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A model representing the mechanical response of a rubberlike polymer is derived, using
the same molecular concepts of entropy elasticity and a viscous parameter expressing
interactions between polymer molecules employed by Rouse, Bueche, and Zimm in their
molecular theories. Since the model developed here represents the mechanical response of
a chain, rather than representing the chain itself, it can be modified more easily than these
strict molecular theories to include effects due to entanglements between chains which
modify the character of the viscosity-molecular weight relationship at a critical molecular
weight.

This modification is introduced, the results for both steady-state and transient response
functions are calculated, and these results compared with experiment for the “standard”
polyisobutylene. The agreement indicates that the same “entanglements,” whatever their
precise nature, are responsible for the proportionality of viscosity to M?- for a high molecular
weight polymer, the steady-state elastic compliance, and the pseudo-equilibrium compliance

at intermediate times or frequencies.

1. Introduction

Molecular theories of the viscoelastic behavior of
rubberlike polymers have been developed in recent
yvears by Rouse [1]!, Bueche [2], and Zimm [3]. In
these theories the polymer molecule is represented by
a model consisting of NV segments connected by junc-
tions which permit free rotation. The length of the
segments is unspecified, but is assumed long enough
to give a Gaussian distribution of end-to-end dis-
tances, and hence account for an entropy type elas-
ticity. The interactions between molecules are
supposed to be purely viscous (for unvulcanized
materials) and these viscous forces are lumped at
the junctions as connections between the typical
molecule whose motions are analyzed and the aver-
age medium, or in the case of the Rouse and Zimm
theories the solvent. The Zimm theory includes an
approximate treatment of hydrodynamic interaction,
that is the coupling of motions along a single chain
through the solvent.

Only a simple viscous interaction is included in the
basic form of these theories. The entanglement
effects which change the character of the viscosity-
molecular weight relationship at some critical value
of molecular weight have been included [4] by treat-
ments which modify the calculated response func-
tions rather than by including them directly in the
original model.

We are interested here in representing the me-
chanical behavior of a high molecular weight, un-
vuleanized, undiluted polymer in terms of a model
whose elements have a clear relationship to molecular
quantities. The model we use is basically a phenom-
enological one, since it represents the mechanical
response of a polymer chain rather than representing

1 Figures in brackets indicate the literature references at the end of this paper.

the chain itself. It does not seem feasible to include
entanglement effects in a model of the polymer mole-
cule, but by dealing with a model representing
mechanical response the required modification 1is
relatively simple.

The basic molecular theories have been sum-
marized and compared in some detail by Ferry [5]
in his recent boolk, so there is no need to review them
here. The model presented in this paper was dis-
cussed briefly in a previous paper [6] and its predic-
tions for steady-state response given. We include
here a comparison of the predictions of this model
with those of the Rouse theory and the expressions
for transient, as well as steady-state, behavior.

2. Derivation of Model

We present a derivation of the basic model, re-
lating the elements appearing in a certain form of
the response function to molecular concepts, and
compare the predictions of this simple model with
those of the Rouse theory. We next include a repre-
sentation of the high frequency limiting shear com-
pliance as a separate element, not connected with
the entropy mechanisms dominant at lower fre-
quencies. Finally we modify the model to include
the effects of entanglements characteristic of un-
diluted polymers of high molecular weight.

2.1. A Model Analogous to the Rouse Theory

Assume that the complex shear modulus of an
unvulcanized polymer, G*(p), where p is a complex
frequency =s-iw, can be represented by N terms of
the form a,p/(p-+X\,). This sum can be written as
the ratio of two polynomials in p, both of order N,
pPyx_1(p)/Qx(p), where both P and ¢ contain
nonzero constant terms. This ratio in turn can be
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expressed as a continued fraction by a process of

alternate division and inversion, giving for
J*(p)=1/G*(p):
T*(p) =+ e
Bupt— 2.1)
S 8
“ Byp

where the o’s and @’s are functions of the A,’s.

Since the «’s in this expression represent a strain
proportional to stress and the g’s a stress proportional
to rate of strain, this response is represented exactly
by the model of figure 1.

This model represents the mechanical response of
an unvulcanized polymer sample, and since the
steady-state response is in fact one form of the
general response function of a linear system it
represents the response to a forcing function (either
stress or strain) with any arbitrary time dependence.
It is of the same form as the model used to represent
a polymer molecule in the Rouse, Bueche, and Zimm
theories if we choose the constants as:

laoy=1/ao,= . .. =1/ay=NkT

. By=n/nN,

where N is the number of segments in the model
representing the polymer molecule, n the number
of molecules per cubic centimeter, and 5 the steady
flow shear viscosity. Thus we should expect this
model to give us the contribution of a single polymer
molecule to the shear compliance of a bulk sample.
We prefer to use constants that will give directly
the response of a bulk sample, requiring the intro-
duction of a factor n as shown in figure 1.

The response represented by this model is the
sum of responses of 1, 2, 3, . N segments acting
cooperatively. In this sense it corresponds directly
to the normal mode calculation used in the develop-
ment of the molecular theories. The assignment
of constants follows the same molecular concepts
used in formulating the model of the molecular
theories, the springs representing the entropy-type
elastic forces contributed by the segments of a
chain, and the dashpots the viscous resistance
opposing the motion of a segment.

B, B,
oy 30 3 303 B,
1 | |
CONSTANTS = Tl e e .
a a, a, nNkT
B - n
T .

Simple model of mechanical response of polymer
chain.

Ficure 1.

2.2. Comparison With the Rouse Theory

The steady-state response of the model of figure 1
is given by: 2

J*(p)=1/(2NnkT)

: Pn e .
+|:pnnkT <1+4“ 72nkT>] ctnh (Na) (2.2)

sinh a= N [nkT N%sz)]

The Rouse theory gives:

where

(p)_nkTZ (283))

—I— N\

with

2N (N +2)nkT sin? g )
37 2(N+1)

Both expressions depend on NN, the arbitrary num-
ber of segments into which the model of the molecule
(or of the response) is divided. Rouse eliminates N
from his results by approximations valid for frequen-
cies less than a hmit proportional to N2. Thus, to
obtain expressions valid for all frequencies, we must
take the limit as /V goes to infinity. This is equiva-
lent to assuming that segments of vanishing length
can be treated as kinetic theory springs.

Letting N go to infinity in the model used here
eq (2.2) gives:

=

J*(p)*\/] 7 ctnh \/ (2.4)
G*(p), the reciprocal of J*(p), 1s given by:
G*Q»v-nkr,/l” tanh ﬁ&r (2.5a)
or, equivalently, by:
© 2,
GH(p) =20k T 35 - P with h = @ﬁ%;ﬁ@
(2.5b)
The Rouse expression in this limit is:
. . jirznykT o
G +)\ ey (2.6a)
or
G*(p)=mkT/2)[y ctnh y—1]; y= ]%7;;, (2.6b)

These two functions are very similar, though not
identical. Equation (2.5a), representing the response
of our model, can be written as:

2 This solution is obtained by the procedure described in L.A. Pipes, Applied
Mathematics for Engineers and Physicists, pp. 265-267 (McGraw-Hill Book Co.,
New York, 1946).
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4 pﬁ )
nkT

(2.5¢)

G*(p)=mkT/2)[x ctnh z—z/sinh z]; r=

This is nearly the same as eq (2.6b), except that
y=(3/2)*x. The second term in the brackets of
eq (2.5¢) becomes essentially unity for small values
of |p[, corresponding to that in eq (2.6b); for large
values of [p| the second term in both expressions is
negligible compared to the first.

2.3. Representation of the Limiting Compliance

As noted in the last section, the process of going
to the limit of infinite N in our model corresponds to
taking segments of vanishing length, which results
in expressions for JJ’(w) vanishing at bigh frequencies
as w2 We would not want to use a model which
represented the limiting high frequency shear com-
pliance as an entropy-type mechanism, since this
would have an unrealistic temperature dependence.
Therefore we go to the limit of vanishing segment
length and represent this compliance by a separate
element in the model.

The model of figure 1 assumes that the junctions
between segments are connected to the average
medium by purely viscous elements, which show a
zero compliance at infinite frequency. In setting up
this model we considered only the response associated
with rather long chain segments, and these viscous
elements represent the resistance to motion experi-
enced by the whole segment in its motion. In
addition to this type of response, there also exists
the type of compliance characteristic of polymeric
glasses, which does not involve long segments of the
chains but is connected with forces between indi-
vidual atoms irrespective of whether or not they are
a part of the same polymer molecule. This elastic
mechanism will permit a small compliance, negligible
at low frequencies in comparison to the entropy
response, but becoming dominant as the frequency
is increased.

This type of response can be introduced into our
model by connecting the viscous elements to ground
through a very stiff spring, rather than directly.
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Ficure 2. Model including limiting high-frequency compliance.

This modification is shown in figure 2, which we
represent initially as a model with distributed rather
than lumped parameters. The simplest assignment
of constants, shown in the figure, is achieved by
taking the total length of the model as unity and
assigning the constants as shown to represent the
response of the bulk sample. ¢ is evaluated from
the calculated response of the model at infinite
frequency. In addition to the mechanical model,
the electrical analog is also shown, using the system
in which voltage corresponds to stress and current
to rate of strain.

2.4. Introduction of Entanglement Effects

The model as formulated up to this point repre-
sents the behavior of a collection of polymer chains
in which the motion of any segment or group of
segments will be opposed by a viscous force propor-
tional to the length of that segment or group of
segments.  We know empirically [7] that this simple
picture is not adequate to represent the viscous
behavior of materials of high molecular weight, and
that above some critical molecular weight, char-
acteristic of each polymer, the steady flow viscosity
becomes proportional to M?®*' M the molecular
weight.

Bueche [8] has developed a theoretical picture in
which this effect is attributed to the effects of
entanglements between polymer chains, which be-
come effective only when the chains reach some
minimum length. Above this ecritical length he
predicts that the viscosity should increase more
rapidly than below it, going in the limit of very high
molecular weight to an expression proportional to
A‘[:i.ﬁ.

We adopt this theoretical picture, using however
the empirical exponent of 3.4. We assume that the
coordinated motion of any segment or group of
segments with a length less than that corresponding
to the eritical molecular weight will be opposed by
a viscous force proportional to the length of the
segment or group of segments. When this length
exceeds that corresponding to the critical molecular
weight, M, we assume that the viscous resistance
will still be proportional to length, but the propor-
tionality constant will be much greater, representing
the fact that the motion of such a section of the
molecule will be opposed by its entanglements with
other chains of the sample.

The final model for the response, including
entanglement effects, is shown in figure 3. Again
this represents a model with distributed parameters.
To simplify the final expressions, the length, [, of
the model is defined as AM/M,, with the length
corresponding to the critical molecular weight taken
as unity. » is defined as the viscosity of a polymer
of molecular weight equal to the critical molecular
3.4

l—1

represented by the model proportional to M3 ¢,
corresponds to the equilibrium compliance of a

. . . l . .
weight; L?1s defined as to make the viscosity
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cross-linked polymer with molecular weight A, /2
between cross hnks, since this corresponds to the
average molecular weight between entanglements.

Although this is really a phenomenological model
of response, the constants are simply visualized in
terms of our molecular concepts. For motions
connected with high-frequency response only short
lengths of the polymer chain are involved, and hence
only the resistive terms characteristic of small
molecules are effective. For lower frequencies,
where greater lengths of the chain are involved in
cooperative motions, the elements representing en-
tanglement effects become important.

In analyzing the response of this model it will
prove useful to employ various approximations valid
mn certain regions of time or frequency. For this
purpose it 1s necessary to say something about the
relative values of the constants appropriate for
a model which represents the response of a rubber-
like polymer. The constant ¢, equal to the equilib-
rium compliance of a vulecanized rubber with
molecular weight M,/2, will typically be of the
order of 107° cm?/dyne. r represents the viscosity
of a polymer with molecular weight A, so should
be within an order of magnitude of 10* poise. [ is
defined as M/M,; it must be greater than unity and
in most cases where this model would be used 1t will
be considerably greater. In the example considered
at the end of this paper it is 60, yielding a value of
L[P=1.9X10% (¢;¢2)"? equals the limiting high fre-
quency compliance which is of the order of 107 for
all polymers; thus ¢, will be of the order of 107,

3. Calculation of Steady-State Response

The response of a polymer whose mechanical
behavior is represented by the model of figure 2
to any arbitrary (shear) stress or strain is found by
imposing the given forcing function at the input
and calculating the resulting response, again at the
input. The stress required to maintain a constant
rate of strain will, except for transient terms, be
the integral over the line of the viscous term alone.

i 3.4
This gives a viscosity equal to rl“:"(M”)(%lf) '

The steady-state response to sinusoidal stress or
strain can be found almost as easily. This is the
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Fraure 3. Model including effects of entanglements.

problem of determining the input impedance of a
two section electrical transmission line. From the
differential equations relating the shear stress ¢ to
the shear strain v:

Ye=—"Yo
Gi== 2y
where
_ Oc
o, OS-
_ oy
C ot
Y=10C,
"
2= <&<
1+rwerr 0sf<l1
ALY

i L1<ES!

we derive:
’};55: 1/27 .

For steady-state sinusoidal stress and strain both
force and response must be proportional to exp (iwt).
Inserting this, plus the boundary conditions that
o(l)=0 and that both stress and strain must be
continuous at £=1 we obtain:

I e )]
F 0= R W
_ I tanh TI';+p tanh Ty

¢; 14 ptanh I, tanh T,

(3.1)

where

= [ ichr
Vit Twey T
e | wer ]2

2=

1+1werl?

K=L(—1)

These expressions can be simplified immediately
because of the fact that ¢, > >¢, and ¢;7L2< < 1 for
all cases of interest. Because of these relations, the
denominators of T';, T, and T'; can be taken as unity
for all frequencies up to those for which the hyper-
bolic tangents become essentially unity. Thus, for
real frequencies, eq (3.1) becomes:
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~ tanh q—j—”f{ﬁml} Ka
1+ L tanh o tanh Ka
.

(L+1) sinh (K—H)aJr(L—l) sinh (K—1)«

XTF1) cosh (B+1)a—(I—1) cosh (R—1)e’

(3.2)

For our later extension of this expression into the
complex plane to derive expressions for the transient
response of the model, we shall have to go back to
the full expression (3.1).

Equation (3.2) can be coded for machine computa-
tion i complex form, but it is still rather complicated
for algebraic analysis. The relative values of the
constants required to represent the behavior of a
typical rubberlike polymer suggest several approxi-
mations, valid in different frequency ranges.

At very low frequencies the hyperbolic tangents
can be expanded in power series, yielding for the

a=+/1weyr.

2
low frequency limits <wcer2<%>:

G*(iw) =G () +iG"" (w)
e ‘;2"2 (LK 3LK 4+ 3LE+ 1)+ . . .
+ilwr(LE+1)+ . . ]
i “’ 15-8(1+42) +iwrP-* 4 .
(for **>>1). (3.3)
JH(iw) =" (@)— i’ (o)
LK’ 431K +3LK+1
T) IR + ...
. 1
- [Wqﬁ - ]
~2 (42 ——mt . (for BO>>1).
(3.4)

When « becomes large enough so that tanh Ke,
but not tanh «, is essentially unity, eq (3.2) reduces
to:

o

_ tanh a4 L
Tk _—————
a (W)—(.z 1+ L tanh «

:g ctnh (a+4x); tanh x E[l: (3.5)

since 4 1 4 iwe;r can still be taken as wsonlmlly umtv
This can be separated into real and imaginary
parts giving

6" ()= _0 sinh 7(07})( +sin 26
T ~ ¢, cosh 2(04x)—cos 20
f sinh 2(6+4-X) —sin 26 X
' s 3.
G (w)= C) coshZ(G—}—X)—u)s 20 .9
J’ ()= ¢, sinh ‘)(0~|—x)+<111 26
26 cosh 2(8+X) -+ cos 26
pryy G2 sinh 2(+Xx)—sin 26 o
I ()= 9 cosh 2(0-Fx)+cos 260 (8.7)

where

At still higher frequencies, both hyperbolic tan-
gents can be taken as unity, but the denominator of
I‘] must be retained, giving us:

.8)

(1(7) Sl . 25 g
J,,} \/ [\/1+<Ml;)il] for w7, (

The expressions for the imaginary parts of the
modulus and compliance can be differentiated ex-
plicitly and equated to zero to find the extrema of
these curves. However, the resulting transcen-
dental equations are too complicated to be solved
other than numerically, so this procedure is not of
much value. Certain approximate expressions for
the extrema can be found, based on the fact that the
functions are closely approximated by regions pro-
portional to some power of frequency, with only
narrow intermediate frequency regions.

The imaginary part of eq (3. 0) can be approxi-
mated by three expressions, approximately valid in
different frequency regions, and from the inter-
section of these expressions approximate values for
the maximum and minimum in G’ obtained. In
the region where both § and x must be considered,

we obtain two approximations.

175



For g<x we find: G’/ zi
CoX

For 6 >x G
’ " 26,0

. . o Al
The intersection of these two curves, at 62:-2- x? or

w=-—->5 locates approximately the low-frequency

Cor L
maximum in G’/
When the frequency rises so that x can be neglected

compared to 6, we predict G”:% and the intersec-

tion of this with the second of the preceding two
gives for a minimum:

These expressions are fairly good approximations
for the frequencies of the extrema of the calculated
curves shown in figure 4. As might be expected, the
corresponding predictions of the magnitude of G”/
at its extrema are not particularly good.

By a similar procedure, the minimum and maxi-
mum of J’/ are predicted. The frequency of the
minimum in J’’ is approximately

3\
z<z X> ores chr <4L>

that of the maximum

1/3 & 2/3
B0 (Be)™

% 2¢,r

The high frequency maximum in G’/ can be ob-
tained by the explicit differentiation of G’ in (3.8),

. 1
telding: w=—~—-
y = vV 301]'

w2 T T T

COMPLEX SHEAR MODULUS G¥=6'+i6" G
MEASUREMENTS: COOPERATIVE PROGRAM (1953) oob

c=1.82-10714 Cp=377-10"7
r=5.5:10* L=1.377-10%
K=8145-103
10-4 | I !
io=10 1055 | 10 10/0

FREQUENCY, sec™!

Ficgure 4.—Comparison of theory with experiment.

Complex modulus, polyisobutylene. [Lines, this theory; points, measurements
12].

4. Transient Response
4.1. Theoretical Considerations

The transient functions, G(¢) the stress relaxation

function, and J(¢#) the creep function, are given
by [6]:
G)=f2e) [ (@ @) exp (o0 41
J () =(1/271) i (J*(p)/p) exp (pt)dp (4.2)

Jce—i

where G*(p) and J*(p) are the steady-state func-
tions of section 3 continued into the complex fre-
quency plane with p;s—{—w It is convenient for
subsequent use to write them in the form:

G*(p)=1/J*(p)
Iy (p+1) sinh (Iy4T'y) +(p—1) sinh (Iy—T)

¢ (p+1) cosh (I's+T;)—(p—1) cosh (I's—T)
(4.3)

with

é peqr

C1 \ 1+per
_ \/E_} 'W_ S
@i 1—}—]7017‘12 e I‘l
The functions G*(p)/p and J*(p)/p are both
analytic throughout the complex plane except for
certain singularities on the negative real axis, in-
cluding one for J*(p)/p at the origin, which is a

second order pole. The others are first order poles
except for two accumulation points at

p'=—1/(err) and p’'=—1/(cirL?)

which are essentially singular. In both cases the
simple poles occur in two infinite sets, one between
0 and p”’, the other between p’” and p’.

Both functions are single valued and both are
even functions of I, and I',. For this reason we are
at liberty to choose either sign for the radicals, and
we shall choose it to yield positive real parts for I
and T\.

No singularities occur to the left of p’. The paths
of integration can thus be deformed to a finite circle
in the left half plane enclosing all poles except that
at the origin for J*(p)/p. This yields the following
a priori bounds for G(¢) and J(t):

G(t) <M,
t)|<My(14t), M, and M, constants,

for all £>0. The term linear in ¢ comes from the
second order pole at the origin.

Formal solutions c¢f (4.1) and (4.2) valid for all
times may be written as:
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G(U:; Gn €Xp (Put) (4.4)
1+LK?
AU (1+LK)+1+LK[LK+3(1+LK)
——; Im exp (put) (4.5)
where the poles p, and p,, are the roots of:
(pn+1) cosh (F3n+ I-‘l,n>
—(pn_l) cosh (FS,n_I‘l. 71):0 (44:1)
(pm+1) Sillh <F3m+rlm)
+(plrl_1) Sillh (PS, m_Fl.m):O' (45")

From the relations G(0)=

G*(o) and J(0)=J*(x)
[9] we conclude:

@©

Z (/n ((1(’) - (46)
e 6 1+LK* 7. )
; 'I"‘—lw—i:LK I:LK-i—:;(mj{) (€162) V2.
(4.7)

4.2. Expressions for the Long Time Range,
t>10"eor(K+1)?

For the very long time region the equations for the
poles and corresponding expressions for the residues
can be written as:

(L41) cos (K+1)7,— (L—1) cos (K—1)7,=0

(4.8)

2/c,
+(L2—1) sin? 7]

S S a ) 1/2
gn%l_*‘(K/]J)[] Tn*( ]),1(-_.1)

2\7’
and G(t) => g, exp (—73t/eor).
i

(L-+1) sin (K+1)u,+ (L—1) sin (K—1)u,=0,
Mom— ( ])m(l”)”-
(4.9)
26'}/“?!1

"I (RIDO (1) cos? ]

© N
and Zl Jm €XP (pmt) z; jm exp (—#?nt/czi')~

It is readily seen that 7, and u, are bounded respec-

tively by (n 2) /(K1) and (m:t >7r/(K—|—l)

For the residues we have the bounds:

177

(1+KL)~'<e,g:/2< 1+ K/L) !

(K+1)? <m+ ) 2(| 4 KI)-!

jm 1 T ey =
S-QES(K%—I)?(M——Q—) r2(1+K/L)~?

These series are asymptotic in time, and in both
cases the error involved in stopping at the Nth term
will be less than 0.1 percent for

t> ey (K+1)2N-2.

Our neglect of ¢; in this region is justified since
the wvalue of pyerl? will be no greater than
(N-+1)*m%(ey/es) L*(K+1)72, which is small for at
least the first several hundred terms. In practice
it 1s not feasible to compute more than 100 to 200
poles and residues. Hence we turn to other methods
for shorter times.

4.3. Representation for the Short and Medium
Time Ranges, t< 107" ¢or(K 1)

The series of the preceding section correspond
to transforms of the Mittag-Leffler expansions of
G*(p)/p and J*(p)/p. For shorter times we have to
find expansions which are centered around infinity.
Such expansions can be found in the form of expo-
nential series in powers of exp (—2I';) and exp (—2I;).
For convenience of notation we write them as Dirich-
let series by introducing the definitions:

z,=exp (—2T,), zz=exp (-—2Ty), {=(p—1)/(p+1).
We find then:
11— S
% ) 3 .
G 1ten Plden 0
P o) = (¢t 11— {—x
] — ¢y
rs 5_11
J*(p) C 1—(11 1-(11
T 21, 4.11)
4 1]’1+§f1] St . /
"1t

It can be shown that ¢, #;, and 23 are less than 1 in
absolute value for all points off the negative real

p-axis. Hence there will be a region around the
. . ; . +1; .
negative real axis outside of which = xy will be
Il 3 (i

less than one in absolute value.

The following
expansions hold:

G*( ])) I

WL {14253 o }
.{1—2112“31 g—ﬁr?i ***** 11,\)v} (4.12)



J*p) e (e
AL

1—¢2
X {1+2rl;r3 1_;; 1?_:}1;

>} (4.13)

The series are asymptotic in both x, and 3, i.e., if
we terminate after n terms in r; the remainder 1is
0(xy" ™). It we replace the second brackets of (4.12)
and (4.13) merely by 140(x3), it is not useful to go
beyond the number of terms of the z; expansion which
results in a remainder term of 0(xz;).

We can estimate the error involved in truncating
the z; series by means of the following theorem [10]:

Tarorem: If L(z) is a function, continuous and

positive on the real interval 0<z<uz, with the
property

lim L(ux)/L(x)=1 for all fixed u_>0,
0

then if Z(F)=1(p), with real F(t),is convergent for
0<p<pgand f(p) has the asymptotic behavior

J(p)~(Clp)L(1/p) for p—w,  C>0,  a>0,
and if /() >0, then

f "Fdi~e—C el (t)  for t—0

Jo Tlat1) o

Furthermore, if /() is monotonic in the neighbor-
hood of t=0, differentiation is allowed to yield the
asymptotic behavior of () itself.

This theorem can be used to estimate the trun-
cation error if we apply the inverse Laplace transform
to a finite number of terms in eqs (4.12) and (4.13).
We shall use it only to determine the range of
usefulness of the leading terms, since these are in
fact the only ones which can be transformed in
closed form. Putting them on the left-hand side,
we write:

e M
G~ @)~ 713 L2 3] () 00y 1
2P 1 J
‘Flm} (4.14)
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The expressions on the right under the ¥'~'signs
satisfy the conditions of the theorem. After differ-
entiation we get the following remainder terms:

G(t)—G"(t)
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@°(t) and J°(t), the inverse transforms of the lead-
ing terms of eqs (3.12) and (3.13), are tabulated
functions:

GO(t) = (cr¢0)~ V2 exp (—t2¢)1o(t/2¢,7) (4.18)

JO(t)=(e1e2) " exp (—t/2¢rr) [(1+f/clr)10(f/261r)

+(tfen) (

(%)] (4.19)

where /y(z) and [;(z) are modified Bessel functions.
For very short times these may be expanded in
power series, giving:

[+ =0 ()]

(—1)+1@20)!
4(’1’)]

)*(2v—1)
These expansions are useful in the range 0 <t <10¢,r.
For longer times we can employ asymptotic expan-
sions of the Bessel functions which yield:

G) ~\/ 2 t[ R ] (4.21)

J°(f)~‘>\/ rl: S ] (4.22)

Go(t)af

JO(t)=+cic2 '_1+Z

We will be in error by less than 0.1 percent by
taking G(t)=0G°(t) for times less than ¢,r/182, and
J(t)=J°(t) for times less than ¢,r/49. We still need
an expression to cover the range

eor[1825 1< 10 eor(K+-1)?,

the upper limit being that established for the prac-
tical use of the residue series. If we set ¢,=0 in
eqs (4.12) and (4.13) we obtain series which can be
transposed term by term, giving:
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where M< [K], that is we may not carry these series
beyond [K] terms in view of our neglect of the x;
series (r;=xX for ¢;=0).

The essential singularity at p’” precludes any
rigorous calculation of a remainder term associated
with the neglect of ¢; in this region of time. Widder’s
formula [11] gives a series of approximations of order
N for G(t) in terms of G*(p) and its first N deriva-
tives evaluated at p=N/¢. For any finite approxi-
mation, the terms in ¢ vanish with increasing t,
but the expression becomes exact only in the limit of
N-—o, and no estimate is available for the error
associated with the approximation involved in stop-
ping with some finite N,

A more convincing rationale for the neglect of ¢
in this region can probably be based on physical
considerations. ¢, was introduced into the model
to account for the glassy compliance, which must be
added to the rubberlike compliance but is significant
only at very short times or high [requencies. The
steady-state functions change, in a fairly narrow
frequency range, from the region where ¢’ ocw!/? and
J’  cw™!/?, characteristic of the model with ¢,=0, to
their limiting values of (ce) ' and (ese))'? At
lower frequencies ¢; does not appear in either *(iw)
or J*(iw). Since our expressions for G°(f) and J°(t)
are valid into the region of time where they are
proportional to ¢7'2 and " '-’, corresponding to the
transforms of ' and p'# we should be quite
justified in using the simpler model with ¢,=0 at
longer times.

In practice we may need up to 250 terms in eqs
(4.23) and (4.24), not a difficult task for a modern
computer. We have purposely set the limits so that
more terms are required here than in the residue
series, since it is easier to compute the exponential
and error functions than to determine the poles from
the transcendental eqs (4.8) and (4.9).

5. A Trial of the Theory

To test the predictions of the theory, we utilize
the experimental results available on the NBS
“standard” polyisobutylene.® Although these re-
sults are rather old, they still comprise the most
complete set of data available for any single polymer.
Direct measurements are available covering essen-
tially the whole response curve for the stvl(l\ state
and stress relaxation functions, and creep measure-
ments for times greater than and equal to that
corresponding to the pseudo-equilibrium plateau.

3 ““Standard’ here refers to a particular batch of polymer from which samples
were distributed to permit comparison of different measurement techniques and
results as described inreference 12. This comparison was concluded several years
ago, and no further samples are available.

The dynamic measurements used are those ob-
tained by several investigators as summarized by
Marvin [12]. The stress “relaxation measurements
are those reported by Tobolsky and Catsiff [13],
converted from Young’s to shear modulus by the use
of a factor % throughout. Although this factor is
not strictly correct near the glassy modulus, the
error is not serious since the shear modulus apparent-
ly never exceeds % of the bulk modulus. The creep
data are unpublished results of Leaderman and
Overberg using a concentric eylinder viscometer [14].

The constants needed can’ be obtained from the
empirical expressions for the viscosity of polyiso-
butylene given by Fox et al. [7]. Values of » and ¢,
were calculated from the critical molecular weight
and the viscosity of polyisobutylene at this molecular
weight.  The me: asured viscosity and molecular

weight of the “standard” poly lqnhut\lvnv are not
consistent with the expressions given by Fox,

probably because the milling l'(‘quirv(l to obtain a
large uniform batch produced a larger than normal
low molecular weight fraction. Thus, for consistent
results, we must either use a fictitious molecular
weight corresponding to the measured viscosity or
lll()(lll.\ the constants of Fox’s empirical relations.

The best results are obtained by the use of a
fictitious molecular weight of 1.03>X10° correspond-
ing to the measured viscosity of the polymer, rather
than the value of 1.56>10% from light scattering or
even that of 1.35X10° from intrinsic viscosity
measurements. In a previous publication [6] the
results of this same theory for the dynamic functions
only were presented with [ calculated from the
relation n=73° the ezponent corresponding to
Bueche’s lll(‘()l(ll(‘ll prediction [S]. Here we use
n=rl**, corresponding to the empirical relation.
The difference in the calculated results is small, but
those obtained here using the 3.4 power agree
slightly better with the experiments than did the
former calculations.

'l‘h(' constants used, calculated for a t(*mp(‘l.llm(*
of 25° (U, and their source, are summarized as follows:
('ng\fr,f(Zpl.'l)*. 77 X107, M, from Fox et al. [7]
r=>5.5X10"  Derived from the viscosity of polyiso-

butylene with molecular weight of M, [7]

[ =(ng/r)**=60.12, 5 the measured viscosity at
25 °C=101-",

134—1
[ 8="
K=L(l —1)=8.145X10°

= (J"(0))%c*=1.82X107" using the
from the dynamic measurements.

— 377 <110

ralue ()

The results are presented in figures 4, 5, 6, and 7,
where the lines represent values calculated from the
theory and the points the experimental measure-
ments. The agreement is striking in view of the
wide range of values covered. All the features of
the experimental curves are reproduced qualitatively,
with the changes in the character of the curves
occurring at nearly the correct frequencies or times.
The maximum deviation between the calculated

179



T T T

* ' "
9= 0 -y
MEASUREMENTS: COOPERATIVE PROGRAM (1953)

c=1.82:107'4 Cp=377:1077

10710 | r=5.5-10° L=1.377-10%
K=8.145:103
L | 1 °
10-10 10-5 I 105 1010
FREQUENCY ,sec~!
Ficure 5. Comparison of theory with experiment.
Complex compliance.
[ T T  —
1010 -
STRESS RELAXATION FUNCTION
MEASUREMENTS TOBOLSKY AND CATSIFF
105 |- —
G(h
c,;=1.82:1070 €2=3.77:1077
r=5.5-104 L=1.377:10%
r K=8.145-10% .
1 ! i
10-10 1075 105 100

|
TIME ,sec
Frcure 6. Comparison of theory with experiment.

Stress relaxation.

r T T T 7
L CREEP FUNGTION B
MEASUREMENTS: LEADERMAN AND OVERBERG
J(h
1075 |- —
cj=1.82:10714 Cp=377-1077
r=5.5-10% L=1.377:102
1010 K=8.145:103 4
| | I
10-10 OS5 | 108 1010
Ficure 7. Comparison of theory with experiment.

Creep.

and experimental values is about 0.06 on a logarith-
mic scale, corresponding to about a 15 percent
difference, except for a narrow region of frequency
for J’’ and @'/, where the difference reaches about
0.3 logarithmically. The real parts of the dynamic
funections and the transient functions agree more
closely with the measured values. A result we did
not expect i1s that the transient curves appear to
be represented by the theory somewhat better
than G” and J’.

The theory is certainly not exact. In particular,
the prediction of a proportionality to the square
root, of time or frequency (or its inverse) in the

region between the rubbery and glassy plateaus is
only approximated by the measured results.

However, the theory yields quite satisfactory re-
sults. They certainly agree with the measurements
as closely as most calculations comparing different
types of measurements through the use of approxi-
mation methods now available. It is particularly
interesting to note that the values of both the pseudo-
equilibrium plateau and the equilibrium compliance
agree with the measurements to well within the
experimental uncertainties. These values as calcu-
lated by the theory, it should be recalled, depend
on constants obtained entirely from steady flow vis-
cosity measurements. It is thus quite apparent that
the same “entanglements”, whatever their true na-
ture, are responsible for the break in the viscosity-
molecular weight relation and thepseudo-equilibrium
rubbery plateau, as assumed in the theory.

The necessity, in these calculations for the “stand-
ard”’ polyisobutylene, of using a fictitious molecular
weight precludes any chance of using these results
to check on the effect of molecular weight distri-
bution. This question must remain in abeyance
pending calculations for other systems, preferably
fractionated polymers.
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Office of Naval Research under Contract No. NR-
384-310. During the preparation of the final manu-
seript coauthor R. S. Marvin was Visiting Professor
of the Department of Polymer Chemistry of Kyoto
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