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Bounds on Ratios of Means
| G. T. Cargo ' and O. Shisha

(August 14, 1962)

The purpose of this paper is to obtain upper bounds for ratios of weighted means

M, — o <r< o (see Hardy,

Littlewood, and Polya’s “Inequalities,”

inequalities arrived at are generalizations of that of Kantorovich.

1. Let Gy, G2 - o o
n

with >3 ¢:=1.
k=1

with all #, >0 and for every real », we consider the
mean of order r, M, (r., ., x,), defined as

n n
S qrep)Vm it r5£0, and as I—l-.qu i =0
=

positive L1, Loy« - -y Ty 16 1% l\nown (see, e.g., [1,p-
17]% or [2, p. 26]) that M, (2, 2, . . ., ,I) is stu(th
increasing with » (except when z.—z,— . 1))

2. Let r, s, A, B be given real numbers (()< 1<B
r<s), and consider the ratios M(x., xs . . ., T,)/
M, (z, s, . . ., x,) where each z, varies in the closed
interval [A, B]. By the above, these ratics are all
at least 1. Our aim is to determine an upper bound
for them. In the special case r=—1, s=1, which is
of importance for applications, this upper bound is
given by 1110 Kantorovich inequality (g, + . . . +
020 (@@ - - . +quay) < (A+B)YEAB).  For a
discussion of this inequality, see [3], where further
references are given.

3. Tarorem. Let v, s, A, B be given real numbers
(0<<A<B, r<s), set y=BJ/A, and let 1 denote the

¢»(n>1) be positive numbers

For every sequence (z:, i, . . ., )

For given

n-dimensional cube {(x;, X5, . . ., Xp): A<xx<B;
k=1, 2, .. ., n}. Then
M (zy, 22 . . ., Zo) /M, (21, T3y . . ., Tn) <A l(l)
throughout 1, J
where A is
{ r(v*—v") { s =) }‘”’ @)
(s—n(y—1) (r=s)(v'—1) ‘
if rs %0,
,ys/w-"—n 1/s
{ G — ifr=0,  ®
e log {73/(7 —1)}
and
77/(7’—1) —1/r .
e log i,Yr/(’Y —1)} -

Let O be
{r/’—1)—s/(y'—1)}/(s—7)

1 This author’s contribution was made under a National Academy of Sciences-
National Research Council Postdoctoral Resident Research Associateship at
the National Bureau of Standards, 1961-62, while on leave from Syracuse
University.

2 Figures in brackets indicate the literature references at the end of this paper.

if 1s#0, (5)

Chapter II). The
1 1 . .
slogy y—1 4¥=Y% ©)
and
1 1 .
)Tiog‘f‘y'—")'/f_j]* (f S=( (7)

Then 00 <_1. FEquality in (1) for a point (X, Xy,
. xp)e L holds if and only if there exists a subse-
)
.o kp)of (1,2, ..., n) such that i‘, U,
m=1

=0, xx, =B(m=1, 2, ... p), and xx=A for every k
(l@st?nctj/om all k

quence (ki k,, .

Proof.  For every (z;, z,, . .

F(x, 2, . . ., Tn)
=M,(x;, @, . . .,

S zae I, let

) [ M (21, 22y . . ., Xn).
(a) Assume that rs=0. Let X*=(zf, o . .
xy)e I be such that F(X*)=max{F(X): Xel}.
We shall first show that X* is a vertex of I.
Indeed, suppose that this is not the case, and let j
be such that A<zy<B. For every ze[A, B], let

F@=F@taf, . .., ohg, 2,0k, . . ., 7).
Then
(@) =max (f () : A<2<B}, (8)
and therefore f/(f)=0. Now a direct calculation

shows that, throughout (A, B), f(z) is of the form
(@) =3() l:xs" AZ) qu’{.’——; quts:l, where x(z) >0.
i poty

For z=u7, the expression in the last square brackets
vanishes; consequently, for every ze(A, 2f) it is
negative, and for every wze(zf, B) it is positive.
Thu% 7(x}")<f(w) for every welA, B] distinct from
z¥, contradicting (8).

For every ue[0, 1], let

G (uw) =[uB*+ (1—u) A*)VS[uB™+ (1 —u) A7~ V7

9
) D 1,
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Since X* is a vertex of I, F(X*) =G (u*) for some
w*el0,1]. Thus, for every Xel, F(X)<G(u*); and,
for every point X of [ which 1s not a vertex,
F(X)<Gw*).

From (9) a straightforward computation shows
that, throughout (0, 1), G’ (u) is of the form

G’ (w)=y(u) (u—0),where ¢(u) <0.

As G(0)=0G(1)=1, we must have, by Rolle’s
theorem, 0<O0<1. Since G’(u) >0 throughout
(0, ©) and G’(u)<0 throughout (6, 1), we have
G(u) < G(O)=A for every uel0, 1] distinct from 6.
From this follows the validity of (1) and of the
necessary and sufficient condition at the end of the

theorem.
(b) Assume that r=0<s. For every p (p<s, p#0)

and for every Xe/, we have, as proved above,
M(X)/M,(X)<

{ p(¥—=y) " [ s(v¥—7) X‘”"

(S—P)(Y”—l)} {(p—é)(v —1 J .

By taking limits as p—0, we obtain, for every Ne/,
SRGHE =) 1/s

M(X)/Mo(X)< { AN

L=
e 10(7‘ <,y\/(7 1)} 5

which proves (1). We shall, however, reprove it
using the method of part (a), as that method yields
the necessary and sufficient condition of the theorem
for the present case.

Let X** be a point of 7 such that F(X**)
=max{[F(X): Xel}. As before, one shows that X**
is a vertex of /.

For every u € [0, 1], let

H(w)= {uB'+(1—u) A*} Vs/(B*Al~%)
=y {uly'—1)+1}

Since X**is a vertex of 7, F(X**)=H(u**) for some
u**el0, 1].  Thus, for every Xel, F(X)<H@u**);
and, 10r every point X of / which is not a vertex,
F(X)<Hu**). Again, considerations as in part
(a) show that, for every wue0, 1] which differs from

O0=(slog v)'—(vy*—1)7! (0<6<1), we have H(u)
<H(©)=A. From here, again, follows (1) as well
as the wvalidity of the necessary and sufficient
condition.

(¢) Assume, finally, that r<0=s. This case can be
handled by the method of part (a) and also by
making direct use of the validity of the theorem in
case (b).

The reader will notice the limit relations among
the expressions for A given by (2) to (4) and among
the expressions for O given by (5) to (7).

4. We close with a proof of the inequality between
the arithmetic and the geometric means. Let
Zi, T2 . . ., T, be :lI‘bit‘I‘tll'_\' positive numbers, not
all equal. Let a=max { —x,:1<k<n},and consider
the function

E@=1 @ta)n ().

We obselve that M@, @, . . ., T,)/M_i(x:, z,

z,)=1"(0), and therefore a direct proof that

F’(0)>1 will yield (upon replacing each z, by 1/z;)
a proof of the desired equality.
Now, for every z_>a, we have

B (E@\ (E@Y @
) ( )(«(r) =T e/t

so that, by Cauchy’s inequality,

Yol (J,) o, LI%
E(@) .

Thus F£’(z) is strictly monotone decreasing in
(@, o);and,since lim £ (z)=1, we have T’(O)>1

T>®
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