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Two Matrix Eigenvalue Inequalities

Seymour Haber

(February 15,

1962)

A lower bound is given for the quantity A;/X,, and an upper bound for the quantity \;—
N, where \; and \, are respectively the greatest and least characteristic roots of a matrix

with positive roots.
istic equation of the matrix.

Suppose A= (a,;) 1s a nonsingular 7 > n matrix with
characteristic roots N, Ao, . . ., Ay, so ordered that
A >[N 2> >[N|. The quantity [N|/[N,| pro-
vides a rough measure of the probable error in the
(‘Omputallon of the inverse of A; it has been called by
J.Todd [1, 2, 3] * the P-condition number of A and
may be denoted P(A). Von Neumann and Goldstine
[4] have shown that if A is symmetric and positive
definite (in which case the \; are all positive), then the
error in the inverse of A computed by a certain elimi-
nation method, can be bounded by a quantity pro-
portional to P(A); if A is not symmetric positive
definite, the error can be bounded by a quantity pro-
portional to P(AA’).

We shall restrict our consideration to matrices
whose roots are all positive. For these, P. J. Davis,
E. V. Haynsworth, and M. Marcus [5] obtained
bounds on P involving det A and one other sym-
metric function of the roots of A. If the character-
istic pol\nomml of Ais p(x)=a"—Ciz" 4 Oz *4-

+(—=1D"C, and we set ])1—()1"(',,)/("1’, they
showed that
1

**r<1<]+‘1 -D,

1
1—\1—D, M)

I)ln—l

and they found similar inequalities involving (),
(=det A) and any other one of the (.

In many cases, however, (, is not known and it is
in general difficult to calculate. Cj(=trace A) 1is
easy to calculate, and () can in general be calculated
more easily than can ), since it is the sum of
[n(n—1)]/2 determinants of order two. In this paper
we present (in Theorems 1 and 17) a lower bound for
P in terms of C) and (y; an attempt to obtain a cor-
responding upper bound l'ails but leads to an inequal-
ity (Theorem 2) on A\;—N\,, tll(' “spre: ul > of the roots
of A. Finally we apply the method of proof of The-
orem 1 to obtain an improvement of the lower bound
in (1).

1 Figures in brackets indicate the literature references at the end of this paper.
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The bounds involve the first and second coefficients of the character-

If we set (,\7(,\ AS‘ ()\[,
the K’th symmetric mean of A, .
satisfy [6] the inequalities

. Ay), then S¥F is
., \p. The Sk

2
y .

S1>28y2>28> ... 28" (2)
1 . >\K )
Setting =y We have P=p; > puo > us>
Z/.L,,ZI,
and
‘S (.U'Iv 2y « - vy ,un)ﬂ Sﬂ()‘l'i'ﬂ :;;77")
AS (P-l‘ M2, ) #n) ‘S ()‘lv coeey )\n)
L(‘L
Sz(l Lo, &3, « « oy Tpy—1,1)
IRy, @ = D0 2 0 o =g Y
1Ly, L' ) Ly, I) Sv (I "2,-1'3, . ~-~"n—13 l\’
and
f1(P)= max R (x5, 23, . . ., Zp—1)
1<z:<P
and

Sfo(P)= min R(x,, ...,

1<z:<P

n-—l)-
Then f; and f, can be seen to be increasing in P, and

J2 (1’)< </.(/’ (3)
Thus the right half of (3) should provide a lower
bound for P, while the left half should provide an
upper bound. We first calculate £,(P):
~ By direct calculation we can show that (0°R)/0x?
1s nonnegative at all points for each 7. Therefore R
attains its maximum at a point where each z; is
either 1 or . Letting Rx(P) denote the value of I?
when K—1 of x,, x5, . . ., z,_, are equal to P and the
remainder are equal to one, we find that Rx is equal
to:

n—1

n

(KP4n—K)* B
(KPtn—K)— (KP*fn—K)

4



This rational function of K attains its maximum at

n .
K— Pl and so we obtain
S;< - 179
S, n o (P+1)° (5)
4 Pn
which is equivalent to:
THEOREM 1:
1+41—4 1
1= e S
n S (n—1)

The upper bound (5) can be sharpened, since in

fact we meed only consider integer values of
Kin (4). Tt can be shown that R,= ma\ Ry if P?

>[(n—1)(n—2)]/2. Thus if PZZ[(n-l)(n——Z)]/ "
S1/S: <R, (P); and so, setting p=:S7/S,, we have:

[(p—1)++vp(p—1)In+1<P. (6)
Now if P>[(n—1)(n—2)]/2, then pﬁmqu R (P)

=R*(P), say; and since each Rg(P) is a strictly
increasing function of P, p<Rc*([(n—1)(n—2)]/2)

<R,([(n—1)(n—2)]/2) and so \/ (n— 1)2(”"2)>R;1(p).
However it can easily be seen that if p>(y243%)/
{2 1), then Iffl(p)z\/(nL‘)(n—Q)S and so we

conclude that: B 3

TaeorREM 17: [f p>H2+8)/V241), then [(p—1)
+vplp—D]nt1<P.

This lower bound is better than the previous one,
whenever it applies.

The attempt to derive an upper bound for P
from the left half of (3) fails, because f,(£) approaches
1 uniformly in P as n increases, and so the inequality
Ff(P) <S7/S, will in most cases hold for all values of

P. We can, however, by considering the minimum
01 SI()‘lr Yoy Y3y -« o yn—:l{ 7\71)'_82(}\1, y27 ooy Yn—,
\.) subject to the condition N\ >9>y;>. . . >y,

>\, obtain an upper bound for the spread of the
roots of A. Calling the above function of v, . . .,
Y1 D, we evaluate its minimum directly by observ-
ing that 0D/0y,=—2/[n(n—1)](S;—y;) and %D/

oy.0y,=2/n* if i=j and —2/[n’(n—1)] if 43y;
1, =2, 3, . . ., n—1. The (IL 2) X (n—2) matrix
(([w) with d;;=0*D/dy, 0y, 1s symmetric, and by

Gerscheorin’s theorem each of its eigenvalues lies in
the circle |[Z—2/n? <2/n? <%—E%> and so is positive.

Thus (d;;) is positive definite, and, setting each
oDy, equal to zero, we find that I is at a minimum
when each ¥; is equal to (\+X,)/2, and that the
minimal value is [(A—N\,)?/2n(n—1)]. We may
then conclude:

TaHEOREM 2: Sy).

4.

M=, Sv2n(n—1) (81—
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By the method of Theorem 1, it is possible to
sharpen the left side of inequality (1). Following
the notation of [5] we write

W
o Zy) =[St . ..

'7'7'71)]: -I:1><~/I.'2><. & ><J',, ,
!-Tn)} <u> -
n

and seek an upper bound for D, subject to the

condition P=xz,>wx,> . . . >x,=1. Asin the proof

of Theorem 1, we show that 9*D;/0x;>0 for =2, 3,
., n—1 and finally obtain the relation

10 (G, @B o -

= e -
DISI:{())gP e =l (‘)
which leads to the inequality:
TrEOREM 3:
R
P 1,
<1 P e

1
D

This inequality vields a lower bound for P which
is always higher than that given by (1) (as may be
seen by comparing the proof of Theorem 3 with the
proof of (1) in [5]). However it is cumbersome.
It can be simplified (and somewhat weakened) as
follows: Since xze'/*=a, a > ¢, implies that z>a—e+-1,

1
and ¢/D,">¢ by (2), we may conclude that (P—1)/

1 . . ;
log P>e/D\"—e+1. Denoting this last quantity by
A, we have (P—1)/log P> A, which has as an im-
mediate consequence:

1
TarorEM 3’: P> Alog A—1; A=e/D"—e—+1.
This lower bound is most often, though not always,
better than that given in (1).
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