
JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics a nd Chemistry 
Vol. 66A, No.6, November- December 1962 

Elastic Constants of Rutile (Ti0 2 ) 

J. B. Wachtma n, Jr., W. E. Tefft, and D. G. Lam, Jr. 

(Au gust 9, 1962) 

The six clastic constan ts (a nd s ix clasti c compli a nces) of ru t ile were deter mi ned in tlw 
kilocycle per second frequ e ncy range by a l'C'so na nce method . The sta nd a rd c1 t'v iat i o n ~ 
range from 0.2 percent for SIl to 4. 3 perce nt for 81 3. 

1. Introduction 

The electrical properties of rutile mak e it fI, prom
is ing matcrial for solid state elec tronic deviccs and 
a lnrge literature on such properties exis ts ~1.Ild Ims 
b ee n surveyed [1 , 2,3].1 Comparatively liltlc in['or
mation on Lhe m ecbanical propertics or ruLlle was 
ava iLtble untilrcccnily. The lincar compressibilitics 
had been measurcd by Bridgman [4], <wd a se l 0[' 
clas lic cons Lan t s W~lS c~llcuLtLed ['rom spect roscopic 
dal<t by Dayal <wd AppnLwarHsimllam [5 ]. No 
furth er work on elas Lic propcrlies W,lS n.pp~lren Lly 
don e unlil Lh e rccent ind ependenL tlnd nearly simul
titn eOus mcasul'cments or three groups. ick, :Hol
lander, nnd Bl'OWJ1 [6], dete rmincd ['OUl' 0[' th e six 
dasLic consbmts of rutile directly from pulse ve-
10ciLy nlC,tSUl'ements and C~tlculn, led th e o th er lwo 
by combining Br idgman's lin elu' C'om pressibilities 
with th eir o\vn da ta. Verm a [7] published fI, SC i 0[' 
th e elasl ic cons ta nts calculnLed I'rom llis pulse ve
lOCIty m eas urements . The presenL writers reported 
[8] a se L or v,llues cletennin ed by lMsL squnres fiLlin g 
DI' the LheoreL ical eq wtLion s I'or Lhe ori en Lntion de
pendence 1'01' ehts li c moduli to ,t set of' expcrimenlal 
values det ermined on 10 s iugle-crys lall'uti1e rods by 
resonance in the audiorrequency range. Appreciable 
discrepancics existed for some of Lhe constftuls es
pecially between those of Verma and those of' the 
Dther investigators. Vick and Hollander [.9] c ll ecked 
their meaSllrements and published a r efined set of 
values which are little different from their first set. 
The most serious discrepancies were removed when 
it was discovered that the direction which Verma 
took to be [100] was in fact [110]. It is an interest
ing property of the 4jmmm crysLalographic point 
group , to whi ch rutile belongs, thn,t the x axis may 
be takell as rither [100] or [llO] and a sell' consis tent 
m atrix or clasLi c conslants r csults which has tbe 
s ame I'orm (but tlll'ee 01' the six cons tants will h iLVe 
·different numer ical v,LIu es) . Thel'e is Lhus )10 in
lernal inconsis lency in Verm~,'s work but his r es ulLs 
should be exprcsscd in terms of [100] as Lhe x axis 
to agree wlLh Lh e usual convr ntion aud to permit 
·dircct comp,trison wi Lh other v~llues. Thi calcula
tion h~lS been. ~one by Biych [10] :wd the resuILing 
values agorce £auly well wlLh the r esults of other in-

1 ItaJi cizcci figures in brackets ind icate the literature references at the end of 
i his paper. 

465 

vcstigators but not as well as would be expected from 
the accuracy of m ethods of meHsure.melt L wh icll were 
used. The presen t \Hiters wished to rcfine their 
data; th eiril1l t ial resul ts were based upon meaSUl'e
mrnls on 10 rods whose l'od axes were all n eal' the 
[001] ltxis . A compllm Llvcly large ull certamty in Cll 

:wd C66 r esulted. This sit uat ion was lmpl'Oved whe11 
SIX addilion,l,lrods werc eventually ob t,tined H,nd Lhe 
presenL r esults ,tgree wellwitb lhe values c~llclllaLed 
by Birch in tbe sense Lhatl it er r is now no statis tIcall y 
signiflcanL difl·erell ce 1'01' <m y of Lhe C i l ' The sLand
ard deviations ,l1'C, how('vc r, ~l,ppl'eciably larger LllHIl 
Lhose ob tnined by Lh e ,1u lhoJ's OIL corundum [11] 
u in g lhe Sllme l'eSOn :tll(" c mclhod. Th e most im
porLnnL source 01' lhis v<lria bility is believed t o be 
c<wsed by the presence of' a prorusion of small angle 
b.oulldlll'i es whose exis ten C'e is shown by back-reflec
lion Lau e patlerns. 

The prese nt p:l,pel' givcs lhe m ethod o r applyin g 
the reso n:w ce t echllique Lo Letmgo nHl cl'~"s tals 
because iL apparent ly lt~lS not been previously 
described for t his cryst al systeill. The ge nen;1 
m cthod hILs bcen described previously ~wd refcr ence 
[11] m,l~' be cO ll sulted for gellent1 background. 

2 . Descrip tion of Specimens 

All spccimclls were synthetic "s ingle crystals" 
grO'lVn by the Verneuil flam e-fus ion techniq li e usi ng 
an oxygen-hydrogen flam e. Such specimens in the 
a~ grown state characteristically co nt ain Lw types 
of defect : (1) t hey arc oxygen deficient and (2) the)" 
have many small angle boundaries (as much as 2 0 

misorienta tion across a single boundary) . The firs t 
t ype of defect is easily removed by h eating in oxygen 
at temperatures arOLl nd 1,000 DC. Parenthetically 
we note that the difficult problems of obtaining exact 
s toichiometry and of measuring small deviations from 
stoichiometry dO' not cOll cern us here. The elas tic 
cons l<'w ts do undoubtedly depend to some extent on 
lh e degree of reduction but th e effect is very sma]l 
,1,S noted by Viele and H ollander [.9]. We have not 
carr ied out a syst emaLic study of th e effect of r educ
tion on all of t he Cij but observa Lions ofLlle very 
small changes produced in several heavily r educed 
(jet black) rods indicate that the efT"ect which the 
possible small r emaining oxygen deficiency in DUl' 
nominally stoichiometric rods Illay h av e on the C ij 



at room tcmperatur~ is t?O small to be of any con
cern. Heavy reductlOn dId show a measurable effect 
on t~le temperature dependence of Young's modulus 
at hIgh temperature. [12] ~ut this is outside the scope 
of our present consldemtlOns. Our specimens were 
heated for about 24 hI' in flowing O2 at about 800°C 
and we consider them. to be effectively stoichiometric. 
. The second type ?f defect appears in all rutile 

s1l1g1e crystals examllled by the authors and no 
method of removing it is known. Back-reflection 
Laue patterns were taken at random on many speci
mens ;'pe~'hal?s one fourth of the patterns show double 
spots .1l1dlCatmg a change of orientation of 1 or 2 deg. 
If. thIS .were a systematic, progressive change of 
?nen.tatlO~ along a rod, one end would differ greatly 
m onentatlOn from the other and the crystals would 
be useless for our work. Fortunately as table 1 
shows, this is not so. Laue patterns w'ere taken at 
the center and at both ends of each rod. Duplicate 
patterns were taken on specimens 21 and 22 to indi
cate the precision of the method. The resultino' 
standard deviations were 0.12 ° for 0 and 0.16 ° for ;; 
where 0 a.nd cP are. the usual spherical polar angles. 
The colatItude, 0, IS the angle between the rod axis 
and [OO~]; t.he angle cP is the angle between [100] and 
the pr?]ectlO.n of the rod axis on the (00l) plane. 
The onentatlOn apparently shifts back and forth in 
a random manner from one small angle boundary to 
another. The average values of 0 and cP were used 
for each rod in the calculations. It is hoped that 
better temperature, atmosphere, and powder feed 
con trol during crystal growth would reduce the 
number of the boundaries and this is being attempted 
at the National Bureau of Standards and elsewhere. 

Both the Linde CO.2 and the National Lead Co. 
were asked f~r high-purity single crystal specimens 
and both graciOusly gave us some of their production. 
The National Lead specimens were in the form of 
boules intended for gem stones, and rods cut from 
these proved to be too short for our use. Some of 
the Lir:de rods were long enough to permit cylinders 
of useful length to be ground from them. These 
rods are listed as numbers 21 through 30 in table 1 
and our fu'st set of elastic constants [8] was calculated 
from results on these rods. 

~'he l.nanufacturer'~ a~alysis for a typical Linde 
rutile smgle crystal llldicates the following oxides 
at each stated percentage: 0.01- B20 3, ZnO, ZrOz, 
Sb20 3 ; 0.005- Al20 3' U 20 5, Fe203, SrO, MoO PbO 
Sn02; 0.903- Si02, CaO, Cr203, C020 3, BaO;' 0.002~ 
MnO, NIO; 0.0005- MgO, Ag20, CuO. The lack of 
~ny rods with high 0 .values in this set is apparent 
fro~ table l. The L1l1de Co. then made a special 
se~>les of growth runs and produced rod number 44 
wlth a very useful orientation. Additional rods 
were also needed and a successful effort was made 
by W. S. Brower and S. F . Holley of the National 
Bureau .of Standards to grow rods parallel to the 
[100] aXIS. The purest available Ti02 powder from 
National Lead Co. was used. The manufacturer 's 
analysis of the impurities in percent is: 0.02- Si02; 
O.Ol- Nb; less than 0.005- W ; 0.OOl- Fe203; less than 

2 A division of Union Carbide and Carbon Co. 

TABLE l. P roperties of " single crystal" rutile specimens 

End Center Other end 

Speci-

I I I men Nlass Length 8 </> 8 </> 8 </> 
nUlnber 

All angles in degrees 

Linde rocls 

g em 
21 2.6317 13.236 { 12.5 2.6 } 12.7 { 14.3 1. 8 

12.3 2.2 2.1 14.2 1.5 

22 2.2113 13.178 { 37. 9 12.5 } 38.9 10.2 { 40.1 8.0 
38.0 12.5 40.2 8. 1 

23 2.8205 12.168 14.0 7.3 16.1 7.0 14. 8 6.3 
24 2.3654 11. 714 43.3 34.1 45. 6 37.9 44.7 33.6 
25 2.3770 11.178 11. 2 37.9 11 .4 29.0 11. 9 36.3 
26 1. 2718 7.534 8.0 26.6 7.8 22.8 8.4 26.1 
27 1. 2769 6.986 14.6 18.8 14.2 19. 0 15.0 20.9 
28 1. 2561 6.080 39.0 40.0 42.4 40.0 43.0 45.0 
29 0.8562 6.004 12.9 7.8 14.0 5.6 1:1. 7 6.0 
30 1.1523 5.816 58.7 24.0 58.5 24.2 59.3 23.7 
44 15.0251 9.848 88.8 44.1 88. 4 43.4 90.0 44.5 

NBS rods 

41 8.0767 8. 508 12.9 9.2 12.9 8.0 13.5 9.3 
42 5.8920 6.256 7.0 20.0 6.9 21. 0 6. 2 19.0 
49 7. 1208 11. 128 87.8 0.0 87.8 0.0 88.0 1.5 
50 21. 5907 17.107 88.8 5.4 89.5 5.4 90.0 5.0 
51 16.0263 17.634 86.2 0.4 86.2 1.0 86.8 0. 9 

0.OOl- Al20 3 , Sb20 3, Pb , V, Cr; less than O.0005- Hg, 
less th3;n 0.0003-:-Cu; le~s than 0.00005- Mn. Spec
troscopIC a~lalysls of smgle. crystals after growth 
showed no slgmficant change m the major impurities. 

3. Relation of Young's Modulus and Shear 
Modulus to Elastic Compliances and to 
Orientation 

In this section the elastic moduli measured in 
resonance experiments are expressed in terms of 
the elastic compliances and the orientation. The 
metho.d of solving: these equations for the compli
ances IS then descnbed. The theory and experiment 
closely pa~>allel work on corundum [11] and therefore 
only a bnef description will be given. 

In relat~ng. the elastic compliances to Young's 
modulus, It IS necessary to distinguish between 
the "free" Young's modulus Y f and the " pure" 
YOU?g's modulus, Y p , when' an~lyzing flexural or 
torsIOnal t~sts. The free Young's modulus is the 
value obtamed wh~n the specimen is completely 
free to deform elastlCally under the applied tensile 
stres~. The pure Young's modulus is the value 
?btamed when the specimen is tested in flexure and 
IS prevented from twisting. In an isotropic medium 
the free and pure moduli are identical. Calculation 
of Young's modulus from flexural vibrations of 
slender, cylindrical rods of nonisotropic material 
corresponds to measurements of Y f . For such rods 
the modulus determined from torsional resonance is 
the pure shear modulus, Gp • The validity of these 
res~lts .is dis~ussed by Brown [13]. 

The followmg treatment develops the relation be
twee~l the m~asured quantities, Yf and Gp , and the 
elastlC complIances, Sij, expressed in the standard 
rectangular coor.dinate system 1'01' tetragonal crys
tals, XjX2X3, descnbed by Nye [14]. It is convenient 
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to in troduce a rotated coordinate sys tem , x;x~x~, wi Lh 
the x~ axis along the rod axis. The I'ree elastic mod
uli for measurem ents along the rod a,xis ar e r elated 
to the compliances expressed ill Lhe primed coordinate 
sys tem by 

, ] 
(1) 833= } ~r' 

and 
S~4+S~5 1 

(2) - -- GJ' 2 

Brown [13J and H earmon [15] give the followin g 
equation relating the pure s hear modulus, Op, to 
t he free shear modulus, 0/ 

(3) 
where 

(4) 

EquaLions (2), (3), and (4) can be combin ed to give 

(5) 

I t is now l1cce sary to express t he primed quantlLws 
in eqs (1), (2), and (5) in terms 01' t he unprim ed 
compli ances and t he orientation . This is done 1'01' 
eqs (2) and (3) by writing out the tensor t ra ns ror
mations and expressing the directio n cos in es in terms 
of t he colatitud e, (), and the azimu t h, cPo In other 
words, () is t he angle between X3 and x~ and cP is the 
a ngle between XI and the proj ection or x; on the 
XIX2 plan e. The tensor tr ansrorm ation give 

(6) 

and 

8';"+8~5 1 . 2 +1 (+ ? ) + 2 ( --2-=2866 S1l1 () 2844 1 cos- () 8u +833 

-844 - 2 813) sin2 () eos2 () + ( 811 -S12- 8~6) sin4 () s in2 2cP . 

(7) 

The directions of the x; and x~ axes have not been 
specified excep t for the requirement that x;x~x~ form 
a right handed rectangular system because eqs (1) 
and (2) are independen t 01' their directions. This 
independence also holds 1'01' (5) because 8~~+8~~ de
p ends only on the direction o[ :x;~ as H em-mon [151 
states. It is convenien t to write 8~4 and 8~5 sep
arately, however, and these quantities are not spec
ified by the direction of x~ alon e. For simplicity 
x; was chosen to lie in the XIX2 pla ne a nd x; is then 
uniqu ely sp ecified. The teJl sor trans/'orm ations give 

(8) 
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and 

8;5= 2(Sll+833-844-28IJ sin3 () cos ()+(2 813+8H 

- 2 833) sin () cos ()+( 812+ 8~6 - 811) 

Xsin3 () cos () sin2 2cP. (9) 

A set of elastic compliances can be determined 
from the preceding equations in t he following man 
ner: Assume that values or YJ and Op h ave been 
determin ed on at least JOUl' rods. Equation (6) is 
written for each value o r YJ ,t. nd t he resulting system 
of simultaneous equfl.Lio ns is solved for 81l , S33, 

2 813+844, and 812-811 +844/ 2 . These r es ul ts are used 
in eqs (8), (9), fl.nd (7) to calculate values of OJ 
from the m easured vfl.lues o/' OJ}' Equation (7) is 
written for each value o/' OJ fl. lld t he resulting sys tem 
of simultaneous equa tions is solved for 844, S66, 

811 + 833-844-2813, fl. nd 81l -8l2-80612. In this way 
two independ ent values or 8 12 and 813 are obtained 
whi ch m a,y be compared for consistency. If more 
than four specimens arc used , a good check on the 
consistency o[ the whole set o[ 8ij values is t hen 
available. 

4. Relation of Elastic Moduli to Resonance 
Frequencies 

The values o[ Yf and Of} needed ror t he calculation 
or t he clastic complin,nces were obtfl.in ed by reSO llltn ee 
frequency m easurern ents on slend er , cylind ric,t.l rods. 
Youn g's modulus was cfl.lcuJ aLecl from t he longi
t udin al reso nance frequency ror the five lon gest rods 
and from the flexural resonall ee frequency for all 
o[ the 16 rods used in this inves Ligation . The shear 
modulus was calculated from tlte Lorsion fl.l reson an ce 
freq uency of all 16 rods. For boLh o[ tl te Young's 
modulus calculations, the equation l'rlating the 
resonance frequency to the appropriate rnodulus is 
approximate but the approximations fl.r e very good . 

For longitudinfl.l vibrations, Young's modulus 
of an isotropic medium can be cfl.lculatecl I'rom 
R ayleigh 's equation [16] which can be written 

(10) 

where p is t he density in g/cm3, l is the length in 
cm , f is the fundemental lon gitudinal resonan ce 
frequen cy in cycles p er second, (J is Poisson 's ratio , 
r is t he nlciius in cm and Y is Young 's modulus in 
c1ynes/cm2 . The term in parentheses is the Rayleigh 
correction term for the fi ni te t hickness of t ile rod 
and n eglects higher powers or rll. For the values 
of 1'll used in the present worl" the difference b e
tween values given by Rayleig h's equation and a 
more accurate treatment by Bancro[t [17] is much 
less than the experimental accuracy. The correction 
term should be modified 1'01' nonisotropic m aterial, 
but a good estimate of the correction can be obtained 
by using an average value of Poisson 's ratio in t he 



present equation. Taking (J = 0.30 and rll= 0.0113 
for the shortest of the five rods used in longitudinal 
resonance gives a R ayleigh correction factor of only 
l.000006 . The values of Y calculated from. (10) 
should be very accurate despite the fact that rutile 
is nonisotropic. 

For flexural vibrations of a cylindrical rod of 
isotropic material the best existing theory seems to 
be Pickett's [18] differential equation. 3 The result 
obtained can be expressed as the result for a rod 
of infinitesimal thickness multiplied by a dimen
sionless correction factor, T. This result is 

Y = 0.31547 p l : f22 T 
T 

(11) 

where the symbols have the same meaning as in 
eq (10) except that here f is the flexural resonance 
frequency. Tefft [22] has calculated a tabl e of T 
from Pickett 's differential equation as a function of 
rll and Poisson's ratio. Fortunately the T values 
are nearly equal to one and depend very li ttle on 
the Poisson 's ratio value for small rll. The values 
of T for (J = 0. 30 were used [or all calcul ations. The 
whole subject of the determination of elastic moduli 
of isotropic materials has been summarized [23] 
recently. 

For torsional vibrations of an isotropic cyli ndrical 
rod, the equation 

(1 2) 

FIGURE 1. Method used to measure torsional resonance 
frequency of short rods (about 6 em long). 

'I'he fine phosphor bronze spri ngs have sufficient flexibility to permit relati vely 
free specimen vibration and have sumciently low damping not to cause excessive 
power loss. 

2 This equation should not be confuserl with an approximate d ifferential equa
tion derived by Timoshcnko [19] and studied by Goens 120] anel by Pickett [2 IJ. 

is rigorously true. Here f is the torsional resonance 
frequency and the other symbols have their previous 
meanings. The significance of this equation for 
crystalline cylinders has been considered by Brown 
[13] and by Hearmon [15]. The details are compli
cated, but t he result is , as previously stated, that 
for sufficien tly slen del' rods eq (12) gives Gl, and 
eqs (10) and (11) give Y f . 

The density value o[ 4.250 g/cm 3 reported by 
Swanson and Tatge [24] was u sed. 

5. Method of Determining Resonance Fre
quencies 

The general procedure for measuring resonance 
frequencies of slender cylinders has been described 
previously [II , 23]. The specimen is suspended by 
fine threads tied in such a manner that free vibration 
is unimpeded; i.e ., the threads are tied near the nodes 
of the vibrational mode being investigated. Vibra
tion is excited either by air drive with a loudspeaker 
or by driving one of the suspending threads with a 
transducer . The resonance is detected by a pickup 
attached to another thread . The resonance fre
quency is m easured with a crys tal controlled counter 
having an accuracy of ± 0.1 cis. 

This method was successfully used in the present 
work for all resonance frequencies except the torsional 
frequencies on rods 26 through 30. In the case of 
torsional vibration the resonance frequencies are so 
large and the amplitude of motion so small that the 
resonances could not be detected using cotton or 
silk thread . A special procedure , shown in figure I, 
was used. Fine springs, made from phosphor bronze 
wire, were used to couple the driver and pickup to 
the specimen. These springs were flexible enough 
to permit free vibration of the specimen, but had 
sufftciently low damping to p ermit adequate power 
transfer from. the driver to the specimen and from 
the specim en to the pickup to allow resonance to be 
excited and detected. Tn this way the torsional 
resonance frequencies of specimens " 26 through 30 
were lueasured . 

The value of Young's modulus calculated from the 
longitudinal resonance frequen cy was considered to 
be slightly more accurate than the value calculated 
[rom the flexural resonance Ireq uency fl nd was used in 
subsequent calculations when it was available (i.e., 
for those rods for which the longitudin al resonance 
frequency could be determined ). 

6 . Results and Discussion 

The flexural and longitud inal resonance frequencies 
are given in table 2 together with the reciprocal 
Young 's modulus values calculated from t hese 
frequencies. Table 3 gives the corresponding tor
sional resonance frequencies and reciprocal shear 
modulus values. The values o[ l lY Ii 8, and cp were 
used to write eq (6) for each rod. The resulting set 
of 16 simultaneous equations in [our unknowns was 
then solved [or the four lineal' combinations of 8ij 
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Specimen 
number 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
44 

41 
42 
49 
50 
51 

TABLE 2. Young's modulus calculations 

l / Yf 

Resonance Frequency 
ILongitudinal fl exural longitudinal Flcx:uroJ 

10- 13 em'/dyne 

L inde rods 

cis cis 
1166.5 35544 2.655 2.658 
943.0 31271 3.490 3.464 

1485.2 38514 2.671 2.678 
1393.0 37325 3.080 3. on 
1703.8 42399 2.614 2.619 
3338. 2 - --- -- - -- ---- 2.614 - -- -- -- ------
3980.8 --- - --- - ----- 2.689 --- ----------

5317.5 - -- -- -- - ----- 2.961 -- --- - -------
4748.3 --- - -- -- - -- -- 2.702 - - - ----------
5001. 8 - -- - --- ----- - 3.831 - ---------- - -
5693. 0 --- --- - ------ 2. 7295 2.699 

.'\13S rods 

6107.6 - -- - --------- 2.655 -- - - ---------
11246 ----- -- ------ 2.617 ----- -- - ---- -
1840.6 26402 6.824 6.8 14 
1111. 6 17408 6.617 6. 632 
8~2. 3 16740 6. 714 6.750 

W, 

--

-0.008 
-. 01 4 
-.012 
+.030 
-.023 
-. 003 
+.Oll 
+. 024 
+. 032 
-. 000 
+. 005 

- 0. 018 
- .007 
+.037 
-. 01 8 
- .007 

IF'y= (l j Y')obecr\'c .l-(l / Yf)c ~ l c ullit eJ where Y-, computed from longitudinal reso
nance was used when avai lable . 

Specimen 
number 

2l 
22 
23 
2'[ 
25 
26 
27 
28 
29 
30 
44 

41 
42 
49 
50 
51 

TABLE :~ . Shear ?noelulm calculalions 

Torsional 
reson ance 
frequency 

cis 
20206 
19496 
2 1936 
20370 
24070 
35737 
37942 
39340 
43920 
42640 
20260 

31319 
43016 
26604 
17215 
16844 

IIG. I I Gf 

10-" cm'ld yne 

Linde rod s 

8.213 8.236 
8.885 9.301 
8.250 8.281 

10.304 10.447 
8. 099 8. 110 
8. 11 5 8.121 
8.372 8.396 

10.282 10.298 
8. 459 8.483 
9.580 10.560 

14.778 14.796 

:-JBS rods 

8.285 8.307 
8. 123 8. 127 
6.712 6.718 
6.782 6.947 
6.668 6.686 

TVt= ( l j G/ ) obsef\·ed-( lj Gj)clllculate<l . 

- 0. 046 
+245 
-. 059 
-. 117 
-. 138 
-.037 
+ 057 
-. Jl 7 
+ 188 
- . 014 
+047 

+0. 023 
-. 004 
+ 019 
-.011 
-.0:)5 

appearing as coefficients in eq (6). The process oj' 
solving an overdetermined set 01' simultaneous lin eal' 
equations 1'01' the leas t squares best estimates or the 
coefficients and their s tandard deviations is a 
straightforwflJ'd calculation and is described, fo), 
example , by Seheffe [25]. This calculation was clone 
on an automatic computer and the resulting values 
of the coefficien ts are given in the firs t hal[ of table 4. 
These coefficients were then used in eq (6) to calcu
late a value 0 ( l /Y f for each l'od. The deviations of 
t he calculated from the observed values or l / YI! 

labeled Tilly, are listed in table 2 and provide an 
indication of how well eq (6) fits the data. These 
results were then used in eqs (8), (9), and (5) to 
obtain l /Gf from l /G11 Jor each rod . The values of 
l /Gr were then used in eq (7) and a least squares 
solu tion for Lhe codficien ts was carried out as was 
clone 1'01' eq (6) . The resul ting values o( the coeffi
cients are given in the second h al[' or Lable 4. Devia
t ions, 11170 , between calculated an d observed values 
of l /Gr are listed in table 3. 

T ABLE 4. L east sauares best estimates oj 7Jarallteters in elast~c 
1nocl1ili ermations 

S" 
8 ", 

SJI+Sll -SI4-2SI3 
SIl-SI2-S6C/2 

From equation for 1/ Yf 

6. 788± 0.015 X lO- 11 em'/dyne 
2.592± .011 
6.466± .062 
8.200± .059 

From equation for I IGf 

8. 072± 0.048 
5.:l02± . 140 
2.880± . 157 
8. 077± .102 

The deviation s ,ue stand ard devia tion s of the coeffi cients obtained from least 
squ ares calculation s. 

The results presen ted in table 4 give 811, 833, 844, and 
866 directl\' . A value o( 8]2 and 8J3 can be calculated 
from t heIr appearance in the ] / Yr coe fGcienLs. A 
second value of each can be calculated us ing the 
l /Gf eoefTicient in wh ich Lhey flppear. For 8J2 t he 
two values are - 4.063 ± 0.088 and - 3.940 ± 0.1l:3 ; 
1'01' 8]3 the r esu lt is - 0.803 ± 0.039 and - 0 .786 ± 0.069 
The resul ts a re thus sel[ co nsistent. T JlOse valu es 
were weighted according to t he reciprocals of their 
variances and Lhe values o( 8]2= - 4 .017 ± 0.069 and 
8 J3=- 0.799 ± 0.0:34 were obtai.ned. 

The Cij values can be calculated by inve rsion or the 
matrix of 8 ij values . 'rhe equaLions (01' passing from 
Cij to 8 i j are given by Nye [14] and iL is easy to show 
that the equations Jor obtaining CiJ I'rom 8 ij in this 
case are obtained by intercJ langing c's and 8 'S. The 
result is 

C -_~ [833+_]_'_ ] 
11 -

2 8 8 11 - 8 12 
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where 
S = S33(SlI +SI2) - 2sh 

The calculations were made by substituting for the 
Sij the directly computed quantities of table 4. For 
each of the constants Cll, C33, CI2, and CI3 the two 
values were obtained and a weighted mean computed 
as in the case of S12 and S 13. 

The Sij and Cij values are listed in table 5 for com
parison with the work of other investigators. The 
present Cij show no statistically significant differences 
from the values calculated by Birch. Using the 
simple test of twice the standard deviation we find , 
however, that the S11 and S12 values of Birch are 
significantly different from our results. This is 
probably caused by the fact that the equations for 
Sl1 and S12 (which have the same form as the above 
eqs for Cn and C12) both involve the difference C11- CI2' 

There is thus some reason to prefer the present 811 

and 812 values as they are more directly determined; 
the same argument favors the Cn and CI2 values of 
Verma-Birch. Our linear and volume compressibil 
ity values are also given in table 5 and are consistent 
with Bridgman and Verma-Birch. 

It is interesting to compare the elastic properties of 
rutile single crystals with those of polycrystalline 
rutile. Huntington [26] discusses the problem of 
calculating elastic moduli of a pore-free polycrystal
line solid from the single crystal elastic constants. 
Results calculated from theories of Reuss (which 
gi ves a lower bound) and of Voigt (which gives an 
upper bound) are given in table 6. The bulk 
modulus is determined within narrow limits but the 
Young's modulus and shear modulus values are not 
so well determined. This is a reflection of the fact 
that, as shown by figures 2 and 3, these two moduli 
depend strongly on orientation. 

TABLE 5. Elastic parameters of rutile 

eij in 10 12 dyne/crn2 8ij in 10- 13 cm 2/dyne 
---------,----,_._-- -----~---~.------

CIl 
C33 
C" 
Coo 
C1 2 
CI3 

SIl 
S33 

S" 
866 
SI2 
SI3 
811+812+813 
833+2813 
2811+S33+2s12+4<13 

Dayal 
Bridg- and Vick and 
man' Appala- Holl ander ' 

narasirn-
ham b 

----------- -
3.005 2. 48±. 08 
1.9 4. 52±. 08 
1.324 1. 20±. 03 
1. 761 1. 6 ±. 1 
1. 76 2.0 ±. 1 
1. 36 1. 4 ±. 1 
5.8 11.8 
8.9 2.7 
7.6 8.3 
.1.7 6.2 

-2.2 -9.0 
-2.5 -0.86 

L 89 - ---- -- - -- - - --
1.04 - -- -- -_. ------
4.82 -- .-. --.- - - -- - - - -- -. - ---

Verma 
recalcu
lated by 
Birch d 

----
2.73 
4.84 
1. 25 
1. 94 
1. 76 
1. 49 
6.55 
2.59 
8.00 
5. 16 

-3. 76 
-0.86 

1. 93 
0.87 
4.73 

Present 
work e 

-----

2. 660±. 066 
4. 699±.081 
1. 239±.007 
1. 886±.050 
1. 733± .071 
1. 362±.081 
6. 788±. 015 
2. 592±. 011 
8.0i2±.048 
5. 302±. 140 

-4. 017±. 069 
-0. 799±. 034 

L 965±. 069 
0.994±.067 
4. 91l±. 166 

• Measnred statically. Present adiabatic values calcnlated from Bridgmen 's 
isothermal valnes. 

b Ci f computed from spectroscopic observa tions. Sii computed by matrix 
inversion. 

c Diagonal Cil computed from pulse velocity measurements. C12 and CI3 com
puted using Bridgman's linear compressibilities, 8ij by matrix inversion. 

d Cjj computed from pulse velocity measurements, Sij by Inatrix inversion. 
e Bil computed from resonance frequency measurements, Ci; by matrix inversion 

as explained in the text. The values for the Ii Ileal' and volume compressibilities 
given in the last t1lree rows are not exactly the same as wonld be obtained by direct 
computation from the 8 ij above, because tbe weighting is different fol' a combina
tion of constants than for a single constant. 'rIle deviations shown for the present 
valnes a re standard deviations for the compliances and constants obtained from 
least sQnares calculations. 

TABLE 6. Elast-ic moduli for polycrystalline rutile computed 
from Reuss and Voight theories a 

Young's modulus 
Shear modulus 
Bnlk modnlus 

Polycrystalline 

Renss I Voight 
theory theory 

Single crystal 

2.555 1 0.990 
2.025 

All units 1012 dyne/em' 

3.116 1 Orientation dependent see figure 2. 
L 244 Orientation dependent see figure 3. 
2.103 2.025. 

a Using val ues of the Sij and eij given in the last column of table 5. 

The writers have previously used the resonance 
method to determine the six elastic compliances, 
S;j) of corundum [11] with standard deviations of 
about 0.1 percent for the diagonal compliances and 
about 1.0 percent for the off-diagonal compliances. 
The present uncertainties in the diagonal constants 
range from 0.2 percent for Sl1 to 2_6 percent in 866. 

For the off-diagonal constants the values are 1.7 
percent for 812 and 4.3 percent for 813' These results 
are somewhat disappointing when compared with 
the precision achieved with corundum. Rutile 
differs from corundum in being more anisotropic 
but this should not cause such an increase in standard 
deviation if the orientation were constant through
out the specimen. The principal difficulty probably 
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FIGURE 2. }-ollng's modulus, Y f , as a function of orientation, 
calculated from eqs (1) and (6), 1tsing the least sq1wres best 
estimates of the coefficients given in tnble 4-
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F I G URE 3. Shear modulus, G r, as a funct ion of O1'ientation, 
calculated from eqs (2) and (7), using the least squares best 
estimates of the coefficients given in table 4. 

is associated with the small angle boundaries. H 
specimens free of these boundaries are ever produced 
it would be interestin g to repeat both the pulse 
veloci ty and r esonance measurements and a ttempt 
to obtain agreement to 0.1 percen t in the diago nal 
constants. It is probably not worthwhile to attemp t 
to improve th e agreement usin g existing specimens. 
Th e present results arc accurate enough for most 
purposes and the general agreement of different 
observers leaves no question of serious error . Th e 
value of C33 calculated by Dayal and Appalanara
simham from spectroscopic data is in serious error , 
as previously noted [9, 10], and an extension of their 
calculation to correct this value might be worthwhile. 

NOTE.- The writers were recently informed by Gilman 
[27] of unpublished work by himself a nd B. Chick on t he 
elastic constants of ruti le. They obtained c33 = 4.75 X 1012 

d ynes/cm2 and C44 = 1.23 X 1012 d y nes/cm2, Both values are 
in good agrecment with t he results of the prcsent work. 

The writers gratefully acknowledge the h elp pro
vided by the suppliers of the rutile powder and 
single crysta)s. In particular we thank "V. S. Brower 
and S. F. Holley of the National Bureau of Standards, 
R . G . Rudness of the Linde Co., and M . D . Beals 
of the National Lead Co. 
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