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Intermediary Equatorial Orbits of an Artificial
Satellite '

John P. Vinti
(October 27, 1961)

A previous paper derived the solution for the drag-free motion of an artificial satellite
in the gravitational field of an oblate planet. The corresponding potential, expressed in
oblate spheroidal coordinates, leads to separability and represents the even zonal harmonics
exactly through the second, for any oblate planet, and approximately through the fourth,
in the case of the earth.

The previous paper contained a restriction on the orbital inclination 7, viz, I.<I<180°
—1I., where I, might be as large as 1°54’ for an orbit sufficiently close to the earth. The
present paper removes this restriction and shows that many of the formulae for the periodic
terms may be simplified, when the orbit is equatorial or almost so. The results agree with
those obtained by a direct two-dimensional solution, when the orbit is purely equatorial.

1. Introduction

This paper is a sequel to a recent paper,” concerning an accurate intermediary orbit for
satellite astronomy, and will accordingly follow the notation thereof. It there followed that if

A=b,/b,<1, ey

all the p-integrals are expressible in terms of rapidly converging series involving products of
Legendre polynomials with arguments X and (1—¢*)~%  Condition (1) is equivalent to a
restriction on the orbital inclination 7, viz,
1. <I<180°—1, 2)
where, to the first order in £,
tan? I,=k= (r,/p)’J. (3)
For the earth /,=0.00108, so that for orbits so close that p=r,,
=15 @)
I imposed the condition N\<_1 in order that

(1+Ap=14Bp=2)—t=(1—2\h+-h?)—} 6))

should be a generating function for the Legendre polynomials 72,(N). It now appears that
such a restriction is unnecessary. Thus

(1— 2N 4B = =3 1P, (V) (6)

n=0

even when A= 1, provided only that ®
h<A—(N—1)% )

We need show only that (7) is always satisfied, in order that all the results of (A) hold for all
orbital inclinations. The only changes will be a few simplifications, especially for the cases
I=0° or 180° of purely equatorial orbits.

1 This work was supported by the U.S. Air Force, through the Office of Scientific Research of the Air Research and Development Command.

2 J. P. Vinti, J. Research NBS, 65B (Math. and Math. Phys.), 169-201 (1961), hereafter referred to as (A). Any reference in the present paper
to an equation with a decimal number, such as (5.30), denotes an equation in (A).

3 E. W. Hobson, The Theory of Spherical and Ellipsoidal ITarmonics, p. 15, Cambridge University Press, Cambridge 1931.
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2. The p-Integrals

To show that (7) is always satisfied when A= 1, note that
2=Mh. (8)

By (4.12), (4.13), and (5.6) it follows that b, and b, are both real and non-negative for ¢*< ap,
a relation that always holds for satellite orbits. Thus (7) is satisfied if and only if

bl/p<g()‘)7 (9)
where
g =N —A(—1)%, (10)
We shall next show that
12<gM =1 (Az1). (11)

To show that g(N\) =<1, note that for N=1, we have 1>1—\"*=0, so that (1—\"?)i=1
—N2, 1—(1 =N\ 2 and finally X—A(A\*—1)¥<1. Thus g(\) £1.
To show that g(\) >1/2, note that for A\>1

01— (1—2IN3)2 (12)
so that
(1—N"231— N2 (13)
or
1— (1—\"2)>1n2, (14)
Then
g =R—AN—1)1>1/2, (15)

as was to be shown.

From (9) and (11) it follows that when A=1 the condition b;/p<_1 is necessary for the
validity of (7) and that the condition b,/p<1/2 is sufficient for its validity.

To show that b,/p<1/2 for all bound * orbits, note that p=p,, so that

bl/Pébl/m- (16)

From the relation ¢*=kp? and the relation p,=a(1-¢),e<1, for a bound orbit, we then find
from (3.25), (4.12), and (5.6) that

b k(+e)(1—n5)[1—knj(1—e?)]

o [1—#(—e)][1—kri(1— &) |+ 4kt {u7)
Here the numerator <k(1-+¢) and the denominator = (1—£k)? so that
HS S R L
a function monotonic in k& for 0< k<1 and < 1/2 whenever k<3—22(=0.172).
For the earth £<0.00108, so that
by/p1<0.00216<1/2. (19)
From (16) and (19) it follows that for the earth
bi/p<1/2. (20)

4 Past participle of the verb “to bind,” taken from the terminology of atomic theory.
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This is the condition sufficient for the validity of (7) and thus of the expansion (6), for all
A=

All the developments of (A) then hold for the p-integrals, in particular (5.30) through
(5.33) for the integral R, (5.35) through (5.40) for R,, and (5.60) through (5.65) for 12;, where
the 12,’s are again given by (5.50) and (5.53).

To show the rapid convergence of the various series that there occur, we note first that since

P, =r! ﬁ " (2—1)"2 cos 2]°dx (21

and since N=0,/b,=1, we have

(befp) P (N) =71 f C[bip 4 p (BB cos ade, 22)
0
Then
l(l’ﬁ)nP A I<|:ﬁ b, 1—\ 2 I/Z:In<<2_b‘>n- 23
() P0[=p) ¢ "EG o

From (5.14) and (5.34) the series S; and S, that occur in the expressions for the p-integrals
Ry and R, are

S"Ei@f)n P, f "(tecosz)mdr,  (j=1,2) (24)
n=n; 0
where n,—2 and n,—=0. Thus
CAELD> (2b> (14-e)*"s (25)
Ry "’ 2b, ]"
<p n< ) =1 2
=033 (2" aror=e (B) S[2r ate (26)
<b ) (j=1,2). @)
1—“—‘ (1+¢)

But p=a(1—e?) =p,(1+¢), so that by (18)

byp ' Sk(1—Fk)2 (28)
and

2b,(1+e)p™' <2k(1+€)(1—k) > =4k(1—k) 2, (29)

where 4%(1—%)72<0.0043 for the earth. It follows that the series for 2, and R, and thus the
series for the secular coefficients A; and A, converge absolutely and more rapidly than a
geometric series of common ratio 0.0043.

By (5.49), (5.50), and (5.53) the series S; that occurs in the expression for the p-integral
Ry is

Se= LA (30)

‘seaz DMJ (14 cos 2)"+2 dz (1)

Ei fv(l +e cos x)* 13 dx (32)
=0 0
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Doy 33 (1)l (b Py ) (33)

n +
Dzn+15¥ (=1)"(e/p)* = (bo/p) " Pyja(N). (34)
=
From (33) and (23) and the relation ¢*=Fkp?, it follows that

D Sk" 35 @bifey sk S (2bifc)*

kn
=1 2b,jo) &2
and from (34) and (23) that
Danii| SK(@0y9) 35 (b SE"(2b1/p) 3 2bife)”
< k*(2b,/p)
=107 o
Thus, by (31) and (35)
(1+e)» &
|Se’_m E (k(1+e)?]"
(1+e)*
= [I=@hje) I~k o] &
and by (32) and (36) that
(1+€>L’2b/]7) 21n
S, I_W HZ;, [k(1+e)?]
(1+€)*(2b./p) :
== @b/e)1l—k(1 Loy .
Then, by (30), (37), and (38), we have
(1+6) v[1+4(1+e) (2b:/p)].
1831 = = 2p /e =k (1 1-0)7 (39)
But p=p,(1+4¢), so that by (18)
2b,/p<2k(1—k)=* (40)
and
2b,/c= (2b,/p)k=2 < 22 (1—k) 2. (41)
Thus

4/c(l k)~ — (1+6)]'

The series for S; thus converges absolutely and more rapidly than the power series in k of the
function on the right side of (42), where £<0.0011 for the earth. On replacing » by 7, we can
then say the same thing about the secular coefficient As;.

3. Simplification of the p-Coefficients When A= 1

From A=b,/b, it follows that
by=ba"'<b,  (A=1). (43)

Since b;=0(k), it then follows that b, is also of order £ when X=1. This fact enables us to sim-
plify the coefficients A4;, and A,,, which are needed only to O(k?), and the coefficients A;,,
which are needed only to O(k).



Thus (5.32) and (5.33) lead to

AIIZO(lcs) 4412:0(]{4), (44‘)
(5.39) and (5.40) lead to
Ayn=0(0) Au=0(Y), (45)
and (5.37) and (5.38) lead to
Ap=1—eHp~le[bp~ 4+ (B—N"2)k? cost I] (46)
2
Agy=(1—e?)tp! fg (3—A"2k2 cos* . (47)
Here we have used
by p~'=k cos® I+0(k? (48)

in the terms involving b? p~*
Similarly, for the coefficients Aj,, which are needed only to O(k), we obtain from (5.62)
through (5.65)

Ap=10—ed)ip~2e |:2+<3+§ 62> k cos? [— (4—|~3e2)lc] (49)

A= 1—()2)*])‘3”[ + k cos? [— ( 3) k:l (50)
k .

Azp=>0—edip- |:~ cos’ ]——{:I (51)

Ayy=—(1—e?)ip~3etk/32. (52)

For A= 1 we need also to rewrite (5.31), (5.36), (5.50), and (5.53) for the secular coefficients
Ay, Ay, Dy, and D,,yq, which all contain terms of the form (by/p)™P,.(N). As sin [ approaches
zero, b, also approaches zero and X becomes infinite, so that such a term takes the indeterminate
form zero times infinity. To remove this indeterminacy, note that

be_bybi_biy, r
p bip p= 7 i)
so that
(&) Pay=(2) 3" Pah) (54)
]) m 1) m
(0" p -1 o
~(3)" Bat. (55)

Here R,,(z) is a function that has already appeared in (A), viz,
R, (x)=a"P,(x™Y (56)

a polynomial of degree [m/2] in z°
To determine (by/p)™P,,(N) for sin /=0, first write

2l (—1)9(2m—2j)! N2

PnN= Eo 27 j1(m— ) (m—25)! 57)
so that
Rm()‘—l)zk_m Pmo‘):l (I/LZO, 1)
_ (@2m)! | B2 (—1)/(2m—25)]\"¥ -
_2m(,’n!)2 = 2mj!(,m_j)!(m_2j>! (m_z: 37 47 C < ) (58}
Thus
!
R, (0) =" (m=0,1,2,3, . ..) (59)

o (m )2’

620565—62——2 9



so that by (55) and (59)

(b/p)" P () = %Zz'; bm> , (sin I=0) (60)

where by, is the value of b; for ny=sin 7=0.
From (5.31), (5.36), (55), and (60) it then follows that

A== 35 Gip) " RO R (1=¢) (1) (61)
=(-ep 3 2 () RuaV =) Gsin I=0) (62)
A= (1=e)p 3 (BB OTIRGT=) (2D (63)
=(—eypt 3 BL (Y R (T=)  Gin I=0) (64)

Note that 4,=0(k? and A;=0(k°).
Then, from (5.61)

As=Q0—et)lp3 2 D Rm+2( ) (65)
where, by (5.50), (5.53), (55), (60), and the relation ¢*=kp? we find

D, Jf__‘,( 1"~ (e/p)*" =2 (bo/p)*P2s(N)

=j=i0 (—=1)"= k"7 (by/p) R 2;(N7Y) (\=1) (66)
< P C LN — _
‘—J;; (=1 (@) Z) (sin 7=0) (67)

D2n+1=j=z”g (—1)"1(e/p) 2 (bafp) "+ Py 11(N)

:]__Zno (=)™ k"= 3(by /p) " Ry (N7Y) (=1 (68)
s n= g _@_JiQL o T
_jzzo (oL CTESHIIE 2])) (sin I=0) (69)

4. Simplification of Other Coefficients When A= 1

To simplify the n-coefficients when A=1, we must first note that from page (176) of (A)
we have

by~kp cos® I by ~kip sin I, (70)
so that
A=b/by=~k* cos® [ esc ] (71)
or
ne=sin I ~kiI\~! cos? 1. 72)
Thus
n0=0(k%)  (\z1). (73)
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Also, since 75 =0(k?), by (3.42), it follows that
q=no/n.=0(k) \z=1). (74)

There also arises an indeterminacy in the g-coefficients, from the quantity (a2—a2) %,
which takes the form infinity times zero as ny=sin / approaches zero. To remove thisin-
determinacy, use (4.15a), viz,

- _%)1/2 . .
a34a2(1 e cos I, (75)
to find
( 2 oN-—-1/2 __ ~1<1+ c 2I>_1/2 (76
ai—al) "y =q; T cos 76)
Then, from (8.27) and (7.23)
Y=2mwy[t +B1+Boc; (@ +b,+ A1) A7 (77)
2 1/2
2wy2:a2<1.+61‘7<-0521> A,B; (a+by+ A +cng A, BB 1. (78)
0 170

From (8.33)

Cc
Ao Po

/ 1/2
Yo=(—2a;) ~a, <1 + cos’ I) A, B, (79)
From (8.37)

e
M,=(a+b) ' [— (A +c*n2 A, B By 1Y) 1‘(,—}—% (—2a,)? a._,"1<1+a(p ('05”)‘5' nasin (2¢:+2¢)],  (80)
- 0 0

of order 2. Then, by (8.39)
Ei\=[1—¢’ cos (M+Ey)] ' M, (81)

since M?=0(k*). Then £Z; and », are both of order k2. Also, by (8.40),

. ;
Y= (—2a) ey (1 45 cos? 1) Br'[Aw -+ Ay sin (Moo5)
(10[)0
445, sin (2‘][s+21'0)]+%- B;'sin (2¢,12¢0). <S2)

By (8.45), M, and thus £, and », are of order £* and, by (8.48), ¢, is also of order £*. Thus
all the second-order periodic terms of (A) become of the third order and thus negligible, when
A=1.

By (8.50) the right ascension ¢ becomes

c2
o Po

o=Bstazay ‘(1+ cos?l)_7 [(1=n}) " (1—nz%) " x+ Byl

/ 4
—cay (—2a) 7} (A;;H—Z A, sin lw>~ (83)

n=1

Here we have dropped the periodic term (3/32) 529, * sin 2¢ of (8.50), since it is of order £° for
A=1.
5. Summary for A=1

For an almost equatorial orbit, corresponding to N=1, the right ascension ¢ is given by
(83). The spheroidal coordinates p and n are given by

p=a(l—e cos E)=(1+4-e¢ cos v)"'p
n=m, SIN Y.
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Here the expressions
E=M,+E\+E, v=M,+vo+2, y=v:+d+
are sufficiently accurate to give the secular terms exactly and the periodic terms correctly

through order &% provided that M, is calculated by (8.24), ¢, by (77), I, by (8.31), E; by (80)
and (81), 2, and 2, by the anomaly relations (8.1), ¥, by (79), and ¢, by (82).

6. The Case of a Purely Equatorial Orbit, 7=0° or 180°

For I=0° or 180° we have 7,=0, cos’ I=1, x=¢ by (6.51), v,=0 by (6.66),

By=1—(1—n;%)~" (84)
by (6.65), and |ay| =, so that
o =sgn a. (85)
Then, by (83),
2 =4 4
=05+ (sgn az) <1 +%Po> : v—c?az(—20) A37‘+§A3" sin m-)- (86)
Also, by (8.24) with 5,=0,
M= (—20)}(a+by+A) - (t+86) (s7)
and by (77) and (78), with 7,=0, cos? I=1, and B,=1,
_ Y N 4,)-! 3
bo=be (155 ) s o (14,5 ) (@t bi) 7 E-+6). (59)
Thus, by (87) and (88),
o\ )
Ys=0, (1 ‘Jf‘(TpO) +a2< (102)(]) ( 20‘1) A M.. (59)
Then, by (79) and (82), with 7,=0,
‘P()—az(1+a p> (—2ay)~ zAz?o (90)
A, (1 +an ) (—2a;)~} [A,z 2 Ay sin(uM, e 0)]- 1)
0o =

Addition of (89) through (91) then gives

2\ 2 \% 1 2 .
1//:62(1—}—(;])0) —}—a2<1+asp0> (—20y) 2 Agv+n§1A2”sm(nM's—}—m'O):I- (92)

Since v=M+v,+;, where v, is of order £, and since Ay and A, are of orders £ and k? respec-
tively, it follows that

Z As, sin(nM-+nvy) = Z A, sinno (93)

n=1 n=1

to order k*.  Thus, to order £

v 52( o >l+a2(1+%%) (—2,)~ Z(Aﬂ'—}—;il A2,Lsinmv>- 04)

On inserting (94) into (86), we then find

1 2 . 1 4 .
=B, +B2 520 agt-ay(—2a,) (Agz'—l—z Ay din -n,u>—02a3(—2a1)—f Ap+3] Ay, sin nv)- 95)
n=1 n=1
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It is a simple exercise to check these results for a purely equatorial orbit. To do so, let
X and Y be the usual Cartesian coordinates, define p and ¢ by

X+iV=(p*+c2)} exp 14, (96)

write down the kinetic energy (X241 in terms of p and ¢ and their time derivatives, write
the potential as —pup~!, construct the Hamiltonian, and then write down the Hamilton-Jacobi
equation. Separate the latter, to obtain the solution

Weap [ (ote)~ Fio)td, (97)
1
where
F(p) =c’aj+(p*+¢*) (—ad+2pp 12011 p°). (98)
The kinetic equations are then
- . )
W o=t f F()H dp (99)
Oay py
ow e N
b=t Fas | " (o) ptH(p) " dp (100)
P1
=¢¥a3fp F(p)~* rlpiczasj " (0 e) ! Flp)~H dp. (101)
P1 P

On then following the procedure in (A), we find that p is given by just the results of section 5
of the present paper, with 5, placed equal to zero, and that ¢ is given by

2 4
=B +aty(—20) <AZ’U+Z Ay, sin m>—c2a3 (—2a,)~} <1137'—{—Z i i n1> (102)
n=1 n=1
In order to reconcile (102) and (95), observe that for an equatorial orbit g, and g; are not
defined separately, but enter in the combination B3+ 8, sgn az. Accordingly, the definition

B3 =PBs+ B> sgn ag (103}

will bring (102) and (95) into perfect agreement. To understand this definition better, we
reason as follows.

In the equatorial plane 7°=p’+¢* so that » is at minimum whenever p is at minimum.
Thatis, the satellite is at perigee whenever v=277, 7=0,1,2, . . . . By (102) the right ascension
¢, thus changes value from one perigee to the next. For an equatorial orbit about a planet of
zero oblateness, however, the coefficient of » in (102), viz, as(—2a) " 2(A,—¢2A4;), would reduce
to sgn ag, so that in such a limiting case

¢p:6§+27r7- sgn as, (=0, s 2 e o o) (104)

so that the actual position of perigee would remain fixed and g; would be its right ascension.

But for the case of a nonequatorial orbit around a planet of zero oblateness f; is simply

the right ascension Q of the ascending node and B, is the argument « of perigee. Thus for the

limiting case of a purely equatorial orbit about a planet of zero oblateness (103) would take
the expected form

R.A. of perigee=Q+ o, (105)

where the sign would be plus for a direct orbit and minus for a retrograde orbit. Thus the
definition (103) is reasonable.

(Paper 66B1-68)
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