Two Matrix Eigenvalue Inequalities

Seymour Haber

(February 15, 1962)

A lower bound is given for the quantity λ_1/λ_n , and an upper bound for the quantity $\lambda_1 - \lambda_n$, where λ_1 and λ_n are respectively the greatest and least characteristic roots of a matrix with positive roots. The bounds involve the first and second coefficients of the characteristic equation of the matrix.

Suppose $A = (a_{ij})$ is a nonsingular $n \times n$ matrix with characteristic roots $\lambda_1, \lambda_2, \ldots, \lambda_n$, so ordered that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The quantity $|\lambda_1|/|\lambda_n|$ provides a rough measure of the probable error in the computation of the inverse of A; it has been called by J. Todd $[1, 2, 3]^1$ the *P*-condition number of A and may be denoted P(A). Von Neumann and Goldstine [4] have shown that if A is symmetric and positive definite (in which case the λ_i are all positive), then the error in the inverse of A computed by a certain elimination method, can be bounded by a quantity proportional to P(A); if A is not symmetric positive definite, the error can be bounded by a quantity proportional to P(AA').

We shall restrict our consideration to matrices whose roots are all positive. For these, P. J. Davis, E. V. Haynsworth, and M. Marcus [5] obtained bounds on P involving det A and one other symmetric function of the roots of A. If the characteristic polynomial of A is $p(x)=x^n-C_1x^{n-1}+C_2x^{n-2}+$ $\ldots +(-1)^nC_n$ and we set $D_1=(n^nC_n)/C_1^n$, they showed that

$$\frac{1}{D_1^{\frac{1}{n-1}}} \leq P \leq \frac{1+\sqrt{1-D_1}}{1-\sqrt{1-D_1}}; \tag{1}$$

and they found similar inequalities involving C_n (=det A) and any other one of the C_i .

In many cases, however, C_n is not known and it is in general difficult to calculate. $C_1(=$ trace A) is easy to calculate, and C_2 can in general be calculated more easily than can C_n since it is the sum of [n(n-1)]/2 determinants of order two. In this paper we present (in Theorems 1 and 1') a lower bound for P in terms of C_1 and C_2 ; an attempt to obtain a corresponding upper bound fails, but leads to an inequality (Theorem 2) on $\lambda_1 - \lambda_n$, the "spread" of the roots of A. Finally we apply the method of proof of Theorem 1 to obtain an improvement of the lower bound in (1). If we set $C_{K} = \binom{n}{K} S_{K}(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n})$, then $S_{K}^{1/K}$ is the K'th symmetric mean of $\lambda_{1}, \ldots, \lambda_{n}$. The S_{K} satisfy [6] the inequalities

$$S_1 \ge S_2^{1/2} \ge S_3^{1/3} \ge \ldots \ge S_n^{1/n}.$$
 (2)

Setting $\mu_{\kappa} = \frac{\lambda_{\kappa}}{\lambda_{n}}$, we have $P = \mu_{1} \ge \mu_{2} \ge \mu_{3} \ge \dots$ $\ge \mu_{n} = 1$,

and

Let

$$\frac{S_1^2(\mu_1, \mu_2, \ldots, \mu_n)}{S_2(\mu_1, \mu_2, \ldots, \mu_n)} = \frac{S_1^2(\lambda_1, \ldots, \lambda_n)}{S_2(\lambda_1, \ldots, \lambda_n)}.$$

$$R(x_2, x_3, \ldots, x_{n-1}) = \frac{S_1^2(P, x_2, x_3, \ldots, x_{n-1}, 1)}{S_2(P, x_2, x_3, \ldots, x_{n-1}, 1)}$$

and

$$f_1(P) = \max_{1 \le x_i \le P} R(x_2, x_3, \ldots, x_{n-1})$$

and

$$f_2(P) = \min_{1 \le x_i \le P} R(x_2, \ldots, x_{n-1}).$$

Then f_1 and f_2 can be seen to be increasing in P, and

$$f_2(P) \leq \frac{S_1^2}{S_2} \leq f_1(P).$$
 (3)

Thus the right half of (3) should provide a lower bound for P, while the left half should provide an upper bound. We first calculate $f_2(P)$:

By direct calculation we can show that $(\partial^2 R)/\partial x_i^2$ is nonnegative at all points for each *i*. Therefore Rattains its maximum at a point where each x_i is either 1 or P. Letting $R_K(P)$ denote the value of Rwhen K-1 of $x_2, x_3, \ldots, x_{n-1}$ are equal to P and the remainder are equal to one, we find that R_K is equal to:

$$\frac{n-1}{n} \frac{(KP+n-K)^2}{(KP+n-K)^2-(KP^2+n-K)}.$$
 (4)

¹ Figures in brackets indicate the literature references at the end of this paper.

This rational function of K attains its maximum at $K = \frac{n}{P+1}$ and so we obtain

$$\frac{S_1^2}{S_2} \le \frac{n-1}{n} \frac{1}{1 - \frac{(P+1)^2}{4Pn}} \tag{5}$$

which is equivalent to:

THEOREM 1:

$$\frac{1\!+\!\sqrt{1\!-\!A}}{1\!-\!\sqrt{1\!-\!A}}\!\!\le\!\!P, where A\!=\!\frac{1}{n\!-\!\frac{S_2}{S_1^2}\,(n\!-\!1)}\cdot$$

The upper bound (5) can be sharpened, since in fact we need only consider integer values of K in (4). It can be shown that $R_1 = \max_{K} R_K$ if $P^2 \ge [(n-1)(n-2)]/2$. Thus if $P^2 \ge [(n-1)(n-2)]/2$, $S_1^2/S_2 \leq R_1(P)$; and so, setting $\rho = S_1^2/S_2$, we have:

$$[(\rho - 1) + \sqrt{\rho(\rho - 1)}] n + 1 \le P.$$
 (6)

Now if $P^2 < [(n-1)(n-2)]/2$, then $\rho < \max R_{\kappa}(P)$

$$= R_{\kappa}^{*}(P), \text{ say; and since each } R_{\kappa}(P) \text{ is a strictly} \\ \text{increasing function of } P, \ \rho < R_{\kappa}^{*}([(n-1)(n-2)]/2) \\ \le R_{1}([(n-1)(n-2)]/2) \text{ and so } \sqrt{\frac{(n-1)(n-2)}{2}} > R_{1}^{-1}(\rho).$$

However it can easily be seen that if $\rho \ge (\sqrt{2} + \frac{3}{2})/2$ $(\sqrt{2}+1)$, then $R_1^{-1}(\rho) \ge \sqrt{\frac{(n-1)(n-2)}{2}}$; and so we conclude that:

THEOREM 1': If $\rho \ge (\sqrt{2} + \frac{3}{2})/(\sqrt{2} + 1)$, then $[(\rho - 1)]$ $+\sqrt{\rho(\rho-1)}$ $n+1 \leq P$.

This lower bound is better than the previous one, whenever it applies.

The attempt to derive an upper bound for Pfrom the left half of (3) fails, because $f_2(P)$ approaches 1 uniformly in P as n increases, and so the inequality $f_2(P) \leq S_1^2 / S_2$ will in most cases hold for all values of P. We can, however, by considering the minimum of $S_1^2(\lambda_1, y_2, y_3, \ldots, y_{n-1}, \lambda_n) - S_2(\lambda_1, y_2, \ldots, y_{n-1}, \lambda_n)$ subject to the condition $\lambda_1 \ge y_2 \ge y_3 \ge \ldots \ge y_{n-1} \ge \lambda_n$, obtain an upper bound for the spread of the roots of A. Calling the above function of y_2, \ldots, y_n $y_{n-1}D$, we evaluate its minimum directly by observ $y_{n-1}D$, we evaluate its minimum interfery by observ-ing that $\partial D/\partial y_i = -2/[n(n-1)](S_1-y_i)$ and $\partial^2 D/\partial y_i \partial y_j = 2/n^2$ if i=j and $-2/[n^2(n-1)]$ if $i\neq j$; $i, j=2, 3, \ldots, n-1$. The $(n-2)\times(n-2)$ matrix (d_{ij}) , with $d_{ij} = \partial^2 D/\partial y_i \partial y_j$ is symmetric, and by Gerschgorin's theorem each of its eigenvalues lies in

the circle $|Z-2/n^2| \leq 2/n^2 \left(\frac{n-3}{n-1}\right)$ and so is positive.

Thus (d_{ij}) is positive definite, and, setting each $\partial D/\partial y_i$ equal to zero, we find that D is at a minimum when each y_i is equal to $(\lambda_1 + \lambda_n)/2$, and that the minimal value is $[(\lambda_1 - \lambda_n)^2]/[2n(n-1)]$. We may then conclude:

THEOREM 2: $\lambda_1 - \lambda_n \leq \sqrt{2n(n-1)(S_1^2 - S_2)}$.

By the method of Theorem 1, it is possible to sharpen the left side of inequality (1). Following the notation of [5] we write

$$D_1(x_1, x_2, \ldots, x_n) = \frac{[S_n(x_1, \ldots, x_n)]}{[S_1^n(x_1, \ldots, x_n)]} = \frac{x_1 \times x_2 \times \ldots \times x_n}{\left(\frac{x_1 + \ldots + x_n}{n}\right)^n},$$

and seek an upper bound for D_1 subject to the condition $P = x_1 \ge x_2 \ge \dots \ge x_n = 1$. As in the proof of Theorem 1, we show that $\partial^2 D_1 / \partial x_i^2 \ge 0$ for i=2, 3, \dots n-1 and finally obtain the relation

$$D_1 \leq \left[\frac{P-1}{\log P} e^{-1 + \frac{\log P}{P-1}}\right]^n \tag{7}$$

which leads to the inequality: **Theorem 3**:

$$\frac{e}{D_1^{\frac{1}{n}}} \leq \frac{P-1}{\log P} e^{\frac{\log P}{P-1}}$$

This inequality yields a lower bound for P which is always higher than that given by (1) (as may be seen by comparing the proof of Theorem 3 with the proof of (1) in [5]). However it is cumbersome. It can be simplified (and somewhat weakened) as follows: Since $xe^{1/x} = a$, $a \ge e$, implies that $x \ge a - e + 1$, and $e/D_1^{\frac{1}{n}} \ge e$ by (2), we may conclude that (P-1)/2 $\log P \ge e/D_1^{\frac{1}{n}} - e + 1$. Denoting this last quantity by A, we have $(P-1)/\log P \ge A$, which has as an immediate consequence:

THEOREM 3': $P \ge A \log A - 1$; $A = e/D_1^{\frac{1}{n}} - e + 1$. This lower bound is most often, though not always,

better than that given in (1).

References

- [1] J. Todd, The condition of a certain matrix, Proc. Camb. Phil. Soc. 46, pp. 116–118 (1949).
- [2] J. Todd, The condition of certain matrices I, Quart. J. Mech. Appl. Math. 2, pp. 469–472 (1949).
 [3] J. Todd, The condition of certain matrices II, Arch.
- Math. 5, pp. 249–257 (1954). [4] J. von Neumann and H. H. Goldstine, Numerical inverting
- of matrices of high order, Bull. Am. Math. Soc. 53, pp.
- 101-1099 (1947).
 [5] P. J. Davis, E. V. Haynsworth, and M. Marcus, Bound for the *P*-condition Number of Matrices with Positive Roots, J. Research NBS **65B** (Math. and Math. Phys.) No. 1, 13-14 (Jan.-Mar. 1961).
 [6] C. H. Haynsworth, L. E. Littlewood, and C. Palua, Inequalities.
- [6] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. (Theorem 52) (Camb. Univ. Press, Camb., Eng. 1959).

(Paper 66B2–73)