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Estimation of Dispersion Parameters

W. A. Thompson, Jr.!

(July 31, 1962)

This paper deals with a topic in multivariate analysis.

Consider that a sample of

size n+1 has been collected from a p-variate normal distribution having dispersion matrix

(o).

Let a;;:/n denote the usual unbiased estimate of ;7.

Further, let 0</<u be con-

stants such that all characteristic roots of a matrix having the Wishart distribution lie in

the interval [/, u] with probability 1—c.
[Ann. Math. Stat. 24, 513-536 (1953);
follows:
and of (o;;) —wu~1(a;;) is nonnegative.
theorem of the present paper.
system of relations hold simultaneously:

(1N a;p | <V —u) (ajia; 001, 745

1. Notation

Throughout Y= (y., o W) e g=ll, o o o
N will be a sample of size N=n-+1 from a p-variate
normal distribution with mean vector £= (¢, . . . &)’

and dispersion matrix =. In short, the Y, are inde-
pendent and N(¢, ). Except for a and >, Greek
letters will always refer to parameters. We will
frequently write 2= (o;;,) when we mean that o, is
the element in the jth row and j’th column of 2.
In the same spirit Z7'=(o?"), and A="(a,;) will be
common notations. Here

N - -
@ T (!/I'.l_.’/fj)(.’///’_.’/fj')'

i=1

(1.1)

2. Simultaneous Confidence Intervals

Let 0<I<u be constants such that all character-
istic roots of a p X p matrix having the distribution
W(I,n) (see [1]* for this notation) are in the interval
[{,u} with probability 1 —a. The following theorem is,
for our purposes, a more convenient statement of
some results due to Roy, Bose, and Gnandesikan [S,9].

Turorem 1. The probability is 1—e« that [77A—2
and Z—u~'A are positive semi-definite.

A proof is included since the original verification
demonstrates many other interesting results as well,
and consequently is very indirect. There exists a
nonsingular triangular matrix ' such that C2("=/
(1, p. 156]. Making the transformation Z,= ('Y ,(i=
., N) then Z; has the distribution N(CE, 1)

N
and B= 3 (Z:—Z)(Z,—7)’=CAC(" has the distri-

i=1

)

1 On leave from the University of Delaware; National Academy of Sciences-
National Research Council Postdoctoral Resident Research Associate at the
N mnn 1l Bureau of Standards, academic year 1961-62.

2 Figures in brackets indic: ate the liter: ature references at the end of this paper.

A theorem of Roy,
Biometrika 44, 399-410 (1957)] may be stated as
The probability is 1—« that every principal minor determinant of [71(a;;
The previous result may be used to prove the main
Theorem: The probability is at least 1 —« that the follo“mcr
ula; <o <l laj;;

Bose, and Gnanadesikan

) — (oi7)

j=1, ..., p and |o;; ,1‘2

bution W(Z,n). The theorem will be proved when it
is shown that the following three statements are
equivalent. (i) all roots of B are in the interval

(l,u]. (i) B—II and ul—B are p.s.d. (positive semi-
definite). (i) A—/2 and u2—A are p.s.d. (1) and

(i1) are clearly equivalent. That B—// and A—I[2
are p.s.d. together may be shown by considering
their quadratic forms. Making the transformation
()=CR, where () and R are “column vectors, we
have Q' (A—I2) Q=R (C"AC—IC"S0)R=R'(B—I)R.
Similarly the matrices w/—B and uZ—A are p.s.d.
together.

An equivalent statement of theorem 1 is

Taeorem 1. The probability is 1—a that every
principal minor determinant of ['A—2 and of
Y—u'A 1s nonnegative.

Proof. 'The event whose probability is being calcu-
lated in 17 is identical with that of theorem 1 [3,
theorem 46.4].

Clearly the previous theorem provides the means
of determining a simultaneous confidence region for
the elements of the dispersion matrix X. However
this region, call it #, may or may not be interesting
depending on its shape. We now begin an investi-

ation of the shape of #. let /= (2:('A—2 is
s.d.) and 7 =(2:Z—u'4 is ps.d.). Then #=
”/ﬂ 7, the intersection or common part of .%’and .7".

TaroreEM 2. Yand .Zare convex cones with vertices
>=["'A and T=u"'4, respectively.

Proof. Assume X%, e and ¢>0. Clearly
[1Ae . Further ¢+ (1—c)l'lAe since ['A—
[eZ+(1—c)l ' Al=c(T*A—2,). Hence .#’is a cone
with vertex [7'!A. To show .7’is convex we must
demonstrate that ¢Z,+ (1—c¢)Ze.” whenever ¢<1
But the quadratic form Q'[[7'A—c2—(1—¢)2]Q=
cQ’(l“A—EI)QJr(l—C)Q’(Z'IA—EZ)Q is  nonnega
tive and .“is a convex cone. The proof for .7 1s
similar.
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According to theorem 2, # is the intersection of
two convex cones. Further on in the paper (theorem
3) we shall prove a result which implies that # is
bounded. Hence the confidence region Z is convex
and bounded.

Now, in the case p=2, define

Wy=01— U @1, Wo==012— U 12, W3=022— U a2,
di=("1—uNay,ds=(""—u"Yay,,

dy=(""—u"") an,

, ((wrwy (i dy,
" _(wz w3) and 1)‘((/2 (/3)

7 and ¥ become [wy, w,, wy :w; >0, w; >0 and wi <
wy ws] and [wy, we, wy :w, <dy, wy <ds and (wy,—dy)* <
(wy,—dy) (ws—ds)], respectively. Solving  simul-
taneously we find that the intersection of the
boundaries of . and .7 takes place on the plane
dyws—+dyw, —2dyw, = ddy—d3=|D|. On this plane the
equation of the required intersection is dsus= (|D|+
2w, — dyws)ws or

2.1)

dswi —2dwws+dywi— | D|w;=0 (2.2)
which will be an ellipse since D=({"—u")A is
positive definite with probability one.

Since the vertices of .7 and .7 satisfy (2.2) the ex-
tent of w, and w, in # will be the same as their ex-
tent in the ellipse.  To find the extent of w,in (2.2)
consider w, to be fixed and solve for w,. (2.2) is
then a quadratic equation with discriminant
(ID|+2dyws)* —4dydsws.  1f ws is to be real, then the
diseriminant must be nonnegative; hence the extent
of w, is given by the relation (|D--2d,w,)*>4d,dsw3
or equivalently |w,—dy/2| <¥(d,ds)**. The extent
of w; 1s even easier to calculate by the same methods.
Solving (2.2) for w, the discriminant reduces to
4| Dws(ds—wy), which yields 0<w;<d,. Similarly
0<w, <d,. Using theorem 1’ and the eq (2.1) we
summarize these computations as
Lemma 1. In the case of p=2, the probability is at
least 1—a that the following three relations hold
simultaneously

ulan <o <y, U M < 0 < U M,

T w7t | Tl—y!
Trp— 5 G| < O

((ln(lgg);.

Now consider the general case, where p is not
necessarily equal to 2. In theorem 1” we may choose
to ignore all principal minor determinants of order
greater than 2. If we do this, then the probability
of the resulting event can only be increased. For
each pair of variates, and by identical methods, we
will obtain a system of relations just like those of
lemma 1.

Tureorem 3. The probability is at least 1—a that
the following system of relations hold simultaneously

ulay; <oy <lay, j=1,. . .,p

e P e i
T g _2—<ajja'j'f')?’]?£-7/'

)
S
\‘V
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3. Precision of Instruments

A special multivariate model which frequently
arises in connection with simultaneous measurement
procedures [5, 11] requires that o¢;,;,=0c>+05, j=1,
.. pand g;;r=0d* j7#j’. For this application, p
becomes the number of instruments used. The
methods of the previous section yield interesting
results when applied to this special case. Returning
to eq (2.2) we calculate the extent of t=w;—w,; this
will yield bounds for ¢3 in the two instrument case.
Making the substitution ws=t-+4w», eq (2.2) becomes

Wi (dy +-ds—2d,) +2tw, (d, — dy) +dit>*— | D| (t+w,) =0.

Computations similar to those made for w, show that
the extent of ¢ is ¥(ds—d,) + §[ds(d, +d;—2d.) ]}
Equations (2.1) and theorem 1’ now yield

Lemma 2. In the two-instrument case, the proba-
bility is at least 1—a that the following three relations
hold simultaneously

T e e A
2 e e = )
| o 9 | < 5 (a11a)*,

I~y é— — ="

i A .
o7 — (@ —y2) D) 5 [an (@ +an—2a;:) |},

A Y A T , )
_; £ 2 E5 [@s (@11 +a2—2a4,) |'.

‘73_ ((lzz — (1»12)

For more than two instruments we may again
choose to ignore all principal minor determinants of
order in excess of 2. Theorem 1’ then gives

Tarorem 4. The probability is at least 1—a that
the following relations hold simultaneously

[Tt [l—yt ,
“;:\ |:a,j,-f e 9 (@525 )}
J

u

. . l—l ufl /71__ =1 .
<o’<min [aw T t +——— (a5@)* b

J=j
1yt
max § (an—a;) ————
j#1 J 2
['—y! ,
B, Iﬂ‘ll(‘l'11+(1jj*2’fli)|%
2 7
; . [m14ut
<< min {(a”—al. S
j#1 4 Z
[='—u! ,
TG l(l‘ll(all—*}"(ljj—?alj)]& .
plus similar inequalities involving o3, . . . o7.
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4. Choosing the Bounds

The joint distribution of the characteristic roots
of a Wishart matrix is well known, see for example
[1, theorem 13.3.2]. Also, there is much theoreti al
work on the distributions of the extreme roots [10].
Tables and charts have been prepared by Pillai [7]
and Heck [6] from which critical values of the largest
root may be determined for certain combinations of
n, p, and «. However, critical values of the largest
root are of no value in this application without some
knowledge of the smallest root. The tabulations of
Pillai and Heck do not treat large values of their
parameter m and consequently, even though there is
a relation between the distribution of the ldl'("(‘bt and
smallest root, their results cannot be used to deter-
mine critical values of the smallest root in the present
instance. The only result which seems to be ready
for use in determining the bounds is an approximation
due to P. I.. Hsu (fOl an exposition see [2]). In our
terminology, Hsu’s result states that P(/<X}_,..)
is, for Lutro n, an approximation to the probability
that the minimum root is at least as large as /.

Here we present an exact treatment ()f the two
variate case (p=2). Denote the roots by » and s
where »<s. Our task is to determine constants
{ and % such that P(I<r<s<u)=1—a.

P=P(l<r<s<u)

—cf [ (r.s 2 (‘\p [_,, — | (s—r)drds,

n ‘n—1\]! .
where ¢=+/m l:‘Z"I‘ <2> r ( 2~>] - Making the
transformation r=t—», s=t-f» then P/4¢c may be

written as

=1
e ! ‘ (62—
0

=
u ol
-t s (2
—{—f 14y € [‘ v(t
Jit=—— Jo=0

Now, integrating with respect to » and transforming
the resultant expressions, we obtain (n—1)F/2¢ in
the form

2u
21

I+u

f 2
t=1

n—3

2 dvdt

].2>

n—3

—2) 2 dvdt.

(xf2) = le="%]x

__( n—1 n—1 _u w n—1
2 z+u 2 ¢ ) W G

2 dzx.
J

Finally remembering the value of ¢ and using the

+

expression /7T (n)=2""'T ( ) r (” ) we obtain

P(l<r<s<u) 4.1

=P2l<x3,<2u)

n—1 n—1
,1-'1 ,, <l ¢ “ru 2 ¢ 2>1 (<X <),
2 ¥ F

where X3, is a chi-square variate with 2n degrees of
freedom.

As is usual in such problems, there is considerable
freedom in choosing / and u so that P=1—a. In
table 1, u is taken to be + « and in table 2, / equals
0. The bounds of table 3 are chosen as follows:

Determine / so that P({<r)=1—«, then holding
[ fixed at this value determine us, so  that
P(l<r<s<u,)=1—2a. Note that the value of

uy obtained in this way agrees very closely \Vlth the
corresponding entry of table 2. I appears that the
probabilistic dependence of the greatest and least
root may be ignored for the purpose of this paper.
Table 1 was used to check the accuracy of Hsu's
approximation in the l)lvmlalc case. The approxi-
mation runs from about 15 percent too large for
n=60 to about 11 percent too large for n—l()()
Presumably the approximation would be equally
poor in general, except for very large sample sizes.

TaBLE 1. Percentage points 1 of the smallest characteristic
root of a bivariate Wishart matriz having sample size n+ 1

P(<both roots) =1—a

L «
BN 0.005 0.01 0.025 0.05
n \\\
2 L3815 (-5)*| 62868 (-5)| 1.4999 (-3)
3 5.0125 (-3) 1.0050 (-2)| 5.1203 (-2)
4 40472 (-2) 6. 4770 (-2) 1.9810 (-1)
| L2641 (<) | 18124 (1) 4.3175 (-1)
26389 (1) | 3.5734 (1) 7.3400 (-1)
4.5495 (-1) 5.8588 (1) 1.0905
6.8802 (1) |  8.5056 (-1) 1.4910
9.5075 (1) | 11721 1.9277
1.2655 | 15183 2.3949
1.6012 | 11,8940 2, 8883
1. 9636 | 202957 3.4045
2.3498 | 2.7204 3.9406
| 27575 | 31659 4. 4944
15 ’ 3.1846 | 36300 4.3
16 | 3.6203 | 41108 4.
17 4.0906 4. 6074 5.4 |
18 4. 5665 } 5. 1181 6. 0082 [
19 5.0561 | 56418 6. 5828 |
|
20 5. 5586 | 6. 7. iuss |
22 6. 5982 7.4 8. 3699 |
24 7.6793 8. 9. 6068 | (1)
26 8.7970 9.6 1.0875 (1) | (1)
28 9.9472 1. 08 [ 12170 Q1) | )
30 L1126 (1) | L2049 (1) | 13491 (1) | 14817 (1)
35 L4185 (1) | L5243 (1) | 16885 ()| 18382 (1)
40 1.7376 (1) |  1.8561 (1) | 2.0387 (1) 2.2049 (1)
45 2.0676 (1) 21982 (1) | 2.3983 (1) 2.5797 (1)
50 2.4068 (1) ‘ 2. 5482 (1>‘ 2.7655 (1) 2.9613 (1)
|
60 3.1068 (1) | 3.2608 (1) |  3.5185 (1) 3.7413 (1)
70 3.8313 (1) | 40139 (1) | 42012 (1) 4.5388 (1)
S0 4575 () | 4775 () | 5.0007 (1) 5.3504 (1)
90 5.3333 (1) 5.5515 (1) | 58811 () | 61735 (1)
100 6.1051 (1) 6. 3397 (1)‘ 6. 6932 (1;‘ 7.0062 (1)

*’l‘hL symbol (i) means that the tabled entry is to be mu]l]pllcd by 10t
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TaBLE 2. Percenlage points 0y of the largest characteristic root
of a bivartate Wishart matriz having sample size n+1

P(both roots<u;) =1—a

AN
a
\\ 0.005 0.01 0.025 0.05
n \
2 1.3663 (1)* 1.2160 (1) 1.0147 (1) 8. 5948
3 1.6162 (1) 1.4568 (1) 1.2416 (1) 1.0740 (1)
4 1.8399 (1) 1.6727 (1) 1.4457 (1) 1.2677 (1)
5 2.0476 (1) 1.8735 (1) 1.6360 (1) 1.4489 (1)
6 2.2444 (1) 2.0639 (1) 1.8170 (1) 1.6214 (1)
7 2.4331 (1) 2.2466 (1) 1.9909 (1) 1.7878 (1)
8 2.6153 (1) 2.4234 (1) 2.1594 (1) 1.9491 (1)
9 2.7924 (1) 2.5952 (1) 2.3235 (1) 2.1065 (1)
10 2.9654 (1) 2.7631 (1) 2.4840 (1) 2.2606 (1)
11 3.1344 (1) 2.9275 (1) 2.6415 (1) 2.4120 (1)
12 3.3004 (1) 3.0889 (1) 2.7962 (1) 2.5610 (1)
13 3.4636 (1) 3.2479 (1) 2.9487 (1) 2.7079 (1)
14 3.6246 (1) 3.4045 (1) 3.0991 (1) 2.8529 (1)
15 3.7832 (1) 3.5591 (1) 3.2477 (1) 2.9967 (1)
16 3.9400 (1) 3.7119 (1) 3.3948 (1) 3.1387 (1)
17 4.0949 (1) 3.8630 (1) 3.5400 (1) 3.2793 (1)
18 4.2482 (1) 4.0126 (1) 3.6842 (1) 3.4188 (1)
19 4.4001 (1) 4.1608 (1) 3.8270 (1) 3.5570 (1)
20 4.5505 (1) 4.3078 (1) 3.9694 (1) 3.6944 (1)
22 4.8479 (1) 4.5981 (1) 4.2498 (1) 3.9662 (1)
24 5.1408 (1) 4.8845 (1) 4.5266 (1) 4.2348 (1)
26 5.4300 (1) 5.1682 (1) 4.8005 (1) 4.5007 (1)
28 5.7157 (1) 5.4480 (1) 5.0712 () 4.7638 (1)
30 5.9991 (1) 5.7249 (1) 5.3394 (1) 5.0249 (1)
35 6.6949 (1) 6.4065 (1) 6.0008 (1) 5.6689 (1)
40 7.3767 (1) 7.0755 (1) 6.6509 (1) 6.3027 (1)
45 8.0476 (1) 7.7342 (1) 7.2922 (1) 6.9284 (1)
50 8.7096 (1) 8.3843 (1) 7.9253 (1) 7.5471 (1)
60 1.0009 (2) 9.6623 (1) 9.1689 (1) 8.7586 (1)
70 1.1286 (2) 1.0919 (2) 1.0397 (2) 9.9614 (1)
80 1.2543 (2) 1.2158 (2) 1.1609 (2) 1.1150 (2)
90 1.3785 (2) 1.3382 (2) 1.2807 (2) | 1.2327 (2)
100 1.5014 (2) 1.4594 (2) 1.3996 (2) | 1.3495 (2)

*The symbol (i) means that the tabled entry is to be multiplied by 10:.

Following a verbal presentation of the results of
this paper, certain unpublished portions of R.
Gnanadesikan’s 1956 thesis [4] were kindly pointed
out as being pertinent. Gnanadesikan has obtained
general recursion formulae for calculating two-sided
bounds on the characteristic roots of a Wishart
matrix. In the bivariate case I have been able to
verify, by partial integration that (4.1) is equivalent
to Gnanadesikan’s expression. Confidence intervals
for the dispersion parameters were also obtained
by Gnanadesikan. His result is different from that
of theorem 3 and may provide an alternative
approach to the problem.

I express my appreciation to the National Academy
of Sciences-National Research Council for granting
me the opportunity to participate in their post-
doctoral research program, and in particular to the
National Bureau of Standards for its support of
my research under this program. Also, I thank
Mrs. Karen Bedeau, who wrote the code for com-
puting tables 1, 2, and 3.

(Paper 66B4-82)

TABLE 3. Percentage points uz to be used in conjunction with
table 1 for obtaining simultaneous upper and lower bounds on
the roots of a bivariate Wishart matrix

P(<both roots <us) =1—2a

\
N 2a
. 0.01 0.05
N
no N\

N

2 1.3648 (1)* 1.0066 (1)
3 1.6149 (1) 1.2344 (1)
4 1.8387 (1) 1.4388 (1)
5 2.0465 (1) 1.6293 (1)
6 2.2433 (1) 1.8103 (1)
7 2.4320 (1) 1.9842 (1)
8 2.6142 (1) 2.1528 (1)
9 2.7913 (1) 2.3169 (1)
10 2.9641 (1) 2.4773 (1)
11 3.1332 (1) 2.6347 (1)
12 3.2994 (1) 2.7894 (1)
13 3.4626 (1) 2.9418 (1)
14 3.6234 (1) 3.0021 (1)
15 3.7821 (1) 3.2407 (1)
16 3.9380 (1) 3.3877 (1)
17 4.0937 (1) 3.5320 (1)
18 4.2470 (1) 3.6770 (1)
19 4.3989 (1) 3.8198 (1)
20 4.5494 (1) 3.9620 (1)
22 4.8467 (1) 4.2424 (1)
24 5.1397 (1) 4.5191 (1)
26 5.4288 (1) 4.7926 (1)
28 5.7145 (1) 5.0635 (1)
30 5.9978 (1) 5.3316 (1)
35 6.6937 (1) 5.9927 (1)
40 7.3754 (1) 6.6425 (1)
45 | 8.0463 (1) 7.2831 (1)
50 | 8.7078 (1) 7.9164 (1)
60 1.0009 (2) 9.1633 (1)
70| 1.1285 (2 1.0391 (2)
80 | 1.2542 (2) 1.1602 (2)
90 1.3784 (2) 1.2801 (2)
100 | 15013 (2) 1.3989 (2)

*The symbol (i) means that the tabled entry is to be multiplied by 10:.
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