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The First Run Preceded by a Quota™
A. ]. Goldman and B. K. Bender

(March 20, 1962)

Let a,b,c be positive integers with b< min (a¢,c—1). Inan infinite sequence of indepen-
dent trials with different success probabilities, define a “run’ to consist of a consecutive
successes, and a “‘quota’ to consist of ¢ or fewer consecutive trials containing b or more
successes. Recursion formulas are derived for the probabilities governing the first appear-
ance of a run immediately preceded by a quota.

1. Introduction

This paper deals with the following problem, which arises in the analysis of certain target-
detection systems. Consider an infinite sequence {7,: n=1, 2, .. . } of independent probabilistic
“trials.” T, yields a “success” with probability p,, and a “failure” with probability ¢,=1—p,.
A run is defined to be a set of @ consecutive trials all yielding successes, where @ is a positive
integer specified in advance. A quota is defined to be a set of ¢ consecutive trials, of which at
least b yield successes;! here b and ¢ are positive integers specified in advance, with H<e.
When does the first run which immediately follows a quota occur?

Of course the question can only be answered on a probabilistic basis, i.e., one seeks the
probability, as a function of n, that 7', is the last trial of the first such run. The analysis
given below leads to a recursion equation for these probabilities (more precisely, for certain
other closely related ones) under the additional hypothesis that ¢ >b. The equation is some-
what unpleasant looking, but offers no particular difficulty as regards implementation on a
digital computer.? Both the analysis and its result appear likely to be more complicated if
a<_b, so that it is fortunate that the hypothesis @>b covers the applications we have in mind.

The special case a=2, b=1, ¢=2 has been solved by K. Brookner as part of a larger study;*
the first author appreciates access to an advance copy of Brookner’s paper. Since the methods
used below are rather ad hoe, it should be noted that other work by Brookner * provides, in
principle, a systematic approach to such problems; in particular, his methods can apparently
be used to derive a solution in the case a<b.

The next section contains a precise statement of the problem, and a guide to the main
results of the investigation.

2. Notation and Summary of Results

The probabilistic events of interest will be regarded as subsets of a sample space,” and so
the notation of Boolean set-algebra will be employed. Thus the symbols U and N stand for
set-theoretic union and intersection, respectively, while A’ will generically denote the com-
plement of the event A. We depart from standard notation by using the symbols = and “—+”
for the set-theoretic union of disjoint events (i.e., “‘events whose probabilities can simply be
summed”).  We set p,=0 for n<1.

*Sponsored in part by the North American Air Defense Command (Directorate of Operations Analysis) and U.S. Army Air Defense
Command.

1 This definition must be slightly modified near the beginning of the sequence; see the definition of Q. in section 2.

2 This assumes that a routine for computing the sequence { 1)"1 is available.

3 Eli Brookner, Cumulative probability of target detection for pulsed surveillance radars, Columbia University Electronics Research
Laboratories Tech. Rept. T-10/122.

1 Eli Brookner, Determination of the statistics of arecurrent event in a Markov chain, Columbia University Electronics Research Laboratory
unpublished manuseript.

5 For this approach to probabilistic events, see e.g., tho:smndar.'l reference by W. Feller, An introduction to probability theory and its ap-
plications (John Wiley & Sons, Inc., New York, N.Y.).
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A set-theoretic union over an empty set of indices will be taken, by convention, to be the
null event ¢; similarly a numerical sum over an empty set of indices will be taken as zero.
A set-theoretic intersection over an empty set of indices will be taken as the ‘“‘sure event”
(i.e., the entire sample space), while a product over an empty set of indices will be assigned
the value unity.

The following events will be involved in the analysis:

S,: T, vielded a success (S,=¢ for n<1),
S’,: T, vielded a failure,

=il
R,= N S,_;: T,is the last trial of a run (of a consecutive successes °)
0

)

For the exact definition of “quota,” it is convenient to define

m(n)=max (n—c-+1,1). (1)
Then we have the definitions

Q,: at least b trials among 7', T, . . ., T, vield successes,
E,=R,NQ,._.: the type of event whose first occurrence interests us.

Verbally, %, occurs if the a trials numbered n, n—1, ... n—a-+1 all yield successes, and in
addition b or more of the min (¢;n—a) trials numbered n—a, n—a—1, . . ., m(n—a) yield

successes. Still other events will be required and introduced later.

The generic notation P(A) will be used for the probability of an event A. The probabili-
ties of interest, those referring to the first trial which ends a run immediately preceded by ¢
quota, are therefore designated

n—1
X,—P(E.n'0 EL) @)
i=1
It will be simpler to deal, instead, with the probability
Yu=P( N b) 3)
i=1

that no run preceded by a quota occurs up to and including the trial 7',. The sequences
[ X,} and {Y,} are related by

Y,=1—-33X;, Xu=Y,1—Ya, 4)

i=1

and the sequence {1} clearly obeys the “initial conditions”

¥ =l it n<a+b, ()
a+h
Yoip=1—11 p,. (6)

1=1
We therefore assume 7 >a-+b in all that follows.

The reader is exhorted to aid himself, in following the derivations, with the diagram of an
axis on which points corresponding to 7,7, oii, 10y Twvcivir, Tu v oy and T, . ..y are
marked off.

The ultimate goal is a recursion equation for the sequence {Y,}, while the method is the

n
. . /. . o e e . . . .
decomposition of ﬂl I, into a union of disjoint events, each the intersection of certain inde-
i

pendent events.” This analysis is carried out in section 3. The desired recursion equation,

6 This run may be imbedded in a still longer sequence of consecutive successes.
7 If the set of trials whose outcomes determine whether or not an event A occurs is disjoint from the corresponding set of trials for event B,
then A and B are clearly independent. This sufficient condition for independence is the one implicitly appealed to throughout the paper.
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for a-+b<n<2a-e¢, is derived without the assumption ¢>b and is given in eq (24). For
n_>2a-+c, under the assumption a>b, it 1s given in eq (27). Both of these equations involve
as coefficients certain auxiliary probabilities whose calculation is the subject of section 6.  As
for the case n>2a-¢ and a<b, which is not solved in this paper, our best progress to date is
reported in eq (31).

The assumption a>b is made throughout sections 4, 5, and 7. In section 4 it is shown
that the original recursion equation can be replaced by one which has higher order but fewer
nonzero terms, and so may be more suitable for computation. The new equation is given
by eq (34), which is valid for n >2a-+c¢ and b>1, by eq (34a), which is valid for a+b<n<2a-¢
and b >1, by eq (34b), which is valid for n_>2a4¢ and b=0, and by eq (34¢), which is valid for
n >2a-+e¢ and b=1. The remaining cases (n=2a-+e¢, or n<2a-+c¢ and b<1) are left to the
reader.

Section 5 contains an examination of the special case in which p, is independent of 7.
The general recursion eq (24) becomes eqs (37) and (38), while the general recursion eq (27)
becomes eq (39); for b>1, the general eq (34) yields eq (40). For this special case (i.e., p,
=p and b>1) a method is given for « ll( ulating the mean occurrence time for the first 1un
preceded by a quota; this is given compactly as eq (47). The extension to o<1 offers no
difficulty.

In section 7 we study the probability 7, that the first run preceded by a quota, if it ends
at T, occurred as a sequence of a-+b consecutive successes.  (Note that this is not the same
as the probability that the first sequence of a-b consecutive successes ends at 7,.) Equation
(57), which is valid for 1:/(1+(-+1 and b >0, shows how the sequence 1/,,, is determined by
the sequences -{‘\ o and vy, .- The lllustmtlw case b=1, ¢=2 is mvvstwnt(-(l in some detail,
and bounds on Z, are found in terms of p,; see e.g., eq (61), valid for n_>3a-+3 and a>1,
and eqs (62) and (63), valid for n >6 and a=1.

3. Analysis
In this section the hypothesis ¢ >bis not at first assumed. From £,=28,N Q,_,, one has

‘Vu L n+ (]‘ n f Qn—u)

where the convention for “disjoint union” has been used. Thus

0 E=gin 0 E=(Rin 0 B+ RN Qn 0B @)

i=1 i=1 i=1 i=1

The first disjunct on the right in eq (7) will now be decomposed further. Let R, be the
0\'011t thut the first failure among trials 7,7, ;, . . ., (in that order) occurs at 7',_,. Then

= Z R, which implies that ®

=1

‘nn n [4” Z I‘nkn n E (6)

i=1 i=1
However, it is easy to show the inclusion
RS 1Y, forn—k<i<n—1, 1<k<a—1; 9

for if &, occurs then so does S, .. and obviously this precludes the occurrence of R, (and
thus of 72;) for n—Fk<i and k<a—1. By (8) and (9), we have the desired decomposition

§ The distributive law of Boolean set-algebra is to be used. It will be employed at other points without explicit mention,
82 Note the use, for k=0, of our convention about intersections over an empty set of indices.
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n—1 n—k—1 3
RN n 1«::«2 Run N EN N E')

o
RN N EY). (10)
Now R, and n;rjl—l L are independent, and furthermore
P(R}) = n Puiy P "ﬁ 1E’)— . (11)
Equations (7), (10), and (11) therefore yield
r=5 q(I—I Pres) VacsatP (RaN Gima) 1) E5). (12)

Equation (12) indicates that further progress requires a decomposition of the event

=il ’ . . . o . .
Q....N nﬂ E;.  As a first step in this direction, it will be shown that
i=1

Qr-C K forn—a<i<n—1, (13)
which implies that
n—1 . , n—a—1
Qr’L»an ‘Ul Et:Qn an n F n ﬂ Ei_Qn a ﬂ ﬂ F’
and thus that
(15—l
RnQn ar]nlwi_l‘3 nQn an n Ei (]4>

Since (a) R, is independent of ¢,_, and also of F; for i<n—a, and (b) P(Rn):ar-llpn_j,
=0
application of eq (14) to eq (12) yields

a—1 g1
Y=2 s Hpn ]>7 k- 1+<,H D j>P<On « N n E; > (15)

£=0

To prove (13), assume that 0. _,and E, both hold with n—a <i<n—1. Then R, holds, so
that ©>a-+b and the trials 7,7y, . . ., T .41 all yield successes; in particular, this holds for

the trials
Trz—a; Tn—l—ay LAY Ti+1~u- (16)

If i<n—0b, then 7, 0,7 o1,Tnu-2y - - -3 Th-o—pr1 would be in the sequence (16) and there-
fore would all yield successes, contradicting the occurrence of €, _, So 1 >n—b, i.e.,
1—a >n—a—b >n—a—e, a fact to be used below in (17), in the form 1—a >m(n—a).

Since K, occurs, ();_, must occur, so that there are at least b successes in the trials

TiwTioas, . o oy Tnie. This last-mentioned sequence of trials can be split into two
subsequences,
Ti~a7Ti*a—ly 0 G o Tm(n-a)y (17)
and
N ! =ity © o oy Wingnay (18)

where the second subsequence is absent if n<a--¢. Of the “at least b successes” just mentioned,
at most n—1 can occur in the subsequence (18), since the number of trials in this subsequence is
at most

n—a—c—(—a—c+1)+1=n—1.
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Thus there are at least b— (n—1i) successes in the subsequence (17). Combining these with
the n—17 successes in the sequence (16) (which is disjoint from (17)) yields at least b successes
in the sequence 7, ,, 7, .1, . . ., T, .o, but this contradicts the occurrence of (J,/,.u- Thus
the assumption that ¢),_, and £, both hold is untenable, and the inclusion (13) is proved.
I‘qu.llion (15) shows that further progress requires a decomposition of the event

W . N _ﬂ E;. This will first be done for n <2a-}¢, by showing that
i=1
Qe ’CE for 1 <i<n—a—1, il a+b<n<a-ce, (19)
o _ ,ICE for n—a—c+1<i<n—a—1, if a+e<n<2a+e. (20)

These results imply the decompositions

n—a—1

Qn an M [4]; (\)n— if (1+b<71_<_0/+(’, (2])

i=1

Nl = =C

Qr-aN N F"’Ju NN E; if a+e<n<2a+ec. (22)

i=1 i=1
Since F; cannot occur for 7<a, and can occur for z=a only when =0, in which case we adopt
the convention ¢=0, the last two (lisplzl_\'s can be rewritten as
n—a— , o i
Q—aN N 12,:/,),,_,, if a+b<n<2a+ec.
i=1
Substitution of these results into eq (15) yields
. a—1 a1 X
) ":?: Dz H ]),_,>) ,,_,_1+ H /),,,)1 () for a+b<n<2a--c. (24)
k=0
The evaluation of P(Q),_,), which appears in eq (24), will be discussed later.
To prove the 111(111510115 (19) and (20), first note that both can be simultaneously written as
(08 ==y 4 for m(in—a)<i<n—a—1, if a+b<n<2a+-c.
al / 51 g 5
Suppose, on the contrary, that both @, , and £; occur. Since /; occurs, there must be atv

least a-b successes in the sequence of trials 7,7, . . ., Ty o. Since

1<n—a—1<(2a+c¢)—a—1=a+c—1

we have m(i—a)=1, and so there are at least a-+¥b successes among the trials 7,7, .. . T\
iy ’ - . v
Since @, , holds, at most b—1 of these successes occur among trials 7% 7'l oo o Loneay,
and so there are at least a+b— (b—1)=a-+1 successes in trials T w1y, Twin-ay-o - - o, 11
Thus

a+1<mn—a)—1=max (n—a—c,0),

mplying a+1<n—a—c and thus n_>2a-+¢, a contradiction. So (19) and (20) are proved.
Thus the desired recursion equation for the sequence {Y,} has been derived for n<2a-c,
and 1is given by eqs (5), (6), .md (24). From now on, n_>2a-+c is assumed.

n—a—

To decompose @), _,N ﬂ IL, when n>2a+4-¢, it is helpful to observe that @), , can be de-

fined as the occurrence of nt least ¢— (b—1)=(c—b)-+1 failures in the ¢ trials between 7, _,
and 7T,_, . inclusive. Not all of these failures can occur in the ¢—b trials between 7', ,
and 7, , .. mclusive.  We therefore introduce the new events defined for 0 <t<b—1 by

F,;: the (¢—b)+1st failure among 7, ., T\ oy, . . .,
Th—v-csn (n that order) occurs at 7'_q—(c-py-t

b—1

Then @), _,= E F,,, which implies the decomposition
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Nl n=aasit

Gan 1 Ei= z(ﬁmn A
so that eq (15) becomes

a=1

)-’n:Z (111—/c H ])rz 7>’ n—k— l+ H pn j) ﬁl)("ntn n_ ] (2‘.))

k=0 j=0
The solution under the extra hypothesis @ >b will now be completed by showing that

S for n—a—(c—b)—t<i<n—a—1, ifa>b. (26)
This will imply
n—a—1 n—a—(c—b)—t—1

ﬁ‘ltl ﬂ "Ol E;:[(vnl ﬂ ﬂ 14::

i=1

0 o . . . . . =y
which, since 7,, and £; are independent for 1 <i<n—a— (¢c—b)—t—1, will turn eq (25) into

a—1 b—1
Vam g ot (1 20y ) Varsotb(T pu)) S PE aaonmcn ifaZb (D)
Equation (27) is the desired recursion relation for n>2a-+e¢; together with eq (24) and the
initial conditions of eqs (5) and (6), it entirely specifies the sequence {V,} when a>b. The
calculation of the coefficients P(F,,) will be discussed later.

To prove the inclusion (26), suppose that F#,, and £; both hold, with a>b and
n—a—(c—b)—t<i<n—a—1. Since 7>n—a—(¢c—b)—t, the (success-yielding) trials be-
tween 7, and 7,_,,, inclusive must have greater subscripts than the (failure-yielding)
Ty—a—(c—1y—1, SO that

n—a—c+1<n—a—(c—b)—t<i—a+1<i<n—a—1

so that the @ successes just mentioned fall between 7, , and 7, , .., inclusive. Because
a>b, this implies that @,_, occurs, contradicting the assumption that #,, occurs (recall that
FruSQ,0)-
The reasoning just employved carries over in part to the case a <b. Specifically, it will be
shown that
F,DF; forn—a—(c—b)—t<i1<n—a—1 and t<a—1 (29)

so that eq (25) becomes

(=il

(i1l
IY’]:Z (ln—k H [)11 j> I n—k— 1+<H ])n j)§[-)([’nl)yyn-a—(cgb)~t~1

k=0
(=] ”\
<H1),L j> F.Nn N ﬁli)~ (29)
i=1

To prove the inclusion (28), suppose that #,, and £; both hold. As in the last paragraph,
E; requires at least a successes between trials T,l_,l an(l T, o e—n-: Inclusive, whereas F,,
requires exactly (¢—b)41 failures (and thus exactly t successes) in these (¢—b)+i-+1 trials.
Therefore, a <t, contrary to hypothesis in (28).

It is also easy to show that, for a <t <b—1,

F,.CE; forn—a—(¢—b)—t<1<n—(¢c—b)—t—1, (30)
so that eq (29) becomes

a=1

a—1 a—1
}Yn:;; (In—k H ])n )> ) n— Ic—1+ ‘1;1;)]);1-—]') Zl (ﬁrzt yn—a~(c—b)—t~1

n— r1 1 n—a—(c—b)—t—1

+<Hz)n J 71’ (lmﬂ Ein n
=1

i=n— (L b) —t i



for if /,, and I; both occur, with i >n—a— (¢c—b)—t, then the fact that 7, T, ., . . ., T\ .0y
all vield successes whereas 7', , (. 5, vields a lailure, implies that

i—a+1>n—a—(¢c—b)—t,

i.e., i>n—(c—b)—t. The authors have not succeeded in carrying this analysis further in
the case a<7b.
4. A Possible Simplification

The recursion ea (27) is of order a--¢, i.c., each member of the sequence {)’,1} 18 expressed
in terms of the a-+¢ members immediately preceding it. Actually, only a+b of these a-+¢
preceding members are employed,® the others appearing with zero coefficients in eq (27). In
this section eq (27) is used to derive a recursion equation of the higher degree a-+c¢-+1, which
however has the advantage that calculation of a particular member of {1} requires only
b3 of the preceding a-+c¢-+1 members (and only 2 if 6=0). Of course a detailed evaluation
of this “advantage” would involve a comparison of the computational labor for the coefficients
of eq (27) versus that for the coefficients of the new equation.

For the derivation, first change n to n-+1 in eq (27) and shift “dummy indices” to write
the result, for b ~1, as
a—2 u~l =) R
)'u } l’illu H)'n+,_z'\] ([n -k < II ])u+]—;> ) n—k—1 ‘I— = “])n +1— >< ']I“([n + l—a—i) )'n—af(r—h;
= (i=

b—2

a—1 N a—1 \ .
+< II ])n } I—j) [)(\I"u + 1,1))711—a7(c~~/;)71+( II“ l)n il—_i) 5—‘ I (l =l by l)) n—a—(c—b)—t—1- ({2)
j=0 \j=
Next multiply eq (27) through by p,.,, and write the result as

a—2 a—1 )
()i/)u Ll)vu Z ’[/171( II Pn %1*/) ) n—k—-1"Gn—a+1 ( 1T I)u‘fl—j) )'”—”
j=0

a \ b=l

c—b a S
—(m };,,41,,,)(11 (,H«,> )',1,,,,(“,,,,1—( »11”,,,,,],,1)7’#1«/;,,))',,,,,, —m—t-1.  (33)
\J= =

Jj=0

Now add eqs (32) and (33), noting that p,.+q, . =1:
; . ‘a—1 N ‘a—1 Rac=0 g ;
) nEl:) /14—(]»/1’1 (H]’n}lf_/>) rz—a+< H])n%-]—j><‘ll (InH—ufr') ) n—a—(c—>)
j=0 j=0 =0
a—1 R § X c—b E .
+ 'HO /)n+lfj) [1)(1’11 + Ll)_1)11+1-11 (ITU (In-—u—i>] ) n—a—(c—0b)—1,
J= / = /
b—2
+<H pn+1 7 ?‘ I (l4n+l t+1) ])n+1—111 (Fnl)] )771—u—(c—b)—t—1

_< IT ])II+1—j> [ ([n b—I)I n—a—ce (\'54)

This is the desired equation.
A similar equation can be derived to replace eq (24). The procedure is as above, and the
result is:

a—1 a—1
) n+1:)vn—{]n—n*‘l < 1T /)n+l—_/> )vr17u+ ‘HO pn+1—j> [P(Qr’l+1~a) —])rH-l—al)(Qr’I—n)J (348-)
j=

fora+b<n<2a-tc. 'Theanalogous equation for the “transition case’” n=2a-¢ will be omitted.

¢ The order of the recursion is related to the ‘““memory’’ requirements of a possible computer program, while the number of nonzero coeflicients
isrelevant to the amount of computation required for each Y.
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If b=0 or b=1, the preceding equations must be modified. For =0, eq (34) becomes

a—1
)er—I:)'u_f{n—nﬁ-l 'IIO pn+1—j> )—vn~a) (34b)
=
while for b=1 it becomes

a—1
IVY;H—IZI?H*(IH—(H-I H pzzv‘—l—,f)I n—a+( H ])n+1—j> H Qrz+1 a— z)l n—a—c+1
j=0 ; \j=0

Cc=0
—_'< II ]'nﬁ-lfj) 1T (Inf(z—1'> Yn—(z-C' (34C>
j=0 \i=0

The analogous results for eq (34a) are omitted.
5. A Special Case

It is natural to inquire what form the recursion equations take in the relatively simple
case when all the trials are governed by the same probability distribution, i.e.,

=0, ¢ =9=1—p.

The initial conditions are
W=l for n<a-+b, (35)

)’7(,+b:1—pa+b. (36)

From the definition of ¢/,_, it follows that in eq (24)

D=1 _
P@ )= (" e foratb<ngate,

b=1
P(Q;_a)ztgﬂ (?) pgeTt for a+c<n<2a+ec.

Thus the early recursion equations read (for ¢ >0)

a—1 bh—1 —a .
Vimg S oVt 5 () et itatb<ngate, (37)
= =0 \
Y,= qZp Y s tp¢ < ()P 9“)1 n-a—e if a+e<n<2a+tec. (38)

From the definition of #,, it follows that

P(Fm):(C_—?—l_t) plqc~b+17

so that eq (27), which is valid if @ >b, becomes

—b+-t .
n*([ ZP I n—k— 1+p Qc b+lZ ‘ t+ )pY”_”_“—b)—l—] lf ’n>2(l+0, (39)

while eq (34) becomes (for b >1)
Ivn-HZIyn_ qpa)-'yn—a_i_paqc*b‘*—l}?n—a— (c—D) + (C— b) Z)a+1qc_b+lyn—a— (c=0)—1

I el —1
+pa+lgc—b+1 tgl ( t_i_—]{-— >p[Yn—a—(C—b)—t—l—pa+ch—‘b+1 <§— 1) Yn—a*C' (40)

Let the random variable N be defined by the condition that 7y is the last trial of the
first run immediately preceded by a quota. The sequence {X,| defined in eq (2) is thus
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precisely the frequency distribution function of N. Although the equations above are not
spectacularly simple despite the simple choice of the sequence {p,, |, they at least permit descrip-
tion of a finite procedure for calculating the expected value £(NV) of NV in the special case under
consideration (with a>b).

To this end, first use eq (4) to write

[((N)—‘Z)n“(n_l\l—{‘?”() n—1 Ivn)
e (z nY,. 1~2 nY>

m—o

=14 lim mz Y,l—mY)

m— o

ince the definition (3) of the sequence | Y ,| ensures that this is a monotone nonascending
S the definit 3) of tl 1 04 that th t 0 ding
sequence of nonnegative terms, a classical theorem on infinite series ° can be invoked to assert
that mY,,—0 if 23V ,< w. This yields

1

EN)=14+2Y, XY .<=, (41)
1 1

so that the evaluation of Z(N) reduces to that of >317,. This of course holds even in the general
case.

We now employ the standard formal procedure for summing an infinite series whose terms
obey a linear difference equation with constant coeflicients. Write eq (39) briefly as

a+c
Y, =2 @Y for n>2a-+c, (42)
i=1

and introduce the generating function

9(&)=21Y 42" (43)
as well as the polynomial
~ a+c
f@)=1-2] a:z". (44)
i=1
An elementary calculation using eq (42) yields
atc .
f(g)(/(:>22 e 2’[_2 a; Z Yo"t
1 i=1 1
a+c
=Z ) nz Z al Z Ifﬂ—isn
1 i= n=i+1

=3Y,2"= 5 ("3 (@, 1Si<min (ate, n—1)})

‘ > atc >
S ()/ —> a4 ) _
a+c+1 i=1

a+tc n—1 2a+c a+c
=1 +; Y"_'Z a'i)'”“"> ‘2"_*— Z )'"__; aiirn—i> g"=h (Z)f (4'3)

i=1 a+-ci-1

[

atc n—l
:]—l-—z Y,— Z a;Y,_ 1>

i=1

where the coefficients of A(z) can be found from eq (35) to (38).
It will be shown that for 0<_p<1

f(z)#0  for |z[< 1. (46)
10 See p. 124 of Knopp, Theory and Application of Infinite Series, Blackie (1951 edition).
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This justifies the preceding formal manipulations for |z| <1, permits solution of eq (45) as
9(2)=h(2)/f(2), and permits use of eq (43) to write 2V ,=¢(1), so that eq (41) becomes
1

EN)=1+h(1)[f(1), (47)
the promised formula for £(N). In connection with eq (47), note that by eqs (39) and (44)
b—1 .
/‘(]):Pa <1___qc—b+lz c Ilz+t>])t> (48)
=0 ,

To prove the nonequality (46), note that all @, in eqs (42) and (39) are nonnegative,
so that for |z| <1,

2
_+_

e
a;z' | <
1 |

a

[

C

t

i

|

j a;|z|! S

I

Il
—

i

thus (46) is true if Z a;<1,1.e.,1f £(1)>0. By eq (48) this is equivalent to

bZl <c—b—}—t>p £,

which is true since the left-hand sum is the value at 6—1 of the cumulative negative binomial
probability distribution with parameters ¢—b+41 and ¢. (See Feller, op. cit. in footnote 5.)
Asin section 4, the cases =0 and b= 1 require special treatment, which is left to the reader.

6. Auxiliary Probabilities

This section deals with the probabilities P(Q,_,), which appear in eq (24), and P(F,)),
which appear in eq (27). The “best”” way ol calculating these quantities (or more generally,
of arranging the whole recursive computation) is likely to depend strongly on the values of
a,b,c, on the peculiarities of the specific sequence [7,} of success probabilities under considera-
tion, and perhaps on special characteristics of the calculating equipment used. Thus the pro-
cedure sketched below is illustrative, rather than ‘“recommended.”

For a+b<n<a-te, @, _,is the event that the sequence of n—a trials T, o, Ty, - - -,
T, yield at least n—a— (b—1) failures. Not all of these failures can occur in the n—a—b
trials between 7', , and 7%y, respectively. We therefore introduce new events defined for
0<t<b—1 by

G,.: the n—a—(b—1)%* failure among 7, o, Ty_4eq, . . ., 1) (in that order) occurs at 7)_,.
Then
(271 —-a Z Gn[} SO th‘lt’

PQ)=5P(G)  for atb<n<ate. (49)
=)

As in the analysis before eq (25),

P(Q-.)= Z P(F,,) for a+e<n<2a-+c. (50)

t=0
The events F,, and @G,, are special cases of the event
H,.,: the kth failure among T, T,_,, . . ., T, (in that order) occurs at 7, _rii—;,
defined for 0<t<b—1 and 1 <k <n—b-+2. Specifically,
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Thus it suffices to consider the probabilities P(I1,,,). Now introduce the event

Sk precisely £—1 failures between 7, and 7', _;,_, inclusive.

Then clearly P(H,10)=q, and P(H ) =q, 11 L°(J i) otherwise, so it suffices to consider the
probabilities P(J,;,) for (kt)s=(1,0).

These probabilities can be computed by recursion on k& and ¢ after disposing of the case
=1l loy

(=1l
1P o= 11 3 for ¢ >0.
1=0

The initiation of the recursion, for fixed £ >1, is

k=2

P(J o) :.'1_1(;(1,1 o fork>1,
and the “recursive step” is :
P(J ) =Pr-rr2— (T i, 1-1) F @urro— (S0 x-1,-1) for k>1, t>1.
7. A Related Problem

Let K, be the event that 7, is the last of a sequence of a--b consecutive trials all yielding
successes.  That is,

a+b—1

1\’,,*—‘ AS',/ — i ('-)1)

i=0
For the application which motivated this paper, it is of interest to consider the conditional
probabilities

z,~p (K,JEND /«;;\) (52)

=1

defined for n>a-+b. From the definition of conditional probability, we have !

n—1
X.Z=P(KNEN'N E),

1=1

which because of the inclusion K, = F, can be rewritten

g n—1
X.Z,=P (KN E) (53)
\ i=1
Since the preceding material in principle permits the evaluation of X, when @ >b, we need only
investigate the (unconditional) probability on the right-hand side of eq (53). It will be assumed
that n >a-+c¢-+1 and b >0.
[t will be shown below that

n—a—>b
I\’u nl“‘:l'—(l:l‘ uﬂ . ﬂ ‘Sv;, (:)4)
i=n—a—c
which implies that
=l , n—a—>b , n—2 ,
]\nn n ]ﬂi:Z(nn ﬂ ‘Sviﬂ ﬂ ]‘4[-
i=1 i=n—a—c i=1

11 Recall the definition of X, in eq (2).

87



0 ’ ’ o o
Since S, S, the last equation can be rewritten

Nl n—a—b n—2 NSl Caal!
K.nnkE=KN n SN n EN n K. (55)
i=1 i=n—a—c i=n—a—b+41 i=1
To prove eq (54), first assume its left-hand event occurs. Tentatively suppose S, occurs,
with n—a—ec<i<n—a—=b. Since K, occurs, trials 7, , through 7, , all yield successes
(i.e., 12, holds), and in addition the b—1 trials 7, ,_, through 7', , ;,, vield b—1 successes.
These (b—1) successes, together with S;, occur between 7', , , and 7, , . inclusive, and so
Q1o holds. Thus £, =R, NQ,_,_, holds, contradicting the assumption that the left-
hand event in eq (54) holds. So the tentative supposition is untenable, and the left-hand
event is contained in (i.e., implies) the right-hand one. Conversely, if the right-hand event
holds then trials 7', , » through 7, , . inclusive constitute (¢—b)41 failures between 7',_,
and 7,_,_. inclusive, so that Q;,l,m and thus E;—u must hold. This shows that the right-
hand event contains the left-hand one, and so eq (54) is proved.
Next it will be shown that

n—a—b
n SiCEkE; forn—a—b+1<i<n—2. (56)
i=n—a—c
This implies that eq (55) can be rewritten
n—1 , n—a—>b , n—a—c—1 ,
Knﬂ N Ei:Knﬂ ﬂ Siﬂ N Eiy
i=1 i=n—a—c =1
and since the three events on the right-hand side are independent, eq (53) becomes

n—a—>b N\ n—a—c—1
X, Z,=PE)P ("N S;)P( N ::-)
i=1

i=n—a—c

a+b—1 ) a+c »
= 1T pn~1') II (/n—i> Yn—a—c——h (.’)l)
i=0 i=a+b .

thus completing the solution.

To prove the inclusion (56), suppose its left-hand event occurs, and assume 7—a—>b-+
1<i<n—2. Tentatively assume F£; occurs. Then 7'; through 7;_,,, inclusive must yield
successes, and so (since i >n—a—>b) must have subscripts greater than the failure-yielding 7', _,_».
Thus 1—a+1>n—a—b, and so n—b<i<n—2. This implies that

1—a—c+1<n—a—c<n—a—b<i—a,
so that the (¢—b)+1 failure-yielding trials 7',_,_, through 7',_,_. inclusive lie between 7',_,
and 7T,_,_..; inclusive, thus ensuring that (,_, holds. Thus [, holds, contradicting the

tentative assumption, which is therefore untenable. Therefore (56) is proved.
Suppose for example that b=1 and ¢=2. For n>a-+c+1=a-+3, eq (57) yields

XnZn= 1T pn—1> (ln—a—l(]n—a—QYn—a~3‘ (58)
i=0

On the other hand, if n°>2a-+3 then the last equation of section 4, with n replaced by n—1,
yields

a=1 a—1
Xn:Yn~l'_"Iyn:(ln—a ‘HO pn—j> Yn—a—l_‘ 'HO pn—j> Qn,—a(jyz,Aa—llrn—a—Z
J= = /

a
+ 'HO ])11~j> (In—a—lq'L—a—?}vn—a—E'
=
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Comparison of this result with eq (58) shows that

a=1 a—1
Qn—a ( HO pn—j) Yn—a—l_ I_I( pn—j) (ln—aQIzAafl)rnfa—‘.': (ln—ZII)XIIy
= i=0

and thus that
(1 "Zn)/Zn: n —a(17n~a~l_ (1714&—‘])’” fa—‘.’)/])n—a([n—a— l(lrz—aAZYnfa—a- (’—)9)

If n>3a+3, however, then eq (27), with n replaced by n—a—1, vields (for a >1)
. . a1 k—1
) n-a—l—anaflj n-072:pn—a—l(ln-a—2+l‘zz Qn—a-1—k 'HO Prn—a—1-j Yn—a—k-—2

= i

(=il
_{'_ 'I_IU pnfa—j—1> (ln—Qa—Ianmfz)Yn—?a—ii- (60)
Jj= /
On the one hand, eq (60) shows that
)7n—a_Qn~a~—1)7n»a—22 pn—a—lqn—a-ZYnfafii

so that eq (59) yields
(I_Zn)/ZnZ (ln—apn—a—llpn—a([n—a—l' (61)

This shows, e.g., that if the sequence {p,} is nonincreasing for all n_>n, >2a--3, then Z,<1/2
for all n_>ng+a. A bit less crudely, since the sequence {1,} is nonincreasing by its definition,
eq (60) yields

[l

1T Prn—a- lfj)
Jj=1

a—1
+< 1T ]’u—u~j—1> (ju—mz—](ln—ﬁ(zf?}’
LJj=1

from which a more precise lower bound on (1—7,)/Z, can be derived via eq (59). On the
other hand, since V,,>¢,,Y,,_, we have

a=1
> = ~
} n—a_Qn—a—ll 71—(1—22 ]7:1~<141) n—a—s{ (In—a—2+12 (jn—a—l—k
=2 .

N . k+1
) n—u»l;~‘.’s) /1*:1—3/ H q,,,,,,i,
1=3

/,fu+2
Yn—Zrz—SS) n—a—3/ H Qszn—i;
| i=3

| i

which when substituted into eq (60) yield an inequality that can be combined with eq (59) to
obtain a crude upper bound on (1—Z2,)/7Z,.
If a=1 (as well as b=1 and ¢=2) then eq (27) yields

Yn—2_Qn—2Yn—3:])n—2(1n—3Qn—4Yn—5,v
so that eq (59) becomes

(1 —=Z,)]22= n-1Pn—2Gn—-4Y n—5/Pn—1qn—2Y n_1s. (62)
Since ¢,_4Y, <Y, s<Y,_ 5 we have
Q- 1Dn—2Gn—4/ Prn-1qn—2= (V= 2,) [ 20 < @u-1Pu—2/ Pr-1qn—2- (63)
In particular, if {p,} is ultimately nondecreasing then ultimately Z,>1/2.

(Paper 66B3-75)
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