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It is shown that the coefficients in the Laguerre expansions for successive generations

in a renewal process are related by an algebraic convolution.

easily mechanized for computation.

In a paper published in 1940, Brown [1]* studied
the solution of the renewal equation under the
assumption that the functions appearing in it could
berepresented by a Pearson type 11T function. The
natural generalization of this type of solution is to
assume that the functions involved in the renewal
equation can be expanded in terms of a series of
generalized Laguerre functions. Recently Zelen
and Dannemiller [2] have presented a summary of
results concerning the expansion of reliability func-
tions in terms of generalized Laguerre functions,
but did not discuss these expansions in the context
of their application to renewal equations. In view
of the increasing number of applications of renewal
theory and the theory of semi-Markov processes
[3-6] to stochastic models in reliability, biology,
and the theory of traffic it 1s of some interest to re-
turn once more to the subject of approximate
solutions to the renewal equation. In this note
we shall outline some of the results relating solutions
of the renewal equation and expansion into series
of Laguerre functions, without going too deeply into
matters of uniqueness and convergence of the re-
sulting series.

We shall consider the simple renewal equation:

o(t)=f(t)+ Ll o(r)G(t—r)dr (1)

and assume in what follows the existence of a unique
solution to this equation. For most applications
the functions f(¢) and ¢(¢) are assumed to be nonnega-
tive over the interval 0<t< o and the definite

integrals
(" rwnie, [ g
JO JO

are assumed to be bounded. A formal solution to
eq (1) can be given in terms of the Laplace trans-
forms of f(¢) and ¢(t), and provided that f(¢) and g(#)
are measurable, nonnegative, and bounded in every
interval, it can be shown that a unique nonnegative

1 Figures in brackets indicate the literature references at the end of this paper.
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Thus the calculations are

solution of the renewal equation indeed exists.
Furthermore the asymptotic properties of ¢(f) can
be obtained from the properties of the individual
Laplace transforms [7].

If we define the following Laplace transforms
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then the transformed solution to eq (1) can be
written
J*(s)

1—g*(s)’

This solution has been used by Feller [7] to discuss
In a rigorous manner an expansion first proposed by

¢*(s)=

Lotka. The solution in question can be written
p(t) =21 A% (3)
where it is assumed that there is a denumerable
sequence of distinet roots, s;, s, &, . . . to the
equation
*(a)
g*(s)=1. 4)

Feller proves the following theorem:
In order that the solution to eq (1) be expressible in
the form of eq (3), where the series converges absolutely

for t>0 it 1s necessary and sufficient that the Laplace

transform ¢*(s) admit the expansion
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and that Z|Ay| converges absolutely. The coefficients

Ax are determined by

Ay=—1* (sx)/g*(s) . (6)
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It is easy to generalize this theorem to cover the
possibility of having multiple roots. One can see
that the conversion of the renewal equation into
an algebraic equation in the transform domain
leads to a simple representation of the solution.
We shall see that this simplification is retained when
f(t) and ¢(t) are expanded in terms of generalized
Laguerre functions. Hadwiger [8] has shown that
if f(t) and ¢(t) are represented by Taylor series
in a finite interval and vanish outside of the interval
then the renewal function can also be expanded as a
Taylor series and the coeflicients obey a discrete
convolution relation. This result is very similar
to the results to be presented here.

To begin our exposition, let us recast eq (1) into
a slightly different form by defining the successive
generation functions { ¢ (t) | by
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The solution, ¢(t), is then,

o (t)= Z‘ @u (1). 8

n=0
Clearly the ¢,(t) are also the successive terms in a
. (2

solution to eq (1) by means of successive approxi-
mations. If we define the Laplace transforms

then the Laplace transform of eq (7) is
@0 () =1*(5), @n+1(s) = (s)g*(s)

on(8)=f*()[g*(s)]"

We shall essentially use the forms of the
equation given in this paragraph.

The generalized Laguerre functions L) (x) will be
defined by

(10)
or

(11)

renewal
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for m an integer. These functions have the
normalization property
f e-ft’"L;"(t)L;"(t)(/t:m"#)-a,s (13)
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and their Laplace transforms take the form
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We shall assume that the functions f(t) and ¢g(f) can
be expanded into series of the generic form

r— m+14m m
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(15)
where X is a parameter with dimensions of ¢! It
is put in because in most applications the functions
p(t) are densities. The best results on the pointwise
convergence of this series are contained in a paper
by Uspensky [9]. He proved that the following
conditions are sufficient for pointwise convergence
(except at discontinuities, where the sum converges

05 () +p(t—)):

1. [ e~ 'p*(t)dt exists for a certain 7.

1

8
—1<m<—5 f e~ 'p*(t)dt exists for a
J 0

2. For 5
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certain 8 while for m_>—zonly
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exists.

3. The function p(f) is of bounded variation and
absolutely integrable in any finite interval. In the
cases of present interest most functions p(¢) will
satisfly these three criteria. In particular if the
function f(¢) and ¢g(t) are bounded over (0,) then
conditions 1 and 2 will always be satisfied. Specific
applications of this expansion have been made in
references [11] and [12].

If the expansion of eq (15) is assumed to exist then
the coeflicients a, are given by

f LN p(t)dt

m
1 ‘mAny (— ’
<m+n = 0 n—]> /‘ )\ i,
n
where the u; are the moments
U= t'p(t)dt. (17)
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We will assume that all of the functions p(¢) that
are to be treated are such that moments of all orders
exist. If p*(s) denotes the Laplace transform of
p(t) then an application of eq (14) shows that

m+l
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Thus we see that in the s domain the expansion of
)*(s) 1s essentially a power series development in the
variable s/(s+N\).

Now let us assume that f(#) and ¢(f) have the
expansions
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and calculate the coefficients in the expansion of

¢;(t). The simplest procedure is to use Laplace
transforms. In this way we find
)\m+l+k ) ( S J
" ;

‘p"( ) ( _|_)\)m+l-lk(r+1) Z C ’ <8+)\ (2())
where the ¢/® are constants which satisfy the
recurrence relations
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That is to say, the ¢’s may be found by successive

convolutions with the sequence {( +}> } Thus

the convolution integrals are converted into more
convenient algebraic convolutions.

If the inverse transform of eq (11) 1s taken, the
expansion of ¢,(#) in the time domain becomes
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The most useful case in practice is that for which

m=r=0, i.e., an expansion in terms of Laguerre
functions of order zero. For this special case one has
1 )\k 1,7\
—_— t (% ¢
ei(t)=e Z o Ly (\).  (23)
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This expression can be further reduced through the

identity

L (@) —Z L7=1(2) (24)

or
m>1.
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On substituting this expression into eq (22) and
collecting terms we find
('/'+A—m—1>
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k>1.
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When ¢(t) is such that only a few of the coefficients
Jn are nonzero, then the procedure of taking alge-
braic convolutions is quite simple. For example, if
we drop the restriction that f(¢) and ¢(¢) be positive,
and assume that f(¢) and ¢(¢) are given by

f(@t)=aeML,(\t)
g(t)=be ML, (\t) 27

then a direct calculation leads to the result for
*(a) -
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The simplest way to find ¢(¢) is to sum over k in the
transform. This leads to a result analogous to that
of Lotka in eq (3). If f(¢) and ¢(t) are given by

f@)=g@t)=e ™A +aL,(rt)) (30)
then it is easily verified by induction that
o0 —d® 4 A) ad®,+ 0)(1 2404 .. (31)
where
dP=c?j20,d"=0 ;<O (32)
hence
V= sy (33)

we see that ¢{¥ =0 unless j is an integral multiple of
n. A further calculation starting from eq (31)
shows that

r=0,1,2,...k+1.

o — k+1> (34)

With this explicit formula, the infinite sum in eq (23)
is reduced to a finite series

k+1tk
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There are several extensions of this method that
are possible. It is not too difficult to generalize the
solutions here to finite sets of semi-Markov equations
(i.e., the matrix analog of eq (1)). It has also been
pointed out by Harold Kaplan that discrete renewal
equations can also be handled by the same methods
provided that we start with Gottlieb polynomials
[10]: rather than Laguerre functions for the relevant
expansions. The obvious advantage of the present
method is the fact that one can reduce the integral
equation in an exact way to recurrence relations
which may then be easily handled by a computer.
The method is probably not too good if there are
many nonzero coefficients or if only the moments of
f(®) and ¢(t) are known experimentally and the co-
efficients must be calculated from them. Prelimi-
nary experiments show that the results are very
sepsitive to errors in expressions for higher moments.
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