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Relaxation spectra have been used in both the presentation and interpretation of measure-
ments of the mechanical properties of rubberlike polymers.

Relaxation spectra have been widely used in both
the presentation and interpretation of measurements
of the mechanical properties of rubberlike polymers.
They are generally introduced in terms of a more or
less specific model representing linear viscoelastic
behavior, since the a priori assumption of a spectrum
of a certain form is equivalent to assuming a certain
model representation for mechanical response.

Ordinarily the derivation of such functions is
based on the assumed equivalence of the mechanical
response of a material to the response of an assembly
of ideal springs and dashpots. And indeed it can be
shown rigorously that any linear response is equiva-
lent to the response of some such array il one admits
certain limiting cases analogous to the familiar elec-
trical cable with distributed resistance and ca-
pacitance. However, the proper form for the spec-
trum, whether it should be an integral or a sum, is not
determined by this approach, but is arbitrarily
assumed depending on the type of analysis preferred.

This ambiguity is not particularly serious for any
practical application, since our experimental measure-
ments are seldom precise or extensive enough to per-
mit us to distinguish experimentally between the
two forms. It is, however, quite possible to define
the spectra unambiguously in terms of a relation
between the transient and steady-state functions
which must hold whenever the behavior is linear and
the Boltzmann superposition principle applies.
Moreover, this development automatically deter-
mines the nature of the spectrum in terms of the
singularities of the steady-state response function,
and yields directly an algebraic relation giving the
spectrum exactly if the response function is known or
assumed in analytic form.

The basic definition of the mechanical response
function of a material is considered here to be that
obtained from experimental observation. For a
linear passive material either the response to a force
which is a unit step function of time, G(f), or the
steady-state response to sinusoidal force, G*(iw)=
Q' (w)+1 (" (w), will completely define the response
in shear. In principle G(1), ¢’(w), and G"'(») can
be measured for all real positive times, £, or frequen-
cies, w, and we shall assume that both functions are
known, are bounded, and are reasonably smooth.
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Since we are considering relaxation-type behavior,
we shall further assume that G(f) is monotonic
nonincreasing and contams no oscillatory terms
which would characterize resonance- or damped
resonance-type response.

We define a function G*(p), with p=s+iw, by
analytic extension of G*(iw) from its line of defini-
tion. By a somewhat lengthy argument involving
energy considerations it can be shown that the
singularities of G*(p) are confined to the negative
real axis including the origin. This same conclusion
:an be reached from a consideration of the relation
between G*(p) and G(t), established through the
Carson transformation

G*(})):pf G(t) exp (— pt)dt
0
and its inverse

6= | 1@ exp i) dp. ()

C—1il

Since G(t) is defined for all real >0, and has been
assumed to have the character of a relaxation-type
response, the singularities of G*(p)/p must be con-
fined to the negative real axis, including the origin.
Moreover, if these singularities are poles they must
be of first order, since any higher order poles would
lead to terms in G(f) of the form #’¢*, inconsistent
with relaxation-type behavior. If these singularities
are simple poles, G(¢) will be given by a sum of terms
of the form r, exp (s,t), s, <0, where the sum may be
either finite or infinite. This may be written in
terms of a relaxation spectrum, A(\), as

Q(t)— f " RO exp (—A)d @)
if we take !
A= 1,600 +5,). 3)

The various molecular theories of viscoelastic
behavior yield expressions of this form. However,
a continuous spectrum is consistent with our assump-
tions, and will be found if G*(p) is characterized not
by poles but by a branch cut along a portion or the
whole of the negative real axis. Since the various
approximation methods for obtaining a spectrum
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from the measured response functions ordinarily
yield a continuous spectrum, it is of interest to see
how this can be derived.

If G*(p) contains a branch cut, the contour of eq
(1) may be deformed and the integral written as

G(t)=(1/2x1) lim lim

00 0

{f_\/;e_:é[G*(s—ie)/(NAie)] exp [(s—ie)t]ds

~{—ifa G*(pe'*) exp (pte'?)de

)

+ f T [G*(stie)/(stie)] exp (.<+z'e)t]ds} 4)
—Vpi—e
where a= (r/2) 4 cos~1(¢/p).
The second term of (4) yields G*(0)=G(=). The
first and third terms can be combined, using the fact

that G* of p-conjugate equals the conjugate of
G*(p), to give:

G(t)—G( )= (1/r) ﬁ T ds(ets) lim Tm G574

— f " dh exp (—ADRQY), )
0
where
h(N) =4 (1/x\) lim Im G*(—N\+ie). (6)
e—0

This will be a continuous function of X\ over the
region of the branch cut. If applied to a function
characterized by simple poles it will yield zero for
h(N) except at the poles where Im G*(p) goes to
infinity.

The same procedure can be used to define the
retardation spectrum from the relation between

j(=)—j@) and its transform, where j() is the re-

coverable part of the creep function J(t).

The algebraic relation (6) was derived by Gross !
by a less direct method starting from the integral
o1ving G*(iw) in terms of A(N).

1 Bernhard Gross, Mathematical Structure of the Theories of Viscoelasticity.
pp. 31-33 Hermann and Cie, Paris (1953).
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