Two Matrix Eigenvalue Inequalities

Seymour Haber

 $(February 15, 1962)$

A lower bound is given for the quantity λ_1/λ_n , and an upper bound for the quantity $\lambda_1 - \lambda_n$, where λ_1 and λ_n are respectively the greatest and least characteristic roots of a matrix with positive roots. The b istic equation of the matrix.

Suppose $A=(a_{ij})$ is a nonsingular $n \times n$ matrix with characteristic roots $\lambda_1, \lambda_2, \ldots, \lambda_n$, so ordered that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The quantity $|\lambda_1|/|\lambda_n|$ provides a rough measure of the probable error in the
computation of the inverse of A ; it has been called by J. Todd [1, 2, 3]¹ the *P*-condition number of A and may be denoted $P(A)$. Von Neumann and Goldstine [4] have shown that if A is symmetric and positive definite (in which case the λ_i are all positive), then the error in the inverse of A computed by a certain elimination method, can be bounded by a quantity proportional to $P(A)$; if A is not symmetric positive definite, the error can be bounded by a quantity proportional to $P(AA')$.

We shall restrict our consideration to matrices whose roots are all positive. For these, P. J. Davis, E. V. Haynsworth, and M. Marcus [5] obtained bounds on P involving det A and one other symmetric function of the roots of A. If the characteristic polynomial of A is $p(x)=x^{n}-C_{1}x^{n-1}+C_{2}x^{n-2}+$ \ldots +(-1)ⁿC_n and we set $D_1=(n^nC_n)/C_1^n$, they showed that

$$
\frac{1}{D_1^{\frac{1}{n-1}}} \le P \le \frac{1+\sqrt{1-D_1}}{1-\sqrt{1-D_1}};
$$
\n(1)

and they found similar inequalities involving C_n $(=\det A)$ and any other one of the C_i .

In many cases, however, C_n is not known and it is in general difficult to calculate. C_1 (=trace A) is easy to calculate, and C_2 can in general be calculated more easily than can C_n since it is the sum of $\left\lfloor n(n-1)\right\rfloor/2$ determinants of order two. In this paper we present (in Theorems 1 and 1') a lower bound for P in terms of C_1 and C_2 ; an attempt to obtain a corresponding upper bound fails, but leads to an inequality (Theorem 2) on $\lambda_1 - \lambda_n$, the "spread" of the roots of A. Finally we apply the method of proof of Theorem 1 to obtain an improvement of the lower bound in (1) .

If we set $C_K = (\kappa)S_K(\lambda_1, \lambda_2, \ldots, \lambda_n)$, then $S_K^{1/K}$ is
the K'th symmetric mean of $\lambda_1, \ldots, \lambda_n$. The S_K satisfy [6] the inequalities

$$
S_1 \ge S_2^{1/2} \ge S_3^{1/3} \ge \dots \ge S_n^{1/n}.
$$
 (2)

Setting $\mu_K = \frac{\lambda_K}{\lambda_n}$, we have $P = \mu_1 \ge \mu_2 \ge \mu_3 \ge \ldots$ $\geq \mu_n=1$,

and

Let

$$
\frac{S_1^2(\mu_1, \mu_2, \ldots, \mu_n)}{S_2(\mu_1, \mu_2, \ldots, \mu_n)} = \frac{S_1^2(\lambda_1, \ldots, \lambda_n)}{S_2(\lambda_1, \ldots, \lambda_n)}.
$$

$$
R(x_2, x_3, \ldots, x_{n-1}) = \frac{S_1^2(P, x_2, x_3, \ldots, x_{n-1}, 1)}{S_2(P, x_2, x_3, \ldots, x_{n-1}, 1)}
$$

and

$$
f_1(P) = \max_{1 \leq x_i \leq P} R(x_2, x_3, \ldots, x_{n-1})
$$

and

$$
f_2(P) = \min_{1 \leq x_i \leq P} R(x_2, \ldots, x_{n-1}).
$$

Then f_1 and f_2 can be seen to be increasing in P, and

$$
f_2(P) \le \frac{S_1^2}{S_2} \le f_1(P). \tag{3}
$$

Thus the right half of (3) should provide a lower bound for \tilde{P} , while the left half should provide an upper bound. We first calculate $f_2(P)$:

By direct calculation we can show that $(\partial^2 R)/\partial x_i^2$ is nonnegative at all points for each i . Therefore R attains its maximum at a point where each x_i is either 1 or P. Letting $R_K(P)$ denote the value of R when $K-1$ of $x_2, x_3, \ldots, x_{n-1}$ are equal to P and the remainder are equal to one, we find that R_K is equal to:

$$
\frac{n-1}{n} \frac{(KP+n-K)^2}{(KP+n-K)^2 - (KP^2+n-K)}.
$$
 (4)

¹ Figures in brackets indicate the literature references at the end of this paper.

This rational function of K attains its maximum at $K=\frac{n}{p+1}$ and so we obtain

$$
\frac{S_1^2}{S_2} \le \frac{n-1}{n} \frac{1}{1 - \frac{(P+1)^2}{4Pn}} \tag{5}
$$

which is equivalent to:

THEOREM 1:

$$
\frac{1+\sqrt{1-A}}{1-\sqrt{1-A}} \le P, where A = \frac{1}{n - \frac{S_2}{S_1^2} (n-1)}.
$$

The upper bound (5) can be sharpened, since in fact we need only consider integer values of K in (4). It can be shown that $R_1 = \max_{K} R_K$ if P^2
 $\geq [(n-1)(n-2)]/2$. Thus if $P^2 \geq [(n-1)(n-2)]/2$, $S_1^2/S_2 \le R_1(P)$; and so, setting $\rho = S_1^2/S_2$, we have:

$$
[(\rho - 1) + \sqrt{\rho(\rho - 1)}]n + 1 \le P.
$$
 (6)

Now if $P^2 \leq [(n-1)(n-2)]/2$, then $\rho \leq \max R_K(P)$

$$
=R_{\kappa}^{*}(P), \text{ say; and since each } R_{\kappa}(P) \text{ is a strictly}
$$

increasing function of P, $\rho \leq R_{\kappa}^{*}([n-1)(n-2)]/2$
 $\leq R_{\kappa}((n-1)(n-2))/2)$ and so $\sqrt{(n-1)(n-2)} \leq R_{\kappa}((n-1)(n-2))$

 $\leq R_1([n-1)(n-2)]/2$ and so $\sqrt{\frac{(n-1)(n-2)}{2}} > R_1^{-1}(\rho)$. However it can easily be seen that if $\rho \geq (\sqrt{2} + \frac{3}{2})/$

 $(\sqrt{2}+1)$, then $R_1^{-1}(\rho) \ge \sqrt{\frac{(n-1)(n-2)}{2}}$; and so we conclude that:

THEOREM 1': If $\rho \geq (\sqrt{2} + \frac{3}{2})/(\sqrt{2} + 1)$, then $[(\rho - 1)]$ $\pm \sqrt{\rho(\rho-1)}$ $n+1 \leq P$.

This lower bound is better than the previous one. whenever it applies.

The attempt to derive an upper bound for P from the left half of (3) fails, because $f_2(P)$ approaches 1 uniformly in P as n increases, and so the inequality $f_2(P) \leq S_1^2/S_2$ will in most cases hold for all values of
P. We can, however, by considering the minimum of $S_1^2(\lambda_1, y_2, y_3, \ldots, y_{n-1}, \lambda_n) - S_2(\lambda_1, y_2, \ldots, y_{n-1}, \lambda_n)$ subject to the condition $\lambda_1 \geq y_2 \geq y_3 \geq \ldots \geq y_{n-1} \geq \lambda_n$, obtain an upper bound for the spread of the roots of A. Calling the above function of y_2, \ldots , y_{n-1} D, we evaluate its minimum directly by observ y_{n-1} b, we evaluate its imminum directly by observed
ing that $\frac{\partial D}{\partial y_i} = -2/[n(n-1)] (S_1 - y_i)$ and $\frac{\partial^2 D}{\partial y_i \partial y_j} = 2/n^2$ if $i = j$ and $-2/[n^2(n-1)]$ if $i \neq j$;
 $i, j = 2, 3, ..., n-1$. The $(n-2) \times (n-2)$ matrix
 (d_{ij}) , with

the circle $|Z-2/n^2| \leq 2/n^2 \left(\frac{n-3}{n-1}\right)$ and so is positive.

Thus (d_{ij}) is positive definite, and, setting each $\partial D/\partial y_i$ equal to zero, we find that D is at a minimum when each y_i is equal to $(\lambda_1 + \lambda_n)/2$, and that the minimal value is $[(\lambda_1-\lambda_n)^2]/[2n(n-1)]$. We may then conclude:

THEOREM 2: $\lambda_1 - \lambda_n \leq \sqrt{2n(n-1)(S_1^2 - S_2)}$.

By the method of Theorem 1, it is possible to sharpen the left side of inequality (1) . Following the notation of [5] we write

$$
D_1(x_1,x_2,\ldots,x_n) = \frac{[S_n(x_1,\ldots,x_n)]}{[S_1^n(x_1,\ldots,x_n)]} = \frac{x_1 \times x_2 \times \ldots \times x_n}{\left(\frac{x_1+\ldots+x_n}{n}\right)^n},
$$

and seek an upper bound for D_1 subject to the
condition $P=x_1\geq x_2\geq \ldots \geq x_n=1$. As in the proof of Theorem 1, we show that $\overline{\partial^2 D_1/\partial x_i^2} \ge 0$ for $i=2, 3$, \ldots $n-1$ and finally obtain the relation

$$
D_1 \le \left[\frac{P-1}{\log P} e^{-1 + \frac{\log P}{P-1}}\right]^n \tag{7}
$$

which leads to the inequality: THEOREM 3:

$$
\frac{e}{D_n^{\frac{1}{n}}} \leq \frac{P-1}{\log P} e^{\frac{\log P}{P-1}}
$$

This inequality yields a lower bound for P which is always higher than that given by (1) (as may be seen by comparing the proof of Theorem 3 with the proof of (1) in [5]). However it is cumbersome.
It can be simplified (and somewhat weakened) as
follows: Since $xe^{1/x} = a$, $a \geq e$, implies that $x \geq a - e + 1$, and $e/D_1^{\frac{1}{n}} \geq e$ by (2), we may conclude that $(P-1)/$ $\log P \ge e/D_1^{\frac{1}{n}} - e + 1$. Denoting this last quantity by A, we have $(P-1)/log P \geq A$, which has as an immediate consequence:

THEOREM 3': $P \ge A \log A - 1$; $A = e/D_1^{\frac{1}{n}} - e + 1$.
This lower bound is most often, though not always,

better than that given in (1) .

References

- [1] J. Todd, The condition of a certain matrix, Proc. Camb. Phil. Soc. 46, pp. $116-118$ (1949).
-
- [2] J. Todd, The condition of certain matrices I, Quart. J.
Mech, Appl. Math. 2, pp. 469–472 (1949).
[3] J. Todd, The condition of certain matrices II, Arch.
Math. 5, pp. 249–257 (1954).
[4] J. von Neumann and H. H. Golds
- of matrices of high order, Bull. Am. Math. Soc. 53, pp.
- $1021-1099$ (1947).
 15 P. J. Davis, E. V. Haynsworth, and M. Marcus, Bound

for the *P*-condition Number of Matrices with Positive

Roots, J. Research NBS **65B** (Math. and Math. Phys.)

No. 1, 13-14 (Jan.-Mar. 1961).
- [6] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. (Theorem 52) (Camb. Univ. Press, Camb., Eng. 1959).

(Paper $66B2-73$)