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Meixner’s theorem, on the preservation of the Onsager symmetry of phenomenological
coefficients under transformations of forces and fluxes which leave the rate of entropy pro-

duction invariant, is shown to be invalid under the

restriction that all fluxes be even or odd

under time-reversal and that the phenomenological equations be valid for very short times.

This result extends an earlier proof of Coleman and Truesdell, whose proof does
A new formulation of Meixner’s theorem is thus shown to be re-

these two restrictions.

not impose

quired, and this is written down together with a statement of Onsager’s theorem which is

consistent with it.

1. Introduction

DeGroot, has proposed® that the theory of irre-
versible processes should rest on a fundamental
postulate which, from the manner in which it has
been used by deGroot and others, can be summarized
by the following statement:

StaremMeNT [: Suppose S is the entropy of a
thermodynamic system and S the positive definite
part? of its rate ol change with respect to time ¢, and
also that X,(a=1 ., n), called “forces,” are a
set of linearly independent functions of the thermo-
dynamic variables such that S can be written in the
form?®

*S 5”1 ]’H\"’ ( 1 )

a=1

where o/, 18 called the “flux conjugate to .\\',.”" Then
the statement
QI{I Z [Jah‘\v (2)

b=1
implies, in the absence ol a magnetic field, that
L(Ib:Lb(l (3)

it X,()=Xu(—1) and X,()=X,(—t) or N.()=

L (—t) and X, (H)=—X,(—t). In the first of

1S, R. deGroot, Thermodynamics of Irreversible Processes, North-TTolland
Publishing Company, Amsterdam, 1951; see pp. 8, 216.

2 In open systems, it is usually possible to express the total time rate of change
of entropy as the sum of two terms, one of which reduces with the aid of the
phenomenological laws of heat conduction, diffusion, and viscous dissipation,
to a positive definite quadratic form. The other term is recognizable as an
exchange of entropy with the surroundings which, in the theory of continuous
systems [ref. 1, p. 98] appears as the divergence of an entropy flow vector.

3In the pw\('nt statement no requirement is placed on the quantities X,
other than that they be linearly independent and satisfy eq (1). It will be the
purpose of the present paper to show that these requirements are inadequate
for the truth of the statement and to establish the additional conditions which
must be placed on the forces and on the phenomenological coeflicients Lap if the
statement is to be so formulated as to have general validity.

101

these two cases, X, and X, are said to be symmetric
with respect to time inversion, and in the second
case antisymmetric.  Also

]‘ub =t I;btt (4)

if X, or X, 1s symmetric and the other of the two
antisymmetric.

Coleman and Truesdell® have shown that State-
ment I, the content of which is widely accepted as
a valid statement of the Onsager-Casimir reciprocity
theorem, goes bevond existing proofs of the theorem
which assume that the forces X, are derivatives
0S/0y, of S with respect to a set of state variables,
and that the flux J, conjugate to X, is (\(111:11 to the
time-derivative 3, These authors (see footnote 5)
have pointed out that it is (()mnmn to apply State-
ment [ in cases where the .\, are eradients of con-
centration or fluid velocity, which are types of forces
for which 1t has never been proved in complete gen-
erality.® In fact, they have shown that, without
additional restrictions on the forces ./, and fluxes .\,
beside eq (1) and the requirement of linear inde-
pendence, Statement I 1s indeed faise. To establish
1ts invalidity, it suflices to assume the existence of
n pairs of functions .X,. J, for which eqs (1 to 4)
hold, and then to find n new pairs J¥ X7¥
which are linear combinations of the ./, and X, such
that eqs (1) and (2) hold when all quantities therein
are starred, while eqs (3) and (4) cease to hold for
the matrix $¥= (1%, relating the J% to the X7

Such a transformation to new lowes and ﬂuxes
violates a widely accepted statement, called “Meix-
ner’s theorem,”” which asserts that a transformation
of this type cannot be found. This assertion goes
beyond what is claimed by Meixner himself, who
has defined ™ a particular class of lmear transforma-
muti(m which refers to an ensemble average <X,(P,Q)> of som»
function of the coordinates Q and momenta P of all the molecules in the system.
The transformation t——¢ means reversal of the signs of the momenta inside the
angular bracket.

5 B. D. Coleman and C. Truesdell, J. Chem. Phys. 33, 28 (1960).

6 Statement I has been shown to hold, by S. R. deGroot and P. Mazur, Phys.
Rev. 94, 218, 224 (1954), in special cases of heat conduction and diffusion, but
this demonstration cannot be automatically extended to cases where gradients
of temperature or concentration are coupled in the phenomenological equations
with forces of the type 0S/0ya

7.J. Meixner and H. G. Rei];', Handbuch der Physik, Vol. 3, part 2, Ed. by S.
Fliigge, Springer Verlag, Berlin, 1959; see pp. 433, 434



tions from one set of fluxes J, and forces X,

another set J% and X7¥ which have the property
that if eqs (1 to 4) hold for the J,,X,, then these
equations continue to hold when all quantities are
starred.  Transformations with this property are
said to keep S and the Onsager symmetry invariant
and are called symmetry-conserving transformations.
From the existence of this class of transformations,
it is commonly inferred, inconectl\, that all linear

transformations which l\eep S invariant are also
symmetry-conserving. The latter statement is the
broad statement of ‘“Meixner’s theorem,” which
Meixner himself [compare ref. 7] realized could not
be true in complete generality, although he did not
discuss, as we shall do here, the various types of
transformations which contradict it. Thus it has
been left to Coleman and Truesdell (see footnote 5)

to describe one set of transformations which keeps S
mvariant but is not symmetry-conserving, and which
leads to counter-examples for Statement 1.

These counter-examples (see footnote 5) are
obtained by a transformation to new fluxes J%,
given by

Jz - Ja + ; I{Yu b‘Yb

where W,,=—MW,, and 1t is assumed that any or
all elements in the matrix (W,,) are 0. The anti-
symmetry of (W,,) assures that if X#=.X, then
DO JEXE=>7J,X,. From this it readily follows (see
a

a

footnote 5), without regard to whether the X, are
all odd (antisymmetric) or all even (symmetric) or
a mixture of the two, that the Jj and X can satisfy
conditions (1) and (2) of Statement I, under circum-
stances such that eq (3) does not obt(un. For if
Lop=1Ly, then LY=L+ W,#L} when W,,7#0,
and we need say nothinv‘ explicitly about the time-
reversal symmetry of X, and X,. Consequently,
so long as any elemeut of (W) can be taken 0,
the question of time-reversal symmetry of the
fluxes and forces is irrelevant to the arguments of
Coleman and Truesdell (see footnote 5).

However, we should note that if no prior restric-
tion is pl(u-ed on the elements of (W,,) and in par-
ticular we proceed to take them all 0, then it is
evident that if .J, initially was definitely odd or even
with respect to reversal of all the particle momenta,
this will not be necessarily true of all the fluxes
Ji. For il J, is odd and some of the X, are even,
then J3 will be a sum of odd and even terms, which
itself has no definite time-reversal symmetry. Thus
the transformation which leads to a counter-example
for the broad statement of Meixner’s theorem also
produces fluxes which are neither symmetric or
antisymmetric with respect to time inversion.

[t 1s of interest, therefore, to examine the con-
sequence of requiring that the fluxes and forces
should all be even or odd, in order to determine
whether this additional restriction is sufficient to
assure that eqs (1) and (2) imply eqs (3) and (4).
This restriction was indeed satisfied by the particular
class of transformations considered by Meixner (see

footnote 7), and it was taken by him to be a suffi-
cient condition for the validity of “Meixner’s
theorem.” Meixner’s discussion [refl. 7, eq 8.3 and
8.4], however, assumes that the fluxes and forces
are independent of one another,

so that if S=
DY fZJ"\a. thenke/ —/h"

Since J, and J, are
actually relutod to the X, by the phenomenological
relations, Meixner’s conclusion is not necessarily
ralid, and it is pertinent to reopen the question.

The particular physical motivation for this is
that in a number of papers® designed to extend
irreversible thermodynamics to include inertial
effects involving very short times and very high
sound frequencies, Statement I has been applied to
phenomenological relations in which all quantities
had a definite time-reversal symmetry [thus satis-
fying Meixner’s restriction (see footnote 7)]. These
phenomenological equations also have the property,
which we shall see 1s crucial for the application of
Onsager’s theorem, that concentration and velocity
gradients are not linked directly to any of the fluxes
conjugate to such gradients. The latter restriction
corresponds to the inertial principle that a fluctua-
tion from chemical or thermal equilibrium does not
instantaneously cause the conjugate reaction rate
or heat flux, respectively, to differ from zero; and
this may be expressed by setting L,,=0 when X,
and X, are both even. For e\ample if X, and X,
are proportional to concentration gradients in a
multicomponent mixture, then the diffusion flux . ,,
of component a does not depend directly on X, or
X, in accordance with the inertial principle that a
concentration gradient does not produce an instan-
taneous flow.

In the present paper, we shall demonstrate that
these additional restrictions on the phenomeno-
logical equations are indeed insufficient to assure
the validity of Statement 1. In fact, we must also
require that all forces to which we seek to apply
Onsager’s theorem belong to one of two classes, of
the type 08/dy, on the one hand, or (on(-ontrltlon.
velocity, or temperature gradients on the other,
but no force can be a combination of the two types.
This new restriction, together with limitations on
the matrix (Z,,) imposed by the principles of inertia
and irreversibility, will be formulated in a Statement
IT given at the end of the paper.

The proof of the new statement is fairly trivial,
and the main body of the paper is devoted to showing
that such additional restrictions on the types of
forces are necessary. This is done by finding trans-
formations from a set J,.N, which satisfy eqs
(1 to 4) to a set J;, X, which do not do so, even

though all the forces are definitely even or odd,
and L,,=0 when X, and X, are both even. It will

be seen that the arguments of Coleman and Truesdell
are not applicable in this case, and that the trans-
formations to new forces and fluxes, J; and X7,
must be constructed in a more elaborate manner
to be discussed in the following two sections.

8 R. E. Nettleton, J. Chem. Phys. 33, 237 (1960); Phys. Fluids 3, 216 (1960);
Phys. Fluids 4, 74 (1961); Phys. Fluids 4, 1488 (1961).
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2. Formulation of Problem

In our construction of transformations which
violate Meixner’s theorem, we shall adopt con-
ventional notation [ref. 1, p. 216] and denote even
forces, Xi(t)=X,(—1), and their conjugate fluxes by
Roman subseripts and odd forces, X, (t)=— X.(—1),
and their corresponding fluxes by Greek subseripts.
The ¢-matrix, in this notation, can be expressed
in terms ol four submatrices in the form

@) (L)
L(Za0 (Lop)

where L, 1s the matrix element relating o/, to X, in
the phenomenological eq (2), and the other sub-
matrices are similarly defined. We shall assume
that ¥ has the symmetry suggested by Onsager’s
theorem, i.e.,

(Y4
~

L,-j: I‘j,-, Iliuii_l«xi (‘i)

I‘(xﬂt Ildav

and we shall consider what happens to this symmetry
under transformations to new fluxes J% and forces

X% which are such that
AS‘ZZ e][‘\yj+Z J“‘\'“:Z ']):4 yﬂlf +Z ']:t ‘\'i:
« 1 @
@)
1.e., which keep S'invariant under the transformation.
Coleman and Truesdell (see footnote 5) have
shown that a transformation of the type

X=X, Xi=X,
Ji=d 3 WX 4+ WeX.
i a

iEJu_{_Z lrﬂ'i‘\'./r%Z ”"’Pf‘\"i (N)

J B
satisfies eq (7) provided the matrix (W) is anti-
symmetric, i.e., Wyu=—W,, Wips=—Ws., and

Wia=—Ws. It is also clear that (8) will destroy
the symmetry given by eq (6), since the transformed
Y—matrix, ¢* has the property

141,-(]:]4,-]-+1'Ivfj¢llj-<i. (9)
Let us remark here, however, that ordinarily .J;

has a definite time-reversal symmetry opposite to
that of its conjugate force X,;. For example, this

i1s the case when the flux is a rate ol change, e.g.,
7a, of one of the variables on which the second

depends linearly—the case usually discussed in
proofs of Onsager’s theorem [compare ref. 1, pp.
6, 7].  But although we may have J,;(t) =—J.,(—1),
we can still assign no definite time-reversal symmetry
to J% given by eq (8) unless W;;=0 for all pairs of
Roman indices 7,7. Similar considerations show
that if J,(t)=J.(—t), then J} will be neither
symmetric nor antisymmetric unless Wes=0 for all
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Greek indices a,8. But if W ;;=0=W,s for all pairs
(1,7) and (a,B), then L%=L;=L%, L¥s=L
=L%, and L%,=L;+Wi.,=—L%, so that the
symmetry given by eq (6) is retained by the trans-
formed Y-matrix. Consequently, the transforma-
tion proposed by Coleman and Truesdell will not
destroy the Onsager symmetry ol the Y-matrix if
it does not destroy the time-reversal symmetry of
the fluxes .J;.

It is for this reason that, as we remarked in the
previous section, the Coleman-Truesdell demon-
stration is of no use in judging the applicability of
Statement I to cases where the fluxes as well as the
forces are all either odd or even with respect to
time-reversal. The type of transformation which
does prove useful for this purpose is one in which
the fluxes JF are sums of fluxes J; and the JF
depend only on the .J,, and similarly for the forces.
[f this can be done in such a way that eqs (1) and
(2) hold for the transformed fluxes and forces when
all quantities in these equations are starred, and
vet eq (3) does not hold, then we shall have shown
that Statement [ must be modified before Onsager’s
theorem can be applied to the thermodynamic
rate equations which have been derived (see foot-
note 8) to describe inertial effects in fluids. There
the fluxes and forces all have a definite time-reversal
symmetry, and temperature and concentration
gradients are coupled to forces of the type 0S/9y,,
so that existing proofs (see footnotes 1, 6) of On-
sager’s theorem do not hold automatically.

Our desire to discuss inertial effects is also the
reason we cannot invert the phenomenological equa-
tions and solve for the forces .X; in terms of the
fluxes ;. If this could be done, the result could
be substituted mnto eq (8) with W,,=0, and the
Coleman-Truesdell transformation would reduce to
an expression relating J5 to a linear sum of fluxes
J.. There would then be nothing further to demon-
strate by considering the transformation introduced
in the following section [eq (10)].

However, il we are going to describe extremely
short time intervals or high acoustic frequencies,
we cannot have a phenomenological equation of
the type which can be inverted, having the form

J,:Z‘. Lij‘\’j
&l

in which L;,=0=L.;, and the X, do not appear.
For if the motion is suddenly reversed, the right-
hand member of this equation would be unchanged,
while the flux o/; would reverse its sign. This
could be true only if JJ,=0 at very high frequencies.
Since it is the high-frequency components of the
Fourier expansion of the motion which determine
the behavior of the system over very short time
intervals, the conclusion J;=0 at high frequencies
implies that the phenomenological equations give no
short-time response to the imposition of thermody-
namic forces, and thus they do not have an essential
property of equations which include inertial effects.
Consequently, we never have all the matrix elements
L.;=0 when we describe the very short-time be-
havior of a physical system. This, in turn, means



that it is impossible in general to solve for .\'; in
terms ol the fluxes {/;} alone or for X, in terms of
the fluxes {Jg}. Inversion of the phenomenological
equations describing inertial effects expresses each
force as a sum of fluxes some of which will always
have the same time-reversal symmetry as the force
in question. Substitution of the result into eqs
(8) with W,,;50 leads to a /7 which depends linearly
on both .J; and J,. Thus for at least one class of
phenomenological equations which are of physical
mterest, i.e., those which include inertial effects,
there is an essential difference between the trans-
formations discussed in the present paper and those
of Coleman and Truesdell.

3. New Proof of Coleman-Truesdell Thecrem

In the present section we shall discuss a very
wide class of transformations which have the property
that they conserve time-reversal symmetry of all
fluxes and forces. It will be shown that transfor-
mations with this property may be so constructed
that, while they preserve the antisymmetric Onsager
relation, so that Lf,=—L%, nevertheless they
lead to Lks#L%.. In accordance with the dis-
cussion of the preceding section, we shall assume
L. #0 for some 7 and «, so that we have in mind the
phenomenological description of inertial effects,
and so that the transformations here proposed
which conserve time-reversal symmetry cannot be
reduced to the form assumed by Coleman and
Truesdell.  Furthermore, we shall take L,,=0 for
all Roman indices 7,7, since, as was pointed out in
the introduction, this is always a property of the
phenomenological equations which describe inertial
effects.  This gives the appearance of restricting
the proof to a very special class of phenomena.
However, the description of inertial effects is the
only existing instance in the scientific literature in
which a solid physical basis has been established for
the existence of antisymmetric reciprocal relations,
and so the assumption L;;=0 for all 7 and j appears
physically to be quite general under circumstances
such that some L;,0.

The particular transformations which we shall
discuss are the following:

XT:Z Aijj; Xi:Z
Jj 8

Jl‘ :Z Baﬁe]ﬁ.
B

Aus X

Jt :Z ijn],-,

J

(10)

This assures that X7%, J¥ are even functions of time
and X%, J% odd functions, provided this was true of
the corresponding unstarred quantities. We define
the matrices 9, B, and €, by the equations

(Az'j) 0 (ij) 0
A= B= , (11)
0 (Aap) 0 (Bag)
A=V 1(§+C) (12)

where the prime denotes the transposed matrix, and

& 1s the identity. This definition assumes that the
matrix B is nonsingular, which is always possible
since O is arbitrary.

On substituting eqs (10) into eq (7) and using the
phenomenological relations between fluxes and forces
to express S as a quadratic form depending orly on
the forces X; and X,, we readily find that eq (7 ) can
hold if, and only if,

G+ C=0. (13)

At the same time, eqs (10) imply that the transformed
Y-matrix is

PF=PLA'=BYL(I+C) ¥’ (14)

provided € is chosen so that 9 1s nonsingular.
From eq (14) we readily see that the symmetry
properties of ¢* are identical with those of ¥(J-+
¢) L, which we shall now examine.

¢ is uniquely decomposable into the sum of a
symmetric matrix ¢, and an antisymmetric matrix
¥4, Where

(L) 0 0
SS: {'u:

0 (14013)

(I‘m)

15
([‘zxi> 0 ( )
One can readily show that multiplication of ¥ by €
or §’ results in a matrix of the same type, with zeros
i all the entries designated by zeros in eq (15).
Similarly for ,.  Substitution of eq (15) into eq (13)
then gives

C'R—E=0 (16)
C’¢+2,6=-0. (17)
Equation (16) further implies
(I +6) '=—(J+E') L. (18)
From eq (14) we have:
(L%)
BL(IHE)'B'= (19)
(L%) 0

Equations (18) and (19) show that the transforma-
tion (10) preserves the antisymmetric Onsager
relation L%=—L%. We can, however, find a
solution of eqs (16) and (17) such that LJ57=1Lg,
i.e., the Onsager symmetry is destroyed by the
transformation. To this end, let us proceed to
introduce the assumption that

L;y=0 (all 7, 7). (20)
This, as was previously pointed out, is the form of
¢-matrix used in earlier papers on inertial effects
(see footnote 8). When eq (20) is substituted into
eq (17), we find the solution ((7;, andC,s are elements
of ©):

- aﬁ‘*zu a“erﬂ (21)

where (W,.5) 1s any antisymmetric matrix. From
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eq (16), we obtain

>3 CuLyp=3 LiyCis. (22)
2/ .
Equation (22) will, in general, possess a solution
provided the number of indices 8 does not exceed the
number of Roman indices.

The existence of solutions of eqs (21) and (22),
however, is, in general, imcompatible with the
symmetxy of the ma’rrlx

0
(L&)

If ¢ (3-+C) ! equals its transpose, (F+C’) 1, then

q (17) implies ¢, =0, which is not satisfied by eq
(21) for nonzero (Wag).

A simple choice for W,; may be made in the
event, which frequently occurs in practice, that
(L) and (Lag) are both square matrices of the same
even number n>2 of rows [compare reference 8],
so that (C;) and (C.) are also n-rowed square

%QS(SJrG)—Qs':I:éLM

matrices. In this case we can pick
Wes=e1(1—ba4s) sgn (B—a)
where 8.5 is a Kronecker delta. Then from eqs

(21) and (22),

det €=[det (C.p)*={ e det [(Lap)]}*

provided the matrix (L;) is nonsingular. When
(L;;)=0, the latter condition must hold in order
that the fluxes J;(1=1, ., m) be linearly inde-
pendent. There must also exist cases in which, at
the same time, det (L.g) #0, since this determinant
(see footnote 8) is the product of the relaxation
frequencies for the inertial effects. Thus there will
exist solutions of eqs (21) and (22) for which det

¢ has an arbitrary positive value. The same is
easily shown to hold for det (§+C).

The latter result in turn assures that we can find
a transformation such that the J¥.Jk are linearly
independent, and similarly the X7 X%  For the
matrix 8 is arbitrary, and thus can be chosen to be
nonsingular, and then from eq (12)

det A= (det B)~* det (F+C)

which can be made #0 by proper choice of ;.
Thus we have established that starting with a
linearly independent set of forces and fluxes, J;,
Jo, and X, X, with an Y-matrix which satisfies
eq (16) and has the properties found to hold (see
footnote 8) in a phenomenological theory that
includes inertial effects, 1.e., L;=0 and L;,,#0 for
some ¢ and «, we can transform to a new linearly-

independent  set, *Jx and  XF,XZE  having

definite time-reversal symmetry and such that

Les# Lgo.  This  shows that Meixner’s  theorem
87 Lig

does not hold in general even under these circum-
stances, although the Coleman-Truesdell proof does
not apply here, and so we must seek a modification
of Statement 1.

4. Reformulation of Meixner’'s Theorem

It is evident from existing proofs of Onsager’s
theorem [ref. 1, chap. 2 and 11] that il there exists
a set of symmetric state variables y,(i=1, o M),
and antisymmetric variables y,(e=1, . . ., n,) such
that X;=0S/0y,, J,=1; (all i), while X,=05/0y.,
Jo=1ao (all @), and there are no nonzero forces
except these, then Statement I is true. Further-
more, Statement | remains true if we transform
from one set of fluxes and forces of this type to
another set of the same type, and so Meixner’s
theorem is also true under this additional restriction.

The situations where Meixner’s theorem has been
found to fail arise where some or all of the forces .\,
are not entropy derivatives of the form 0S5/9y..
For example, it follows from eq (12) that whenever
the ¥-matrix has the right properties so that € does
not vanish identically, then we can have a transfor-
mation [including an additional set of equations not
shown in which the Greek subseripts «, 8 are replaced
by Roman subsecripts 4, j]:

Ti= =33 Bustls, 1a=1T5

and

X :bS/Oz/,,JrZ (B)5d0s, X,
where
Ya=27 Bagys, and 0S/0y%s =27 (0.8/0ys) (Qys/Oyk)
' “ZZ) (B™1)gaXs.

The transformed forces and fluxes of this type indeed
satisfy qs (7) and (10), and yet we have seen that
1(15# Jﬁa

At this point we must not lose sight of the fact
that in order to obtain a nonzero matrix (C,s), and
thus to find a counter-example to Meixner’s theorem
under the restriction to transformations of the form
of eq (10), we had to assume (/L;)=0, which has
thus far been shown to hold in general only for the
phenomenological equations which describe inertial
effects (see footnote 8). In the latter case, when
the system is a small subvolume immersed in an
infinite fluid [compare ref. 8], we have to deal with
two types of forces. First of all, there are the forces
of the type 0S/oy; and 0S/0y. which are functions
of the state variables 7, and . on which S depends
explicitly. Secondly, there are forces such as tem-
perature, velocity, and concentration gradients on
which § does not depend explicitly and which are
coupled in the phenomenological equations to forces
which are of the type 0S/0y; or 08/dy.. This is a
state of affairs which arises because over very short
times the system evolves independently of its
environment, and it is only after one or more
molecular collision times that the effect of gradients
ol temperature or velocity begins to be felt. Thus
the entropy does not depend explicitly on these
gradients, but instead on the variables y; and 7.
which are related to the gradients through the
phenomenological equations [compare ref. 8].
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Because of the existence of these two types of
forces, we can construct forces X7 which are not
of the type 0S/oy% by adding gradients of velocity
to the forces 0S/0y., as well as by combining the
latter among themselves. Thus, in general, we
:annot expect that L.s= Lg, 1f either X, or Xj
involves any velocity, concentration, or temperature
gradients which do not appear explicitly in §,
although L. 1s equal to Lz, whenever J,=1.,,
Js=1s, Noa=08/0y., and Xz=0S/0ys. In other
words, 1t is possible, by combining forces of the
first type (gradients) with forces of the second type
(0S/oy;, ete.) to construct transformations which
violate Meixner’s theorem.

In addition to the demonstration that )

(a) transformations can be found which keep S
mvariant, but which lead to an Y-matrix in which
Las# Lga, 1f, and only if, not all transformed fluxes
are time-derivatives 9;, 7. or not all transformed
fluxes are entropy derivatives 0S/0y;, 0S/0y., we
have shown that

_(b) if eqs (6) hold for a particular choice of .J;,

5 Ju, X,, then the antisymmetric relation L=

Lu, 18 conserved by any transformation of the
form of eq (10) which l\vo} s & invariant, without
further restriction on the JJ,,XX; and J,,X.

These two observations provide a new statement
of Meixner’s theorem.

Since the broad (and incorrect) statement of
Meixner’s theorem referred to in the introduction
has often been advanced as a foundation for state-
ment I of Onsager’s theorem, we might jump to the
conclusion that statements (a) and (b) of the
reformulated Meixner’s theorem are sufficient to
provide the basis for a revision of Statement I.
However, statement (b) does not provide for trans-
formations more general in form than eq (10).
Specifically, it omits transformations in which J¥
is a linear (()mbination of forces X, in addition to
fluxes ;. Such transformations preserve the time-
reversal symmetry of the transformed fluxes, al-
though they are more general than eq (10). In
order to cover all possible cases, it appears to be
necessary to require:

(1) ¢ must be the matrix of a positive definite
quadratic form.

(2) Only those transformations are considered for

which L#=0 (all 2,7).
These physical restrictions are related respectively
to the definition of irreversibility and to the inertial
properties of mechanical systems [compare ref. S8].
When they obtain, they imply trivially that L%, =
— L%, since otherwise S would contain cross terms
of the type XTXZ and no term in (X7?), so that for X7
sufficiently large, reversal of the signs of the forces
X could make S <0.

Actually, as we have already remarked at the
beginning of the third section, condition (2) that
L,j;() is probably superfluous, since this condition
is always satisfied by phenomenological equations
describing inertial effects, and, in the latter case, no
transformation can be found which violates it.

Furthermore, no physical examples except the inertial
rate equations have ever been demonstrated for
which L,,#0 forsome i and a. Nevertheless, we shall
provide for the possible existence of cases where Lo
#0# L;; in Statement 11. There we shall require
specifically that (L;)=0 whenever we extend
Onsager’s theorem to the coefficients which couple
gradient-type forces to forces of the type 9S/0y..

On the basis of these observations, we can restate
Onsager’s theorem in the lollowmg form, which
covers the case in which there are fluxes which are
not time-derivatives of state variables, or forces
which are not derivatives of S with respect to
associated state variables:

StateMeENT I1: Suppose the entropy S in a ther-
modynamic system 1s a function of a set of N
state variables® of which n, variables y,(i=1, . . .,
ny) are symmetric with respect to time-reversal
and n,=N—mn, state wvariables ,(a=1, )
are antisymmetric. With these variables we associ-
ate the forces X; X, and fluxes J,.J, given by '°

J E!/,,XIEOS/O?/L(’I———I, oo ooy 'lrl)
Ja=Yay Xoe=08/Yu(a=1, .. .,

Ng).

Suppose also that S, which denotes the irreversible
part of the time-rate of change of S, is given by

g

§=> JZA\:+Z J.X,

i=1

where m; >n; and my>n,, and the m; quantities J;
and m, quantities J, are all linearly independent,
and similarly for the X;, X,. This provides for the
case where there may be forces such as temperature,
velocity, or concentration gradients on which S does
not depend explicitly, these being denoted by sub-
seripts n;<t <my, ne<a<my It is assumed that
the X;(1<2<m;) are all symmetric with respect to
time-reversal and the X,(I1<a<m,) are all anti-
symmetric. Then if

m

J=3 LyX;+3] LuXa
j=1 a=1

Jo=23 LasX 425 LusXs
j=1 B=1
we may assert, in the absence of a magnetic field, that
Ly=L;(:<ny, j<m)
Lag=Lga(c <z, B<n5)
Liw=—La;(1<0;, a<ny

and for all 7, whenever L;;=0 for all 7,7).

9 It must be remembered here that these N variables are not necessarily the
entire set of state variables appearing in the phenomenological equations, since
we have pointed out that there may be others on which S does not depend ex-
plicitly. These additional \(umblvs which are usually gradients, characterize
the state of the surroundings of the xv:lvm and they affect the rates of change of
the variables ¥:,Va, even though the QllllO])\ and free energy depend only on
the latter.

19 In an open system #; and y« denote only those parts of the time-rates of change
which are due to irreversible processess within the system, and exclude the
contribution to changes in fluid composition or structure attributable to molec-
ular diffusion across the boundary.
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5. Discussion

The last result in Statement I1 expresses the fact,
which has already been mentioned, that when 7.,,=0
(all 7,7), we must have L;,=— L, in order to assure
that S contains no cross terms X; XX, ; for otherwise S
would not be a positive definite quadratic form in
the forces. The other two symmetric reciprocal rela-
tions, L,;=L;; and L.s= L3, involve only the forces
associated with the N state variables, and not the
remaining m,;+m,—N forces, since there exists no
proof of symmetric Onsager relations for the latter.
Indeed we can find transformations involving the
gradient-type forces which are such that Onsager
xymmetrv as expressed by Statement I is v101atod
It has also been shown that transformations contra-
dicting Statement I can be found even when the
eradients all vanish, and so we have been careful in
formulating Statement I to restrict those forces X,
and X for which we assert L.;=/Lg, to the ones
which can be written in the form 0S/0y. and 0S/0ys.
However, in the existing applications (see footnote 8)
of Onsager’s theorem to rate equations describing
imertial effects, those forces which did not depend on

gradients not appearing in S were always so con-
structod as to be of the form 0S5/dy,, 9S/0y.. There-
fore, it is only with respect to the presence of velocity,
concentration (in binary mixtures), and temperature
gradients that serious questions have arisen over
past usage of Statement I.

If a concentration or temperature gradient should
appear in the phenomenological equations multiplied
by a coeflicient of the type L;;, then statement I1
would tell us nothing about the symmetry of this
coeflicient with respect to interchange of its indices.
In previous applications (see footnote 8) it has
always been possible to write phenomenological
oquatlonq in such a form that this situation did not
arise, and so that L;=0 for all 7,7, thus providing
no circumstances not covered by statement I1. It
appears that, if we take account of inertial effects in
such processes as heat conduction and diffusion, then
we can always avoid the presence of terms concerning
which statement II says nothing, although no com-
pletely general demonstration of this apparent fact
exists.

(Paper 66B3-79)
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