77b, we calculate the area of
the sliver associated with angle g as the difference

between the sector (PA;S) and AA;PS. Denoting
the area of the sliver as S5 we have,

Sg=Sector (PA,S)—AA,PS
=(8/2m)m—xy
=p/2—sin (8/2) cos (8/2)
= (B—sin 8)/2. - (®)
We must now calculate the angles 6 and e of
figure 77a. We shall present the argument leading

31 This assumption involves no loss of generality since the ratio of coverage of 4
depends only on (r/R).

to the calculation of §; the calculation of e is similar.

Referring to figure 78a we wish to calculate the
angle < QC,P=6+6=5. Notice that P might lie
on the left side of B,C}, say at P/, in which case the
angle 6, if measured by (6,—d;) would be negative.
The formulas we shall derive will not be affected by
this difference, as can be readily checked.

We note immediately that

0=0,-F0,—03 (7)
so that we need only to calculate &, 8, 6.

Using the law of cosines or sines on the proper
triangles and noticing that AQC, B, is isosceles we
obtain

cos &, =(¢c/2) [r=c/2r,
sin 8s/d; =sin 6/c,
=72+ di—2rd, cos é;.

Solving for é;, &, 6, we get

& =arc cos (¢/2r) (8)
d;=xarc sin (d, sin 6/c) 9)
dy=arc cos ((r*4di—1)/2rd,) (10)
Substituting into eq (7) we get
d=arc cos(c/2r)+arc cos((r*+d3—1)/2rd,)
—arc sin (d,; sin 6/c). (11)
We get a similar expression for e,
e=arc cos((r*+d?—1)/2rd,) 4 arc cos(c/2r)
—arc sin (dy sin 0/¢). (12)

An argument similar to that leading to eq (6) can
be used to show that

Se=r%(6—sin §)/2,
S.=7*(e—sin €)/2.

Referring to figures 77a,b we can readily see that
the sides s,80,8; of APQS are given by

s$1=2 sin (8/2)
8,=2r sin (§/2)
83=2r sin (¢/2).

The area of APQS can then be gotten from the
semiperimeter formula

Area A=+/s(s—s;) (s—s,) (s—83) (13)

s=(s11+s:185) /2.
In our case s=sin(B/2)-+r sin (§/2)-+r sin (¢/2),

where
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and the common area of the three disks is

*1) (5—'5 )(5— 3)

4+ (1/2) (B—sin B+r?(6—sin 64e—sin €)). (14)
9.4. Additional Parameters

Area—-/s(s—:

In the algorithm which is to follow shortly it is
necessary to calculate the distance from A,, the
center of A, to the two points, ¢ and ,, where the
disks B and ' intersect. We label these points so
that @ is the closer to A; and refer to their distances
from A; as v and »,

u=A,0; v=2~4,0; <.

If we consider the disks B and (' as already
oceupying fixed posilions in the plane and consider
all ])osslbl(' positions of A, we notice almost imme-
diately (referring to fig. 79) that A, must lie below
B.C; and to the left of QQ,. This is because d, <d,
and ©<v. We distinguish two cases.

If A, lies in the region 2;, we have the following
equations:

wW=r*+di—2rd, cos s, (0<@<m/2) (15)
o1+gy=1arc cos (¢/2r), (0<ep,<m/2) (16)
sin ¢, /d,=sin 0/c (17)
and these can be solved for the value of u* as
wW=r?+di—2rd, cos [arc cos (¢/2r)
—are sin (d; sin 0/¢)].  (18)

If A, lies in region 2, say at Aj in the figure, then
we get the equations:

w=r+di—2rd, cos ¢, (0 <g<m/2)
e1—@2=1arc cos (¢/2r), (0 < <w/2)
sin ¢,/d;=sin 6/c

and these can be solved for the value of %? as

w=r*+d;—

2rds cos [are sin (d; sin 6/c)
(19)

We notice that the expressions in brackets in eqs
(18) and (19) differ only in sign and since cos z is an
even function (cos (— ;r)—(oq z) the formulas for u?
are identical.

In the first case (A, in 2;) we have the following
expressions

—are cos (¢/2r)].

v=r*+d;—2rd; cos (oot 1) (20)
where ¢, is given by
po=arc cos (¢/2r) (21)

and ¢, 1s given by

¢1=arc sin (d,; sin 0/c) (22)
In the second case (A, in 2,) we have
vP=r*+d2—2rd, cos (oo+y1) (23)
where ¢, is given by
Yi=arc sin (d, sin 0/c) (24)

and ¢, is given by (21).

Once again the formulas for »* are identical so there
is no need to make a distinction between the cases.

Recalling that we are assuming =1, the situation
that ¢ lies inside A is e\plossed by u <1 or equiva-
lently »*<1. Similarly @, lies inside A if and only
if »2<1. Thus we have a perfectly effective test for
this situation.

9.5. Analysis of Coses

We suppose throughout that both disks B and
meet the large cirele A, and that B is at least as close
as (' to the center of A. We also assume that the
radius 7 of B and (7 is less than that of A and that ¢
measures the smaller angle formed at the center of
A. These assumptions are equivalent to the alge-
braic restrictions on parameters contained in (1)
(2), 3), and (4) of this appendix 1, section 9.2.

Case Iy: Both disks are entirely within A. This
is the case when

dy+r<1. 25)

This says that disk ('is inside A, but we agreed that

B was at least as close in, so both must lie inside.
We distinguish two subcases.

Subcase I'y;: B and Coverlap.

c<2r,

and the formula for the common area covered is

This is true when

(26)

Area=2mr*—|BNC). 27)
where |BNC| is found according to eq (2).
Subcase I';,: B and (' do not overlap. This is true
when
=2 (28)
and the formula for the area covered is
Area=27r> (29)

Case IF,: B is entirely inside A,
This 1s true when d,+7»<1<d,+r.
tinguish two subcases.

Subcase Fy: B and (' overlap.
(26) and the area is given by

(" partially so.
Again we dis-

The condition is

Area=mr*+|ANC|—|BNC|, (30)

32 The quantity ¢ denotes the distance of centers of B and € and is calculated
by ¢=(d2+ ds2—2d,d; cos 6)1/2.
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where |ANC| is given by (3), (4), (5) with d, replacing
dyin all three formulas for obvious reasons. |BnC|is
eiven by (2).
Subcase Fy: B and C do not overlap. The condi-
tion is (28) and the formula for the area is
Area=xr?+|ANC)|. (31)
Both B and € are only partially inside A
The condition is (26) and

Case Fy:
and they overlap.
([l + r> 1.

We now consider in order the subcases of F,
beginning with the case §== and the case ¢=0.
We elimiate the possibility ¢=0 early in the game
since we call for division by ¢ in many cases.

Subcase Fy: The centers of B, A, and (' are col-
linear in the order indicated so that the condition is
f=m; it can be easily established that in this case
u<_1 necessarily and that the common region BNC'
lies entirely within A. The area is then given by

Area=|ANB|+|4ANC|—|BNC). (32)

Subcase Fy: B and O are coincident. The condi-

tions are

0:0, (11:([2 (33)
and the area is given by
Area=|ANB], (34)

which is calculated by eqs (3), (4), (5).

Subcase Fyy: The centers of A, B, and (' are col-
linear, but B and C are not coincident, and the two
intersection points of disks B and € lie inside A.
The conditions are

0=0; di#dy;

w*<1 (35)

where %* 1s given by
w?*=r*+dd,. (36)

It can be readily verified that eq (18) reduces to (36)
under the conditions of (35). The area is given by

Area=mr*+ |ANC|—|BNC|. 37)

Subcase Fi,: The same conditions hold as for F;,
except the two intersection points of B and C lie

outside A. The condition is
w?=r*+dd;>1 (38)
and the area is given by
Area=|ANB|. (39)

In the following situations we shall describe the
cases according to the conditions on the parameters
and let the reader figure out the geometry for him-
self. First we define two new parameters 6, and 6.
(40)

6;=arc cos ((1-+di—r?)/2d;) D=l 2

Referring to figure 78b, 6, is the angle % QA4,B, and 6.
the angle X C,A,0Q,.
Subcase Fy,: The conditions are *

60 ; w*<1; 0:<1; 0<6, (41)
and the area is given by
Area=mr?+ |ANC|—|BNC)|. (42)
Subcase Fy;: The conditions are **
0+#0; u?<1; 21, 6 >0, (43)
and the area is given by
Area=|ANB|+|ANC|—|BNC|. (44)
Subcase Fys: The conditions are
w?<1; »*>1 (45)
and the area is given by
Area=|ANB|+|ANC|—|BNCNA| (46)
where the last term is the common area of the

triangular region whose area is calculated in section
9.3 of appendix 1, eq (14).
Subcase Fy;: The conditions are

u?<1; v’=1; 6<0, (47)
and the area is given by
Area=|ANB|+|ANC|—|BNCNA]. (48)
Subcase Fig: The conditions are
w*<1; =iz 6> 6, (49)
and the area is given by
Area=|ANB|+4|ANC|—|BNC.. (50)
Subcase Fy: The conditions are
=g =l (51)
and the area is given by
Area=|ANB|. (52)
Subcase Fy: The conditions are
=113 P >1; <6, (53)
and the area is given by
Area=|ANB|. (54)

33 See section 9.6 of appendix 1 for an explanation of the inequalities on the 6;.
See section 9.4 of appendix 1 for definitions of » and ».
34 40 will be true for all cases Fy through Fis.
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Subcase Fy: The conditions are
pr=ll3 v’ >1; 0>0, (55)
and the area is given by
Area=|ANB|+|ANC). (56)
Subcase F: The conditions are
w2 >1; Al 6<_0, (57)
and the area is given by
Area=|ANB|. (58)
Subcase Fy;: The conditions are
u>1; v >1; 6>6, (59)
and the area is given by
Area=|ANB|+|ANC|. (60)
The final case occurs when both disks B and C
meet A but not each other.

Case Fy: The conditions are

dy+r>1;

and the area is given by

d+r>1; (= (61)

Area=|ANB|+|ANC. (62)
9.6. Special Cases

Most of the formulas for the area covered that are
presented in section 9.5 of appendix 1 can be verified
by a consideration of the geometry of the config-
urations. An exception to this is the formula
m?+|ANC|—|BNC| which appears in cases Fy
a/nd Fg4

Referring to figure 80 and denoting the areas
indicated as @, G, and G5 we get the following
expression for the area covered:

Area= (63)
but we also have the equations
G+ G+ Gy=mr* (64)
G+ G,=|BNC)| (65)
G+ G;=|ANC|. (66)
Solving for @; and substituting in (63) we get
Area=|ANC|—|BNC|+ =72 (67)

As regards the inequalities on the 6;, if <6, then
the portlon of disk B that lies outside A is inside C.
If >0, then this portion does not meet ' and the

area is calculated accordingly. Figures Sla and
S1b refer respectively to cases Fi and Fj; and the
inequalities can be seen geometrically. The inequal-
ities on 4 and 6, are similarly motivated.

10. Appendix 2. Analytical Solution * for
N=2

This section deals with the maximization of F(X)
in the very simple case n=2. As noted in the main
text, and explained in detail in appendix 1, F(X) is
given by one of eight different formulas, dependmg
on the nature of the configuration formed by the
fixed circle A of radius =1 (this is the circle “‘to be
covered’”) and the two “covering circles” € and ()
of radius »<1. Despite this complication, we shall
show that the problem can be solved analytically.

To avoid trivial cases, the assumption 1/2<r<1
will be made throughout. As in appendix 1, the
following notation will be used:

d,=distance from C’s center to A’s center,
dy=distance from (y's (ontex to A’s u)ntel
c=distance between (’s center and C5's center,
=angle between rudius of A through (,*l’s center
and that through CY's center.

Thus we have, by the Law of Cosines,
c’=d*+dy>—2dds cos 6. (1)

The function to be maximized is given, in set theo-
retic notation, by

7 (X) = G(dy,ds,0) =Area (ANC,)
+Area(ANCy) — Area (ANCINCy).  (2)

A preliminary remark which greatly simplifies the
SlLudtIOIl is that == for any (Onﬁo‘umtlon which
maximizes F(X). To prove this, temp()muly regard
d, and d, as fixed, but 6 as variable. That 18, regard
(), as fixed but €, as rotatable around the center ol A.
Then the first two areas in the right-hand side of eq
(2) are constant, but the third area is a decreasing
function of Cand thelelore (cf.eq (1)) is a decreasing
function of 0 for 0< < 7 and an increasing func Llon
of 6 for 7<= 2.

In what follows, therefore, == will be assumed,
so that eqs (1) and (2) become, respectively,

C:d1+d2) (3)

G(d,,day7) = g(dy,ds) =Area (ANCY)
+Area (ANC,) —Area (OiNCh), (4)

where eq (4) follows from the observation that
ANCNC,=CiNC; when §=.
Next it will be shown that, for every configuration
maximizing /(X),
(il—lf‘dg:CS 2')‘, («3)

di+r>1 i=12. (6)

3 This solution is due to B. K. Bender and A. J. Goldman (NBS Operations
Research Section). C.T. Zahn, Jr., suggested several expository improvements,
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Condition (5) asserts that C; and C, meet, while con-
dition (6) asserts that (', and ), “stick out” past A4,
or at least are not entirely interior to A.

~ For the proof, first assume tentatively that ¢>2r
for some configuration which maximizes F(X).
Then d;+r<1 cannot hold for both i—=1 and =3
since this would imply

4re+2r=(dy+r)+ (do+7r)< 2,

contradicting the hypothesis 7>>1/2. Thus at least
one of the 1unctions Area (ANC,) (1=1,2) is a strictly
decreasing function of d, near the configuration in
question. For such an i, we can slightly decrease d,
and thus increase Area (ANC,) without violating
the condition ¢>>2r. Thus one of the first two areas
in eq (4) is increased, the other is unchanged, and
the third remains zero since €, and (), are disjoint
when ¢>27. Therefore g(d,,d,) has been increased,
violating the assumption that the original configura-
tion was maximizing. So the tentative assumption
that ¢>2r is untenable, i.e., condition (5) holds for
every maximizing configuration.

Now temporarily regard ¢, and thus the third area
in eq (4), as fixed, so that eq (3) is a constraint on
dy and ds. For any configuration in which d,-+7>1
but dy+7<71, it would be possible to decrease d,
slightly (thus increasing Area (ANnCy)) and to in-
crease d, by the same amount so that d,-7<1 is not
violated and Area (AN () retains the value =2
Thus g(d,,d:) would be increased, and so the original
configuration could not have been maximizing. A
similar argument applies with =1 and i=2 inter-
changed.  Therefore a maximizing configuration
either obeys (6) for i=1,2, or obeys

d;+r<1 itoe =11 %, (6a)

Under the condition (6a), however, the first two
areas in eq (4) have the value 772 and only the third
one is variable. This area is minimized (i.e.,
g(dy,d>) is maximized) by choosing d, and d, (and thus
¢=di+d,) as large as possible. Subject to (6a)
these choices are d,—1—7r(i=1,2), which still satisty
(5) since )

¢=2—27< 2r because r>1/2.

But these choices also obey (6). This completes the
proof that (5) and (6) hold for all configurations
maximizing F(X).

In what follows, therefore, conditions (5) and (6)
will be assumed. It is convenient to introduce the
following quantities:

20;=angle intercepted at A’s center by subtended
arc of C,
2¢,=angle intercepted at C;’s center by subtended
arc of A,
z;=length of common chord of 4 and q,
2y=angle intercepted at center of either ) or ()
by subtended arc of the other of C; or (%,
z=length of common chord of € and (.

It 1s readily found that

cos 0;=(1—7r*+d?/2d,, (7)

cos 0;=(1—r*—d?)/2rd;, (8)

cos y=c/2r 9)

sin ,=r sin ¢,=3z;, 7 sin y=1=1z, (10)

Area (ANC)=mr*+0,—% sin 20,—r2p;+1r2 sin 2¢;,
(11)

Area (C1NC) =2r*y—1? sin 2y. (12)

From the geometry of the situation, it follows that

(13)

an analytical derivation of this will be given later.
Exactly the same argument shows that

O (Area (ANCY))/o(d;)=—2;;

d(Area (Ci\NCH))/od;=—z,
so that (see eq (4)) we have
0g/od;=z—z;

(o=112). (14)

Now it will be shown that there is precisely one
maximizing configuration, the one characterized
rather elegantly by

(15)

0
[\M]

1= 22:
or equivalently, via eq (10), by

(16)

Note that, as might be expected, the maximizing
configuration is symmetric in the sense that d;=d,.

To prove eq (15), tentatively suppose it false.
Without loss of generality suppose z;7#2. Then the
function ¢(d,,d;) assumes its maximum on the tri-
angle:

T: di>1—r,

1= =Y.

b>1—r, di+dy,<2r,

defined in the (d;,ds)— plane by conditions (5) and
(6), at a point at which 0g/od; does not vanish.
Such a point must lie on the boundary of T, and in
fact not on its horizontal leg (endpoints excluded);
this follows from standard calculus arguments. If
the point is on the vertical leg of 7" (upper end-point
excluded), then on the one hand 0g/0d; must be non-
positive and thus negative, so that z<z, by eq (14),
and on the other hand d,+7=1 so that ( is internally
tangent to A, implying z=0. Since z<z and
2,=0 are incompatible, this case is ruled out. If
the point is on the hypotenuse of 7" (upper endpoint
excluded), then on the one hand 9g/dd; must be non-
negative and thus positive, so that 2>z, and on the
other hand ¢=2r so that () and C, are internally
tangent, implying z=0. Since 2>z and z=0 are
incompatible, this case is also ruled out. Finally, if
the point is the upper vertex of 7', then on the one
hand consideration of the directional derivative
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along the hypotenuse of 7"yields
0¢/0d;—0g/dds= (z—2z1) — (2—22) = 2,— 2,50, (17)

while on the other hand z,=0 and z=0 as above.
This implies z,==0, so that ) and (), are externally
tangent to each other and internally tangent to A.
Such a configuration can only occur if 7=1/2, con-
tradicting our assumption that »>1/2. So every
alternative to eq (15) has been ruled out, and the
equation must hold. To describe the maximizing
configuration more explicitly, let = denote the com-
mon value of ¢, and d,. Equations (8), (9), and (16)
then yield

(1—r2—a?)2re=z/r,
which implies that
r=((1—7%)/3)V? (18)
As a check, note that z—1/2 as 7->1/2 and 2—0 as
r—1, as would be anticipated.
The maximum coverage ratio /.. can now be

found in terms of 7. First we have, from eqs (4),
(11), (12), and (16)

T pax =271+ (20, —4r%)) —sin 20,1272 sin 2¢.
From eqs (7) and (18), however,
cos 0,=2((1—r?)/3)V?=2x,
which with the aid of eqs (9), (10), and (16) yields
27% sin 2y =47% sin ¢, cos Yy=4r(sin 0,) (z/r) =
2 sin 6; cos 0;—sin 20,.

Thus the last two terms in the above expression for
mF . cancel each other, leading to

Tl =272+ 2arc cos (2z) —4r%are cos (x/r), (19)

where 2 is given by (18).

TaBLE 11.

Comparison of analytic and computer solutions®
for the case n=2

.20091 |

L 979 L979

T ‘ Ze | Fmazlm i RATIOmaz
0.47785 | 0.47754 0.601 | 0. 600
-45069 | ~45069 | .686 | L6856
- 41926 | .41753 | .762 | .72
(38188 | J38181 | 1829 | ©820
. 33657 ‘ . 33802 889 . 889
.27951 98128 | L4939 L0939
|
\

a risthe distance of the centers of each of Cyand Cs from that of A in the optimal
configuration, and Fy,a./7 is the value of coverage obtained from the configura-
tion, i.e., the maximum coverage. The corresponding values z. and RATIO, 4z
are those obtained from the computer simulation at a mesh of 2356.

b At the coarser mesh of 64, the value is z.=0.476.

The value of z and maximum coverage (/,/m)
are compared in table 11 with the corresponding
values z, and RATIO,,, obtained by the computer.*®
As can be seen, the agreement is excellent.

We conclude with an analytical derivation of eq
(13).

First use eq (11) to write
O(Area (ANC,))/o(d;)=2 sin? 6,(06,/0(d;))

—2r% sin’ ¢,(0¢:/0(dy)).
By eq (10), this can be written
O(Area (ANCY))/o(d;)==z; sin 0,(00,/0(d;))
—7 sing;(0p:/0(d;)).  (20)

From eqs (7) and (8), however,

—sin 0;(06,/0(d;))=— (1—r*—d;»)/2d?,
—r sin ¢;(0¢;/0(d;))=—(1—r*+d;?)/2d>

Substitution of these results into eq (20) yields
eq (13).

3 This table was prepared by C. T. Zahn, Jr.
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11. Appendix 3. The FORTRAN Program

CYCLING FIRST bosrTrVF’GRADfENT

S_ONE OCT 1000000 - —

S

Pa

OCT 2371056?4673
RFAD1001

_1001

PRINT1001

_FORMAT(72H ===
1 )

DIMENSION A(50)sIP(50),JQ(50)s1P0(50)sJQ0(50)9K2(1000)9IT(49519),

XJIT(44512)9IR(44512)9JR(44512)
DIMENSION NX(4)sIPX(50)9JAX(50)

READ1sN7
IDx2=1

CALL MK2T(K2)
PRINT 2010

1000

READ1sJT79sKO9NCyNsKBIGyJXPO9JFACT9IRO9NS
FORMAT(7110)

IDX=1
CLA P2

STO ‘14
PRINT 201151DX2

PRINT 2012sNCsIROsKOSNyKRIGYN4
K =KO

IR=IRO
NEWX=0

50

JXP=JXPO
IF(J7)3410910

10

READ9s (IP (IX)s JQ (IX)s IX=1yNC)
GO TO 4

R ]

CALL XBAR(JXPsKsIPysJQyK29NCyI4)
CALL SUMX(KsIP +JQ sIRYNCHNSUMyK?2)

PRINT 20209 IDXs(IXsIP(IX)sJQ(IX)sIX=1sNC)
CALL RAT (KyK2sNSUMyRATIO)

‘PRINT 2021s RATIO
PRINT 2022, K

KSQ=K2(K)
IRQ=K2(IR)

CALL VECTOR(ITsJTsIByJByK2,4IR)
CLA IR

ALS 1
STO IR3

N nmln Nin

SUB ONE
STO MAX

FORMAT(1017)
IF(I0-NC)101+91025102

102

IX4=NC
10=1

101

GO TO 201
IX4=10

10=10+1
GO TO 201

201

CALL NEAR (NSsIO0sIPX9JQX9IR39IP»JQNC)
INTS5=IP(10)

INT6=JQ(10)
INT7=K=1R~1

1234

IF(K2(INT5)4+K2(INT6)=K2 (INT7))12349123441235
IF(NS)123842005491238

1238

DO 1300 IXS=1ls4
CALL SCAN1(ITsIBsJTsJByI0)K2sJIDsIPsJQyIXSIMAXINSH»IPXy»JAXyKSQyIRQ)

1300

IF(JD)130091300451307
CONTINUE

GO 'TO 2005
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1235 DO 1250 IXS=le& S . o
CALL SCAN2 (ITsIBsJTsJBsINsK2sIDsIPsJQsI1XSsMAXsNSs IPX 9 JAX9KSQsIRQ)
IF(JD)12505125051307

1250 CONTINUF

2005 IF(10-1X4)30443034302

302 IF(10=-NC) 30493055305

305 lo=1 o . .
GO TO 201

304 10=10+]
GO TO 201

303 IF(K=KBIG)18+19,19

1307 IX0=10
MX2=1XS -
CALL XNEW (MX2s1PsJQs1X0)
NEWX=NEWX +1
GO TO 7

18 PRINT 20274 NEWX
PRINT 2030sKs (IXsIP(IX)9JQ(IX) s IXa14NC)
_ CALL SUMX(KsIPsJQsTRyNCINSUMK2)
CALL RAT(KsK2sNSUMsRATIO)
PRINT 2021,RATIO R S
CALL REFINE (ITsJTs1ByJBINCIKSIR9IPyJQ9JIXPsJFACT)
PRINT 2032, K
GO T0 6
19 CALL SUMX(KsIPsJQsIRsNCINSUMsK2)
CALL RAT(KsK2sNSUMRATIO)
_ PRINT 2040y Ks(IXsIP(IX)sJQ(IX)eIX=1yNC)
PRINT 2041y RATIO
PRINT 20425 NEWX
53 IF(IDX=N&)4&1s42442
41 IDX=IDX+1
GO TO 2
42 TF(IDX2=NT7)43 944444
44 CALL RETURN
43 IDX2=1DX2+1
GO TO 1000

2010 FORMAT(1H1s19Xs38HCYCLING FIRST POSITIVE GRADIENT SEARCH)

2011 FORMAT(1H1s19Xs5HCASE 412/7/)

2012 FORMAT(20Xs10HTHERE ARE 412426H COVERING DISCS OF RADIUS »13s1H/s1

X3/20Xs25HMONTE CARLO 1S USED WITH s1348H TRIALSe/20Xs19HFINAL MESH
X SIZF 1S s14s13He  KICK OFF 313,7H TIMESs)

2020 FORMAT(///15Xs22HINITIAL CONFIGURATION »14//(15Xs1294H)  +15918))

2021 FORMAT (//15XsOHRATIO 1S sF1046)

2022 FORMAT(/////10Xs8HMESH 1S 414//)

2027 FORMAT(//10Xs13521H MOVES HAVE BEEN MAPE)

2030 FORMAT(///15Xs31HRELATIVE MAXIMUM UNDER MESH OF s14421H 1S THF CON

1FIGURATION//(15Xs1254H)  415518))

2032 FORMAT(/////10Xs19HMESH 1S REFINED TO s14)

2040 FORMAT(////15Xs41HRELATIVE MAXIMUM WITH FINAL MESH SIZE OF »14,21H

X 1S THE CONFIGURATION//(15Xs1244H)  415,18))
2041 FORMAT(//15Xs24HFINAL VALUE OF RATIO IS 4F10e46) B
2042 FORMAT(//15Xs26HTOTAL NUMRFR OF MOVES WAS s13/////5(10Xs 10HXXXYXXX
XXXX)///77)
END
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