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R ela xation spectr!l. have been used in both t he presentat ion and interpretat ion of measure
ments of t he m echanical propert ies of r ubberli ke polym ers. 

R elaxa tion sp ectra have been \videly used in bo th 
the presentation and interpreta tion o[ measurements 
or th e mechani cal properties of rubberlike polymers . 
Th ey are generally introduced in terms of a more or 
less specific model represen ting lin ear viscoelastic 
behavior, sin ce th e a priori assump tion oJ a sp ectrum 
of a certain form is equivalen t to assumin g a cer tain 
model represen tation for mechanical response. 

Ordin arily tb e derivation of such Junctions is 
based on the assumed equivalence o[ the mechanical 
response of a material to th e response of an assembly 
o[ ideal springs and dashpo ts. And indeed i t can be 
shown rigorously tha t any li.o ear response is equiva
len t to the response of some such au rry if on e admi ts 
ccrtain limi ting cases analogous to the familiar elec
trical cable with dis tribu ted resistance and ca
pacitance. However , the proper form for th e sp ec
trum, whether it should be an in tegral or a sum, is no t 
determin ed by this approach , but is arbi trarily 
assumed depend ing on the type or analysis preferred. 

This ambiguity is no t particul arly serious for any 
practical applica tion, since our experimen tal m easure
ments are seldom precise or extensive enough to p er
mi t us to distinguish exp erimen tally between the 
two forms. It is, however , quite possible to defin e 
the spectra unambiguously in terms of a rela tion 
between th e tr ansien t and steady-state functions 
whi ch must hold whenever th e behavior is linear and 
the Boltzmann superposition principle applies. 
Moreover , this developmen t autom a tically deter
mines th e nature of the spectrum in terms of the 
singularities of the s teady-sta te response fun ction , 
and yields directly an algebraic rela tion giving the 
spectrum exactly if the response function is known or 
assumed in analy tic form. 

The basic defIni tion of the mechanical response 
function of a ma terial is considered here to be that 
ob tained from experim ental observation . For a 
linear passive material either th e response to a force 
which is a uni t s tep function of time, G(t) , or the 
s teady-state res})onse to sinusoidal force, G*(iw) == 
G' (w) +i Gil (w), will completely defin e the response 
in shear . In principle G(t), G'(w), and G" (W) can 
be meitsured for all real positive tim es, t , or frequen
cies, w, and we shall assum e that both fun ctions are 
known, are bounded, itnd are reasonably smooth . 
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Since we are considering relaxation-typ e behavior, 
we shall fur ther assume that G(t) is mono tonic 
nonincreasing and contams no oscillatory terms 
which would characterize r esonance- or da mped 
resonance-typ e response. 

We define a fun ction G*(p), with p = s+ i w, by 
analy tic extension of G*(i w) from its line of defmi
tion. By a somewhat lengthy argument involving 
energy considerations it can be shown that the 
singularities of G*(p) are confined to the n egative 
real axis including the origin . This same conclusion 
can be reach ed from a consideration of the relation 
between G* (p) and G(t), es tablished through the 
Carson transformation 

G*(p) = p i '" G(t) exp ( - pt) clt 

and i ts inverse 

1 ( C+i '" 
G(t )=27ri J C-i", [G *(p) /p] exp (pt ) dp . (1) 

Since G(t) is defined for all real t ~ 0, and has been 
assumed to have the character of a relaxation-type 
response, the singularities of G*(p)/p must be con
fined to the negative real axis, including the origin. 
Moreover , if these singularities are poles they must 
be of first order , since any higher order poles would 
lead to terms in G(t) of the form tbeal, inconsisten t 
with relaxation-type behavior. If these singularities 
are simple poles, G(t) will be given by a sum of terms 
of the form r n exp (snt), S n ~ 0, where the sum may be 
either fini te or infinite. This m ay be written in 
t erms of a relaxation spectrum, h(}..) , as 

if we take 

G(t )= i '" h(}..) exp (- }..t )clX 

h(X)= ~ 1'nO(X+ sn). 
n 

(2) 

(3) 

The various molecular theories of viscoelastic 
behavior yield expressions of this form . However, 
a continuous spectrum is consisten t with OUT assump
tions, and will be found if G*(p) is ch aracterized no t 
by poles but by a branch cut along a portion or the 
whole of the negative real axis. Since the various 
approximation methods for ob taining a spectrum 
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from the measured response functions ordinarily 
yield a continuous spectrum, it is of interest to see 
how this can be derived. 

If G*(p) contains a branch cut, the contour of eq 
(1) may be deformed fwd the integral written as 

G(t) = (1/27ri) lim lim 
p-'>O <-,>0 

{ f --oo""p,-<, [G*(s-i~) /(s-i~)] exp [(s-i t )t ]ds 

+i f~a G*( pei'P) cxp (pt ei'P )d<p 

+f _oo_ [G*(s + i t )/ (s + i t )] exp (s+ i~ ) t ]ds "'>. (4) 
- ""p'-<' ) 

where a= (7r/2) + cos-1Ct!p). 

The second term of (4) yields G* (O) = G( 00 ). The 
fu'st and third terms can be combined, using the fact 
that G* of p-conjugate equals the conjugate of 
G*(p), to give: 

G(t) - G( 00 ) = (1/7r) r-oo cls(eSI/s) lim 1m G*(s+it ) J 0 <-,>0 

=.fo oo dAexp (- At)h(A), (5) 

where 
h (A)=± (l /7rA) lim 1m G*( - A± i t ). (6) 

<-,>0 

This will be a continuous function of A over the 
region of the branch cut. If applied to a function 
characterized by simple poles it will yield zero for 
h(A) except at the poles where 1m G* (p) goes to 
infinity. 

The same procedure can be used to define the 
retardation spectrum from the r elation between 
j(oo)-j(t) and its transform, where jet) is the re
coverable part of the cr eep function J (t). 

The algebraic relation (6) was derived by Gross I 

by a less direct method starting from the integral 
giving G* (iw) in terms of h (A). 

1 Bernhard Gross, Mathematical Structure of the Theories of Viscoelasticity . 
pp. 31- 33 Hermann and Oie, P a ris (1953) . 
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