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The purpose of the paper is to generalize Jensen’s theorem on the zeros of the derivative

of a real polynomial.

Results are first established for infrapolynomials and therefrom

derived for expressions of the form G’(z) and aG(z)+bz2G'(2), where G(z) is a (complex)
polynomial and a,b are (complex) constants.
to further show how investigation of infrapolynomials may be of help to the classical study
of the geometrical relation between the zeros of a polynomial and those of its derivative

(or related polynomials).

1. Let S be a subset of the (open) complex plane.

An infrapolynomial ' on S is  a  polynomial
A()=z"+ta,_12"! +ag(n>1) having the
property: there does not exist a polynomial
B(z)=z"+b, 2"+ +bo(£A(2)) such that
|B(2)|<|A(2)| whenever zeS and A(z) #0, (1)
B(z)=0 whenever zeS and A(z)=0. (2)

For example [4], if S'is infinite, closed and bounded,
then for n=1, 2, . the Tchebycheff polynomial®
of degree n for Sis an infrapolynomial on S.

2. Another example of an infrapolynomial is the fol-
lowing [10, sec. 1, and 2, sec. 10, p. 100. Cf. also 4,

sec. 5. Let G(2) be a nonconstant polynomaial, ¢,
Coy o v oy Cmits distinet zeros (say G(2)=alll (z— ),
and assume that m>2.  Then
A= (Smp) T80 o)
G

is an infrapolynomial on { $1,¢o v o oy $nlb

3. Various results have been obtained concerning
thelocation of the zeros of infrapolynomials. The first
of these was given (implicitly) by L. Fejér [1] and
others were plovod by M. Fekete and J. von Neu-
mann [4], J. L. Walsh [27], J. L. Walsh and T. S.
Motzkin [31, 11, 12,13, 14], M. Fekete [2], M. Marden
[9], and O. Shisha [16, 17].  One of the most typical
theorems in_this direction is the following (a special
case of [5], Theorem X and the end of sec. 10, p. 66.
Cf. also [4], Theorem 1). Let & and n be distinet zeros
of an infrapolynomial on a closed and bounded set S.
Let L be the perpendicular bisector of the segment

1 Originally called ““extremal polynomial.” This concept was introduced
by M. Fekete and J. von Neumann [4]. The term “infrapolynomial” is due to
Professors S. Motzkin and J. L. Walsh [12]. Figures in brackets indicate the
lxlu iture references at the end of this paper.

2 This is the unique polynomial 7'(z) of the [mm *) z2ntcp1zm14 . . . +eo
sluh that the max [|7'(2)[, z on S]<max [|P(z)|, z on S] for every pol\numml
P(z) of the form (*).
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An implicit aim the paper tries to serve is

(¢m). Forev ery z l(/! O, denote the closed disk having
the segment }mmm/ z to ats mirror image in L as a
diameter (C,= {z} if zel), and let (. be the closure of
the complement of (C5. Then there exists a point p of S
such that & and n belong to C,. There exists also a
point q of S such that & and n belong to 7.

4. In Theorem 1 we generalize the last result by
substituting in the latter a circle for the line L.

Tuworem 1: Let & and n be distinet zeros of A(z)
an infrapolynomial on a closed and bounded set b
Let K be a cirele whose center ¢ does not belong to S,
such that &€ and n are symmetric (i.c., inverse) to each
other with respect to K. For every 2 (#{) let (', denote
the closed disk having the segment joining z to its
inverse with respect to K as a diameter (C,={z} if
zeK), and let O be the closure of the complement of
(.. Then there exists a point p of S such that & and »
belong to C',.  There exists also a point q of S such
that & and y belong to ('

5. To prove this theorem,

2

5. we establish first the

following

LemMma: Let K:|z—¢|=r be a circle and z,, &, &,
n, M2 points such that zo# & ,0<|&—¢|<rm s symmetric
to & with respect to K(i=1, 2) and & lies on the (open)
segment (&1,m). Then (uxing notations of Theorem 1):

) If &€, then
fzo -.l |20 7]2\<[~n 51‘ ‘30*77!_‘- <3>
(b) If &1eC then
|20—&2| |20—m2| >|20—&1| |20—m

Proor orrae Lemva: Weintroduce a polar coordi-
nate system in which the pole is ¢ and the fixed ray
is the one emanating from ¢ and passing through
zp.  Let (pi,¢), (p2,¢) be, respectively, polar coordi-
nates of & and & (0<p;<po<r), and set a=|z,—¢|.
For every positive z let

F(z)=(2*+a*—2az cos o) (( Y +a*—2a ’T oS (,0‘)‘<4:)



Then (20— £&i| |20—mn4] )2 =F(p;) 1=1, 2). Tlmsmmdel
to prove the Lemma it suffices to show that if
p1<t<ps, then F’(t)<0 in case Ege(_o, and 77 (t) >0
in case e’

Let t be an arbitrary point of the open interval
(p1,02) and denote by 7 the point with polar coordi-
nates (f,0). Set

= ot~ ©

where z; is the inverse of z, with respect to K. If
£e(, then 7 is an interior point of (";0 and 1) >0.
Similarly, if £e(C, then 7 is an interior point of (',
and therefore 1)<0.

We have

D:zf+B <a+§>]2—t (ati) cos e
—[% <a—§>]2:12+r?~§i (@®+1%) cos ¢. (6)

From (4), a straightforward computation vields

F' (t) =2at =3 (t*—r*) — 2at ~2(t*—7r?) (a®*+7?) cos ¢,

and in view of (6),
F'(t)=2a%t3(t*--r*)D.

Thus, 1 &e(”
F'(t)>0.

6. Proor or TuEOREM 1: If one of the two points
£,m belongs to some (., so does the other. Let & be
that one of £7 lying within K, and let 5, be the other
one. So in order to prove the first conclusion of
Fhoomm 1, it suffices to show that &eC, where

U(’ Suppose £4C. Since (' is closed, we can

ﬁnd a point & within K and on the open segment
(&,m) such that &éC. Let 7, be the inverse of
& with respect to K. Consider the polynomial

B(2) =A@ [(e—£) (z—m)] " (e— &) (2—12).

By conclusion (a) of the Lemma, for every zeS,
(3) holds. Thus (1) and (2) hold, contradicting
our hypothesis that A(z) is an infrapolynomial on
S.  Similarly one derives the second conclusion of
Theorem 1 from (b) of the Lemma.

. The notion of an infrapolynomial was general-
ized by J. L. Walsh and M. Zedek [34] to include
more general polynomials, and further work in
that direction was done by J. L. Walsh [27, 28, ‘)()]
M. Fekete and J. L. Walsh [5, 6], M. 70(1(‘1\[
37, 38], O. Shisha and J. L. Walsh [23], and 0.
Shisha [16, 17, 20, 21, 22].  (Other papers related to
the subject are [3, 10, 11, 12, 15, 18, 19, 31, 32, 33,
35]). A special case studied in much detail by
J. L. Walsh [27] is obtained by adding to the proper-
ties of B(z) in sec. 1 the equality by=ay.

then F’(t)<0, and if &e(,, then

=N
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Repeating here a particular instance of a general
definition, we mention the following convention.
Let n(>2) be an integer and S a set in the (open)
complex plane. An #n-th infrapolynomial on S
with respect to (0n) is a polynomial A(z)=
2@z’ having the property: there does not exist
a polynomial B(z)=37_.b,2" (#A(z) satisfying (1),
(2) and the equalities by=ay, b,=a,.

8. Corresponding to sec. 2, we have the following
result which is a special case of a more general
theorem [23, Theorem 3].  Let G(z2) be a polynomial
(G(0)#0), ¢1, oy« + oy Cn (m>2) its distinet zeros, and

let a and b be arbitrary complex numbers. Then
A~ = V ~ G/(z) m ~_ i
A@=[att: GO |m -0 @

ws an m-th anfrapolynomial on {¢y, G0 o o o Tt
with respect to (0,m).

9. Tarorem 2: Theorem 1 remains true if “infra-
polynomial” is replaced by “n-th(n>2) infrapoly-
nomial (#£0) with respect to (0n),” provided that
the center ¢ of K is the origin.

Indeed, we can use again the proof of Theorem 1
since B(z) defined there will have the same co-
efficient of 2" as A(z) has, and (since |&m =square
of the radius of K=|&n|, which implies that &mn,=
&m) the constant terms of B(z) and A(z) will be
equal.

10. As an application of theorems 1 and 2
the following

Tarorem 3: 1. Let & and 5 be distinct zeros of
G’ (z) where G(z) is a monconstant polynomial. Let
& and n be symmetric with respect to a circle K whose
center is not a zero of G(z). Then there exists a zero
p of G(z) such that (using a notation of Theorem 1) &
and 1 belong to C,.  There exists also a zero q of G (=)
such that & and n belong to C,.  11. Let & and n be
distinet zeros of a@(z2)+bzG'(z2) (£0) where G(z) is a
polynomial (G (0)#0) and @ and b are complex numbers.
Let & and n be symmetric with respect to a circle K.
Then the conclusions of part I hold, provided that the
center of K is the origin.

Proor: We set G (z)=alll", (z—,)? where Ctasy)
whenever 7k and where py, p,, .. ., p, are positive.
To prove part I we define A(z) as in sec. 2 and ob-
serve that m>2 since G’(z) vanishes at the distinet
points & and 7. We may assume that G(£)G(n)#0,
for otherwise we can take p=¢=¢& or p=¢=n». Thus
£ and g are zeros of A(z), which by sec. 2 1s an infra-
polynomial on the set of zeros of G/(z). The desired
conclusions follow now from Theorem 1. To prove
part 1T, we assume that m>2, as otherwise ¢ or 7 is
¢ and one can take p=¢=¢,. Define now A(z) by
(7). As belore, we may also assume that G(£)G@(n) 0.
Then ¢ (111(1 7 are zeros of A(z), which by sec. 8 is an
m-th infrapolynomial on H('I,;z, .. Eml with re-
spect to (0,m). The desired conclusions follow from
T11001 em 2.

For every :, let T, and T, be, respectively, (',
m1d (* of sec. 3, with L taken as the real axis.
Theorem 3, T gonomlizes the following well known
theorem, enunciated without prool by J. .. W. V.

we have



Jensen [7] and proved by J. I.. Walsh [24]. Let £ be a
nonreal zero of A’(z), where A(z) is a nonconstant
polynomial whose coefficients are real.  Then there
exists a zero p of A(z2) such that &' ,. Tt was proved
also by J. L. Walsh that there exists a zero ¢ of A(z)
such that gel',.

12. The last results readily imply the following
limiting case of Theorem 3, 1. Let & and 5 be distinet
zeros of G'(2), where G(2) is a nonconstant polynomial.
Let L be the perpendicular bisector of the seqgment (£7).
Then (using the notation of sec. 3) there exists a zero p of
G (z) such that & and n belong to C,.  There exists also
a zero q of G(z) such that & and n belong to C].  Indeed,
we may assume (using a simple transformation) that
1=E Set G(z)=all_,(z—2,), A(2)=1IL., (:—2,) (z
—2,). Then A’ (&)=, (z—2));- 071 (§—Z,)+

v (E—2z,) (M-, (z2—2,))'2_n=0. The desired conclu-
sions follow now?® from sec. 11. These same conclu-
sions are implied also by the results quoted in
secs. 2, 3.

13. There are many complements and generaliza-
tions of Jensen’s theorem due to J. I.. Walsh for which
th? reader is referred to the literature [24, 25, 26, 27,
30].
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