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Two Theorems on Matrices*

Morris Newman

(May 16, 1962)

Generalizations of theorems important in the iterative solution of systems of linear
equations are given, together with a lemma on the solution of a certain matrix equation.
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In this note we generalize two theorems on mat-
rices which are of importance in certain iterative
schemes for the solution of systems of linear equa-
tions (see [1] and [3] for relevant references).! In
addition we prove a lemma on the solution of certain
matrix equations. Although the proofs are simple,
the results are of interest and find application in
computations with matrices. However, we forego
the discussion of these applications here.

In what follows F and M are n > n matrices and

“*7 denotes “conjugate transpose.”  We set
R=F+FM, S=F*—FM (1)

and assume that R and § are hermitian. We

write p.d. for positive definite, n.s.d. for negative

semi-definite, ete. The theorems we wish to prove
follow.

Traeorem 1. If R and S are both p.d. or both n.d.
then every eigenvalue of M is of modulus less than 1. If
R is p.d. and S n.d. or if Ris n.d. and S p.d., then
every eigenvalue of M us of modulus greater than 1.

Tuarorewm 2. If every eigenvalue of M is of modulus
less than 1, then R is p.d. of S 2s p.d. and n.d. if S
is n.d. If every eigenvalue of M s of modulus 1,
then R is p.d. of S is n.d. and n.d. if S s p.d.

Before giving the proofs of these theorems we
state two lemmas. The first is well-known and we
omit the proof. The proof of the second is given
in detail.

Let A= (a;;) be an arbitrary n>n complex matrix.
It B=(b;;) is a non-negative matrix such that |a;]
<b,, we shall write A< <R, Tt is trivial to verify
that if A,<<B;, A,<<B, then A,+A,<<B,+RB,,
A A, << B\B,. Further, let M(A) denote the abso-
lute value of an eigenvalue of largest modulus of A.

Lemma 1. Let A be an arbitrary n xXn complex ma-
triz.  Then there is a fized non-negative matriz B
such that for every integer T >0,

A<M (A)B. (2)

This lemma is well-known and a proof can be given
using the Jordan normal form of the matrix A. The
term 7" can be replaced by 7' where m is the
order of a largest Jordan block of A. See also the
paper [2] by A. Ostrowski.

*The preparation of this paper was supported by the Office of Naval Research,
! Figures in brackets indicate the literature references at the end of this paper,
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Lumma 2. Let A,B,C be nXn complex matrices and
suppose that
Then the matrixz equation
X—AXB=C (4)

has a unique solution X given by the infinite series

= SANATOB =0+ ACB+ACB 4 . ... (5)
r=0
Proor. Set
Xo=C, X, =AX,B+C, r>0, 6)

so that

X,=C+ACB+. ..+ A CB.

If 7 and p are non-negative integers then it is easy to
verify that
Xp— X, 1=AX B

By lemma 1 there are non-negative matrices [/,
V., W, independent of » such that

A< <= M(A)T, O< <V, Br< < m="M(By'W.

Set T=UVW. Then

A\',,:ﬁ;lr(.*/;'<<<ﬁ’rf~~fp') T,
r=0 r=0

where p 1s defined by (3). Since 0<p<1, this im-

plies that >73r"72p" converges, and that
r=0

.Y,,<<<§l‘2"_2p'> T,

Hence lemma 1 implies that there is a non-negative
matrix KA independent of » and p such that

X< K. @)

From (3) and (7) it follows easily that the se-
quence { X, } is a Cauchy sequence converging to a
limit X, and (6) implies that X=AXB-+C and that
X satisfies (5). To show that the solution X is

\T+p



unique, let 1" be any other solution. Then Y —X
=A(Y—X)B and by iteration, Y — X=A47(Y—X)B"
for every non-negative integer ». Hence there is a
non-negative matrix £ independent of 7 such that
Y— X <2 2p" L. Letting 7 go to infinity, (3) im-
plies that ¥Y=X. The proof of the lemma is com-
plete. We go on to the proof of theorem 1.

Let X\ be an eigenvalue of M, » a corresponding
eigenvector, and set f=v*Fo, r=v*lv, s=0v*Sv. Then
(1) implies that

r=f+\f, s=f—\f. (8)

Assume that /2 and S are definite matrices. Thqn
A#% —1 and we can eliminate f from (8). We obtain

r _ 1—|A]?
E_l 1 +)\]2 (9)
Theorem 1 is implied by (9) since r/s >0 if R and
S are both p.d. or both n.d., and r/s< 0 if 22 is p.d.
and S n.d. or R is n.d. and S p.d.

We now turn to the proof of theorem 2. If we
eliminate F' from (1) (remembering that £/ and S
are hermitian) we obtain

I+MHSUT+M)=R—M*RM. (10)

If we assume that every eigenvalue of M is of
modulus less than 1 then lemma 2 applies and we
obtain

R=3 (MH"(I+MHST+M)M7.  (11)
r=0

Since the sum of any number of p.s.d. matrices is
p.s.d. and the sum of any number of n.s.d. matrices
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n.s.d., the matrix 2 is p.s.d. if S'is p.s.d. and n.s.d.
if S'is n.s.d.  But the first term of the sum (11) is
p.d. if S'is p.d. and n.d. if S'is n.d. Thus the first
part of theorem 2 is proved.

Assume now that every eigenvalue of M is of
modulus greater than 1. Then A is nonsingular and
every eigenvalue of N=AM""is of modulus less than
1. Equation (10) may be written

{I+N®¥SUI+N)=N*RN—N. (12)
Once again lemma 2 applies and we obtain
R=—3 (N'I+NOST+HNN',  (13)
r=

from which the second part of theorem 2 follows.
This concludes the proof of theorem 2.

For related theorems, see the paper [4] by P. Stein.
Lemma 2 of our paper can be used to provide a
simplified proof of the theorems given by Stein in
[4] and indeed to generalize these theorems.
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