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Reflection and coupli ng processe8 exhibited by r;lane elec tromagnetic waves propagated 
in an inhomogeneou s horizontally-stratified anisotropic ionosphere are associated wit h dis­
crete transit io n points or wi th co nt inu ous coupling regions . These arise when the fourth 
order differentia l equations a re writt en in fi rst order co upled form, and many t erms in t hese 
equations become infini te at the transition points. This procedure is rendered mol'S precise 
by means of a special linear transformat ion t hat reformulates t he equations in a new way, 
thereby exhibi t ing the manncr in which local co upling processes are embedded in the more 
general background proccss ot otherwise independentl.v propaga ted characteristic waves. 
To exhibi t the power of t he ma trix alge bra involved, the CD e of a n arbitrary m.mber of 
characteristic waves is considered ; moreover, For-st erling-type coupled equations a rc produced 
in a more genenllized form t han hitherto considered, and a discussion of the equations govern­
ing continuous COllIJling completes th e paper. 

1. Introduction 

The equations governing the propagation of plane electromagnetic waves in a horizon taUy­
sLraLified inhomogeneous anisotropic ionosphere may be expressed in various ways, depending 
upon the particular investigation for which the equ ations are r equired. If the Oz-axis of a 
righL-handed set of Cartesian axes Ox, Oy, Oz i directed vertically upwards, then it olten proves 
co nvenient to use second or fourth order differential equations in the dependent variables Ex or 
E lI . H eading and Whipple [1952] and H eading [1955] have employed this representation when 
analyticnl solut ions of the differential equ ations are under consideration. The reason is that 
all known anal:ytical solutions of the field equations may be expressed in terms of generalized 
hypergeometric fun cLions, hypergeometric functions, confluent hypergeomeLric functions, 
Bessel functions and so on, Ulese functions natm ally satisfying seco nd or fourth order differen­
t ial eq uations. Suc h [unctions provide the reflection and conversion coefficients for a pmticular 
anisotropic model ionosphere, b u t by inspecting the functional form of the electric field t hrough­
out the medium no immediate physical interpretation is possible, whereby the actual process 
of wtwereflection and wavecoupling may be explicitly exhibi ted . 

Sets of eq uations known as coupled equations have ther efore been in troduced, in order to 
enable approximate solutions for the electromagnetic field to be ob tained, and in order to ex­
hibi t directly the important physical processes of wave reflection and wave coupling. Forster­
ling [1942] considered a coupled system of two second order equations ; these refer to an iono­
spheric model in which the extern al magnetic field is oblique but in which propagaLion is vertical. 
Gibbons and Nertney [1951, 1952] have used these coupled equations to obtain approximate 
numerical solutions for various ionospheric models , while Budden [1952] has used them in dis­
cussing limiting polarization. H eading [1953] and Budden and Clemmow [1957] have given 
similar coupled equations governing the case when incidence is oblique upon an ionosphere in 
which the magnetic field is ver tical. 

When both the direction of propagation and of the magnetic field are oblique, four co upled 
equations are used, each of the first order. These were first introduced by Bremmer [1949], 
but more systematically using matric techniques by Clemmow and H eading [1954] . The most 
up-to-date account of these first order coupled equations is found in chapter 18 of the recent 
tex t by Budden [1961]' but there the fundamental simplicity and beauty of the matrix form ula-
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tion is often disguised under a multitude of symbols and approximations. Moreover, certain 
important features of the matrices occurring in the coupled equations together with the possi­
bility of nonsingular embedding do not as yet appear to have been recognized. 

The coupled equations exhibit those ranges of height in which the propagation of the 
four characteristic waves takes place almost independently. Any point at which many of the 
coefficients in the equations become singular denotes that coupling takes place there between 
the characteristic waves concerned, the other characteristic waves not embraced by the coup­
ling still being propagated independently. 

The present investigation consists of an examination of the equations near the coupling 
points without the necessity of introducing approximations . It will be proved that the equa­
tions governing the coupling process at a coupling point are embedded in the equations 
governing the propagation of the waves as a whole, such that all singularities in the coefficients 
of all equations are removed at the coupling point. :Moreover, although ionospheric propa­
gation is represented in terms of four first order equations, yielding four characteristic waves 
in a homogeneous or slowly-varying medium, generalization to wave processes governed by 
n first order simultaneous differential equations yielding n characteristic waves is eas ily 
possible using matrix notation. The sphere of usefulness of the present investigation will 
thereby be extended if n equations are considered. 

2 . Transformation of an rth Order Linear Equation 

The preliminary study of a given linear differential equation rather than a set of first 
order simultaneous linear differential equations is necessary in order to define a principal 
embedded coupled matrix. 

The rth order linear equation in the dependent variable u 

where bracketed superscripts denote differentiation with r espect to z, and where the r 
coefficients Vo, VI, .. . , VT_ I are given functions of z, may be expressed as a linear system using 
matrix notation as follows: 

r:, 
dl 

dz ... 
U (T- 2) 

U (T-1l 

(2) 

or 
u ' = T u (3) 

say, where u denotes the column consisting of T elements and T denotes the square T X T matrix 
shown consis ting of the coefficients occurring in (1) . 

When the matrix T is diagonalized by means of the transformation 

u= A f, 

the roots of the characteristic equation 

det (T - qI) = 0 

are reqllired. This equ ation has the explicit form 
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possessing the r characteri tic roots ql , q2, . .. , qT. 
The elements of the characteristic vector corresponding to the root qj consist of the 

cofactors of any row of the matrix T - qjI ; in particular, the cofactors of the last row are 1, 
qj, q/, . .. , q/-I r espectively. Hence the matrix A of the transformation may be taken to 
be 

tbis is an altc1'nant matrix, whose determinant is given by 

T 

detA= IT (qt- qj)' (4) 
i, j= l 
i> j 

It follows that A is nonsingular throughout any domain in the complex z-plane in which all 
the r characteristic roots are distinct. 

Equation (3 ) becomes 

A'f+ Af' = TAf, 

or 
f' = A - ITAf- A - IA'f. 

The matrix A-I T A is now a diagonal matrix Q, whose diagonal elements consist of the r 
characteristic roots in order; hence 

f' = Qf- A - IA' f. (5) 

If solutions of (5) are kno'wn, then u = A f are the solutions of (3), and in particular the solution 
of (1) is 

(6) 

The r eqs (5) constitute a set of first order coupled equations equivalent to the original 
eq (1). The diagonal matrix Q will be called a principal uncoupled matrix, while the terms 
A - I A' f will be called the coupling terms, though strictly speaking coupling arises only through 
the nondiagonal elements of tbe matrix A-IA'. This product A-lA' , whose explicit elements 
are calculated in section 5, may be called the coupling matrix. It is the presence of th is coupling 
matrix that renders the r eqs (5) simultaneous and not independent, but the coupling matrix 
-vanishes if the coefficients in the original eq (1) are constants, owing to the presence of dm-iv­
atives in every element. The r transformed equations are then completely independent, and 
their l' solutions provide r characteristic waves independently propagated when a physical 
picture is employed for their interpretation. Tben 

where the OJ are arbitrary constants of integration. 
When the coefficients in (1) are not constan ts, usually some parameter such as the frequency 

or some proper ty of the m edium attains values that cause the elements of the coupling matrix 
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to be small in magnitude compared with the clements of the principal uncoupled matrix, 
provided a domain is considered in ,,-hich A is nonsingular so that its reciprocal exis ts. Under 
these circumstances, the nondiagonal elements in the coupling matrix are neglected, yielding l ' 

independent equ ations, whose solutions represent l' characteris tic wayes propagated independ­
entl~7 through the slowly yarying medium. 

In this paper , equ ations of the form (1) 
roots become equal at a par ticular point Zoo 
introduced, defined by the l' lineal' equations 

are considered only when all the l' characteris tic 
To this end , l' new functions a, {3, . . . , pare 

(7) 

where k = exp (27rij1') . The m atrix of the coefficients in these equations is nonsingular, 
since it is an alternant whose elements consist of the 1'th roots of unity 1, k, P, . .. , !c'-l 
raised to the appropriate powers. The l' new functions are therefore uniquely defined. 

Now 

But if p is an integer , 

so if p~O, it follows that 

H ence 

r 
2: kp (J- ll = O. 
j= l 

o:= vr _I/1'. 

(8) 

For example, when 1' = 2, a and {3 are merely th e two terms that arise when the quadratic 
equation is solved using the standard formula, the familiar ± signs being associated with the {3 . 
When 1'= 3, {3 and 'Y arise when the redu ced cubic is solved by Cardan's method. 

To lay the basis for the following sections, V,_1 is now chosen to vanish identically, incli­
ca ting that 0:= O. It will be seen in the general theory, however , that no loss of generality 
OCClU"S on account of this assumption. Coupling is then studied by postulating that the l' 

characteristic roots b ecome equal at Z= zoo Under these circumstances, when a is omitted 
from (7) and when the l' q's are given equal nOD-zero values, the rank of the matrix of the coeffi­
cients of the right-hand side is 1'- 1, since the l ' linear expressions are dependent, while the 
rank of the augmented matrix is 1'. The equations are therefore inconsistent. If on the other 
hand the l' equal values of the q's are zero, the firs t 1' - 1 equations (7) yield (3 = "( = ... = p= O. 
since the matrix of the coefficients of these first 1' - 1 equations is nonsingular. 

H ence, at Z=Zo, it follows that 

moreover , the coefficients of (1) in which V'_ I = 0 consist of sums of products of these T roots, 
so 

VO(ZO)=1,'l(ZO)= ... =V,_2(20) = 0. 
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This is too general for useful progress to be made, although the theory to be presented is 
equnJly vl1lid wi thou t an? further simplifying assumptions. The special choice is made that 

leaving a differential equation 

dTu 
dzT=vO(z)u . (9) 

When r = 2, it should be noticed that no assumption is in fact made, and it is just this case 
that usually governs wave reflection and wave coupling. The r valu es of the characteristic 
roots ar e now given by 

Another reason why these simplifying assumptions are aclvn,ntageous concerns the po si­
bility of writing down approximate solu tions of (9), since (9) will form what may be Lmmed 
a comparison equation embedded in an equation of higher order. Approximate solu tions of 
this latter ge ner al equ ation n,re given in terms of approximn,te solulions of the compariso1'1 
equation. When 1' = 2, (9) can be solved approxim ately in Lerm.s of the Airy integral, while 
if r > 2, solu tions may be obtained in terms of functions investigated by H eading in aeries 
of papers [1957 a and b ; 1960], though such approxim ations have not as yet been published. 
Bu t if (1 ) is considered with Vr_l == 0 but with no further assumptions, useful approximate n,na­
lytical solutions are n,]most impossible to obtn,in lIear a poin t Z= 20 n,t which r chm·acteristic 
roots becom e equal. 

Under these assump tions, matrix T becomes 

r: 1 0 0 0 0 

0 1 0 0 0 

I .. ......... . ..... . ..... (10) 

l: 0 0 0 0 1 

0 0 0 0 0 

where Vo is now written simply as v. 

The characteristic equation qT_V= O has the r roots 

and the alternant matrix A factorizes thus: 

r: 0 0 0 r: 1 1 1 

vl/ r 0 0 k k2 
k'-' l 

A~ l : 
0 V2! T 0 ll .. k' .. k •... 

k2 (r- I) (11 ) 

. . . . .... ... ....... .... ~:.~:,; J 
0 0 v(r-Il ! T 1 k'-l k2(r-ll 

= VK 

say, where V and K are defined by these two square matrices. 
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The matrix K being constant, it follows that 

~KJ: 
0 0 l 0 0 0 

V-l i T 0 . .. 0 VI ITV' ITV 0 

"-,,, •. J K lo n 0 0 2V2/ TV' I TV 

....... . ... . .......... 

0 0 0 

=v' K -l 
0 1 0 

K. 
TV 0 0 2 

. . . . .. 

Clearly coupling only becomes large near a point at which v' lv is singular. 
The explicit elements of this product have been calculated by Heading [1960] . They are 

(A- IA') =~.r- l, 
j } v 21' 

The coupled eqs (5) then take the form 

vl/T 0 0 

0 kVl/T 0 

0 0 k2vl l T 

. . . . . . . 

ro / 1 k'~ 1 .. ·1 
v' r- l v' k- I1_ 1 0 k~l· . · 1 f 

f--·- f - - J . v 21' TV 

lk-,l_l .. . k-~1_ 1 .. . 0 ......••• 

(12) 

(13) 

(14) 

The first square matrix on the right hand side of (14) is the principal uncoupled matrix. 
The coupling terms become singular whenever v'lv is singular; such a point is known as a 
reflection or coupling point. Mathematically speaking, such a point is called a transition 
point. The coupling terms are singular at this point, but the original equation 

u'= Tu 

possesses a special matrix (10) , associated in this particular case with no additional coupling 
terms. An t X T matrix of the form (10) will be called a principal embedded coupled matrix. 

3. General System 

The equations governing ionospheric radio propagation may be expressed as four linear 
first order differential equations with four dependent variables, given for example by 
Clemmow and Heading [1954] . }'10re generally, consider n dep endent variables el, e2, ... , 
en satisfying the n linear first order equations 
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Tn maxtrix notation , 
e' = Te, (15) 

where the n X n matrix T co nta ins n 2 elem ents each of whicll is a give ll fUllctio n of z . In 
the ionospheric case, n = 4, ,tlld som e of the elem en ts of T are zero, while others a re complicated 
[unctions of heigh t, the expli ci t forms of which would obscure the essell ti,d s impli city of the 
present argument. The matrix T is therefore more complicated than th aL occ urring in (3) or 
the principal embedded coupled m atrix (10). 

If the dependent column e is now tr ansformed to the column f b~- the Lmnsrormat ioll 

e= Sf, (16) 

i L follows that 
f ' = S - ITSf- S -1S'f. 

If th e n chamcteristic roots of T are denoted by ql, q2] . . . , qn, lel Sj be t ht' colum ll matrix 
formed from the cofactors o[ T - qjI taken along any suitable r ow. Then the t ra nsformat ion 
matrix 

diago nalizes the matrix T ; t hat is, S- IT S = Q consists of the n rooLs arranged ill order dOII"1l 

the leading diagon al. Tile coupled equations becom e 

f' = Qf-(SI82 ... 8,,)-I(SIS2 ... s ,,)' f 

= Qf- 8 - 1S'f, (17) 

v,did at all points at which Sis Ilonsingular. 
If desired, a change of independent vttr iable ma~' eas ily be effected. If r= r(z), lil(' 1l 

yielding 

df = df r', 
rlz dr 

df =~ Qf- 8 - 1 dS f 
dr s' dr . 

Simil n,rl~- , a ch ftllge of dependent v,tri ables may be made by pl ac ing 

where the n functions ¢ j(z) denotes n given functions. In matrix form, let 

f = <I>g, 

where <I> is a diagonal matrix co nsisting of the n functions ¢ j(z) arranged ill o rder down LIl e 
leading diagonal. Then 

or 
<l>g ' + <I> ' g = Q<I>g- S -IS'<I>g, 

g ' = <I> -I Q<I>g- (<1> -1 <1> ' + <I> -IS -18 ' <I»g 

= Qg- (S<I» - 1(8<1» ' g , 

implying that these eq uat ions would have been produced had S<I> been used [o r the tntlls fonnu ­
tio n matrix (J 6) rather tlmn 8. The ch ar acteristic vector Sj is merel~' multiplied throughout 
b.v ¢ j. 
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Now each coftwtor of T- q,I is a polynomial of degree n - 1 ftt most in qj, the coefficients 
being independen t of the suffix j. Generally, 

rpOlynOmial 1 of degree n- 1 at most in qjl 

s .= polynomial 2 of degree n - 1 at most in qj 

, lpOlynOmi~l n of degr~" ~- ; atmoeL in q,j 

rth e n coeffi cients of polynomial 1 

_ th e n coefficien ts of poly nomial 2 

lhC n coeffi,"eo'; of po;ynomial n 

say, where P denotes the n X n matrix formed from the coefficien ts of the n polynomials. The 
last column of P consists of n - 1 zero elements, while th e remaining elements is unity (when 
n is even), since only one polynomial can be of degree n - 1, the others being of degree n - 2. 

Then 

= PA, 

where A deno tes the alternant matrix consisting of the roo ts and their powers arranged in order. 
It follows that 

8- 18' = A -IP- I (PA' + p I A) 

= A-IA' + A- IP- lP' A. 

The coupl ed equations (17) take the form 

similar to the set (5) apart from the additional coupling terms A - I P- I p I A f. As before, Q 
denotes the principal uncoupled matrix, A - I A' is the primary coupling matrix and A - I P-I p I A 
is the secondary coupling matrix. 

4. Integral Equation 

Let the matrix A- I A' be separ ated into the sum of two parts, D and (A - I A' - D) say, 
where D is an arbi trary di agonal matrix, though this may preferably consist of certain diagonal 
terms chosen from the explicit representation of A- IA' given in the following section . Then 

fl = (Q- D)f - (A- IA /- D + A - lp - Ipl A)f , 
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where the matrix Q- D is diago nal. 
Let fo be a solu t ion of the equ a tion 

f' = (Q- D)f , 

this equation r epresenLin o' in eErecL n independen t lineal' equa Liolls . Let Fo deno te the n X n 
diagonal matrix conta ining the clem ents of fo arranged down the leading diagonal. Consider 
the integral equ a tion 

where N denotes ftn ftrbi t l'1ll'Y cons tant diagonal matrix and a an arbitrary constan t. 
This is the r equired in tegral equation, for differentia tion yields 

f ' =Nf~-F~ i Z F01(A - lA' - D + A- 1P- 1P' A)fdz- FoFol (A - lA' - D + A - IP-1P' A)f 

=Nf~-F~Fo l (Nfo-f)-(A - IA' - D + A - lP- 1P' A)f 

[rom (19). 

BuL 
F~= (Q- D)Fo 

since all m atrices arc diftgonal , so 

f ' = N (Q- D)fo-(Q- D)(Nfo- f)- (A- IA' - D + A- IP- IP' A) f 

= (Q- D)f-(A- 1A' - D + A- IP-IP' A)f , 

(19) 

sill ce N commu tes with (Q- D ). This clemonstnttes th e equi\Talence of th e difl'ere ntj ~11 a nd 
in tegral equ fttions. 

5. Explicit Form of the Primary Coupling Matrix 

In order to appl'eci~), t e m ore clearl~- the clHtrac ter of the coupling (erm.s A- IA' f , it is neces­
sary Lo evftlua te th e expli ciL form of the produ ct A-IA' . 

Th e r eciprocal of the n th order altel'nn.n t matrix 

mn,y- b e calculated to hftve the form 

(_ 1) n- ISn_1 (ql = 0) 
(ql) 

(_ 1)n- 1Sn_1 (qz= O) 
(qz) 

(_ 1)n- zS n_Z (ql = 0) 
(ql ) 

(- 1) n-ZSn_z(qz= O) 
(qz) 

l· ... . (~ 1):~ 'f;,,),(q·~ O) ... (~1) :-'f;.)~(q" ~o; .. ... .... ~S '(~i~~; .... (:;) .... .. . 
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Here, S oC == 1), SI, S2 , ' .. , Sn- l are the elementary symmetric functions of the n quantities 
ql, q2, ... , qn' The symbol Sp(qs= O) is used to denote t he algebraic expression Sp when qs is 
replaced by zero . The symbol (qp) is used to denote the product 

where 
F = det (qJ- T). 

It can then be seen that 

and 
(A' ) ij= (i- I ) qj - 2q~ , 

so the general element in the product A-lA' is given by 

n 
= ::8 (_l)n-kS n_k( qi=O) (k- l ) q7-2q~/( qi) ' (21 ) 

k=l 

In order to simplify this expression, the polynomial of degree n-l is formed, whose zeros 
are ql , qz, ... , qn but with qi omitted. 

This is 

11- 1 

=2: (- 1) IJS1J(qi= O)qn- p -l 
1'=0 

(withp = n-k) 

yielding upon differentiation with r espect to q 

° ( F ) _ ~ ( 1),,-kS ( - O)(k 1) k-2 ~ -- - L-J. - n-k q,- .- q . 
U q q- q; k= l 

If i,t- j , this result transforms (21) thus: 

(A -1A/)ij=~ [~(~)J 
(q;) oq q- qi q=qj 

- q; [oF!Oq F ] 
- (qi) q- qi - (q- qi)2 q=Qj 

=~.(qj), 
qj- qi (q;) 

(22) 

(23) 

since F vanishes when q= qj. Out of the n-l factors in (qj) , the factor (qj- qJ obviously 
cancels with the factor (qi- qj) occurring amongst the n-l factors of (qi)' 

On the other hand, when i=j , the left-hand side of (22) may be written as 
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\' icldi no' . " 

being the sum of n-l partial fractions. 

6. Classification of Transition Points 

A specular transition point (a r efl ection or coupling point in physical terms) exists at a point 
z= zo in the complex plane at which two or more characteristic roots attain equali ty. 

A transition point of order two exists at a point where ql = q2 ; such a point may be deno ted 
b~' Z= Zl2. The first and seco nd diagonal elements ench contain one partial fnLCtion with a 
denominfttor (q l- q2 ), so this par ticular pnrtial fraction (but no others down t he lendin g 
digo nal) is sing ular at the tr ansi tion po i nt. 

Equation (23) shows that evmy nondiagnonal clement is singular at Zl2 alollg rows one and 
two onl:I-. But only columns one and two have q; ft nd q; r espectively in their numerators ; 
these derivatives m ay be singular at Zl2. There is, however , a difference in the order of m agni­
tude of th e various co upling terms neal' the inguhri ty Z12. For the co upling coeffic ients 
(A- lA' ) Ii (i = 1, 2) are larger in order of magni tude when .f = 1, 2 th ft n when.f = 3,4, ... ,n. This 
impli es that co upling exists mainly only betweenf, andf2' and thft tf3,J4, ... ,j~ are J'elfttivcl~­
freC' from ('oupling with f l and.i~ . In fact, the 2 X 2 matrix co ntaining t he first a lld sC'co nd 
rows ft nd the first and second columns is the d ist in ct fftctor in determining the coupled solu tion 
neal' Z 12. 

If ql fl,nd q2 are expressed in the form 

elC'arly /3 = 0 at the transit ion poin t, while titefiJ'st part a= ~(ql+ q2) is It more irrelevant tC'l'm 
in determining the chamcter of the co upling at the tn:tnsition point. 

SimilfIJ1y, tmnsition points of order two exist whenever q,, = qb; such points may be repre­
se nted by Z=Zab' Altogether , ~n(n- l) sets of second order transition points exist in the z­
plane. The solution 1'01' /" ~tnclfb ncar Zab is locally associated with a 2X 2 matrix taken from 
the a- and bth rows and from the a- and bth columns of A-IA'. 

The determination just considered of the important terms govel'lling the co uplin g process 
is cl early unsatisfactory, since infinite terms occur throughout. The embedding tmnsfonnlltion 
discussed in the next sections removes this uncertainty and yields a clearer picture of the 
coupling process than the matrix A-lA', which merely shows where the coupling occurs . 

Every nth order equation must of necessity possess these specular transition points of order 
two, since the~T arc m erely given by the solu tions of the well-defined equations q,, = qb' But 
some equations mlly possess transition points of higher order, not as a matter of nece sity but 
exceptionally. If a point exists at whi ch q,,= qb= qe, the point Z"be is called a third order tran i­
tion point. All elem ents in rows a, b, c of the ffirltrix A-lA' are now singular at the point Zabe, 
bu t oilly Lh e columns a, b, c o[ these ],ows prove to be of importance, so the 3 X 3 maLrix taken 
from these tlU'ee rows and columns is the determining factor for the coupling beteenfa,./b, f e. 

Sim.illll' argumen ts may be used to define an 1' th (r~n) order transition point. Such a 
point exists if qa= qb= qc= ... at Z=Z"bc . .. , where r oJ the chamcter istic roots a,ttain 
equality at this point. The essenti,d coupling between f a, fb, f e, ... is determined by Lhe 
l' x.. r matrix selected from the appropl'ia te rows ,wd columns of A - 1 A' . 

605 



These l' values of the roo ts m ay be expressed 
purpose of this paper i t is assumed that qj= a+ kJ-l (3 . 
tion is thereby made. 

according to the schem e (7) , but for tb e 
For the usual case when T = 2, no assump-

It should be no ted that of the r em aining n - r )'oo ts, s of these m ay also fl ttfL in equali ty at 
Z=Zabc . . .. If their common valu e 'Y is no t equal to a at Zabc . .. , then this set of s variables is 
not coupled to the previous set of l' variables . 

If various characteristic roo ts attain equali ty onl~- as Z---? OJ for a cer ta in r ange of H.rg Z , the 
coupling is described as continuous coupling rather tha n specular . 

Finally , irregular coupling m a.y occur at points where the matrix P becomes si ngular , 
or fl.t points where one or more of the characteristic roots b ecome singular. I t is not in tended 
to discuss this form of coupling here, since i t docs not appear to be am enable to systemfl. tic 
treatm ent. 

7. Embedding Transformation 

Specular embedding is defined wi th respect to a particular transition point Zo of order r~n . 
The first order coupled cqs (18) in the n variables are to be trfl.nsformecl in such a WlL~' that 
the T vari ables associa ted wi th the transition poin t appefl.r in the n ew equ fl.tions wi th a principal 
embedded coupled matri x (similar to (1 0)) , while the rem aining n - r variables no t associa ted 
with the transition point appeal' wi th a principal uncoupled m atrix (a diagonal m a trix), in 
such a way that all coupling terms in all equations are nonsingular at Zoo 

The independent propaga tion oJ waves not afI'ected by the coupling is thereby exhibited , 
together wi th the expli ci t form of the rth order equa tion sa tisfied by the l ' coupled waves . This 
coupling is seen to be independent of the remaiHing n - r waves. 

The general coupled equa tions 

f ' = Qf- A- IA' f- A- lP- lP ' Af 

are assumed to possess a transition point Zo at which ql = qz= . .. = qr' If qj= a+ ki - 1 (3, 
where k= e27ri / r, a and (3 being functions of z such tha t (3 = 0 at Zo, a new column g is defined such 
that 

say, where Ip deno tes the p X p uni t matrix. Then 

E ' g+ Eg ' = QEg- A-IA' Eg- A- IP - IP ' AEg, 
or 

N ow 

( aIr E- IQE- E- IE' = Q- 0 ~n-) 
(3 0 0 0 0 

0 lc(3 0 0 0 

0 0 k2(3 0 0 

o 0 0 

l>:: o 0 

= ( (3: , : n- ) 
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,1:" , where K r is the diago nal matrix with elcments 1, k , P, ... , k r- 1 and Qn-r is the diagonal 
matrix with elements qr+ l,· . . ,qn' 

Equation (24) now becomes 

Finally, a new column h is defined, satisfying 

" 'here 

Sll" , wherc B is Ilil ,11tel'lHlIl t matrix simil f\, J' to (11). 

or 

Equation (25) now becomes 

o ) R-1h- (E-IA-IA'E + E-lA-1P- 1P' AE)R-1h, 
Q n-r 

(
f3K r 

h' = R 
o 

o ) R- 1h- RR-1I-R(E- lA -IA' E+ E- lA- 1P-1P' AE)R-1h. 
Q n-r 

The origin al eq (15) i lra nsfo rmed illlo this form b:,- the tmllsfol'mation 

e= St' 

= PAf 

= PAEg 
= PAER-1h 

(25) 

(26) 

(27) 

(28) 

In th e next sections, it will be shown that (27) possesses the required embeddin g p roperties. 

8. Embedded Equation 

The co upling matrix occulTing in (27) will be considered in two stages, frrstl:,' 

RR- ll + RE- IA -lA'ER- l 
and secondly 

Since R R- 1= I , it follows that 

Moreover, E and R commuLe owing to the specii11 forms of E and R ; hence (29) becomes 
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- R' R- I+ E- IRA - IA' R- IE 

= - E- IR' A - IAR- IE- E- IRA- JI AR- IE 

=-E- I(R'A -I+RA - I ' )AR- IE 

=-E- l(RA - I) ' (AR- I)E 

= E- I(AR- I) -I (AR- I)'E. 

Also matrix (30) takes the form 
(AER- I) - IP- IP ' (AER- I) . 

(31) 

(32) 

At all points where coupling may be neglected (and this includes Zo since the next section 
will demonstrate that all coupling matrices are nonsingular at zo), equation (27) becomes 

(
.BKr 

h' = R 
o 

(B 0 ) ( .BKT 0 ) (B-1 
- 0 In- r 0 Q n-r 0 

o ) h. 
Q n-T 

The elem ents of h are thus separated into two distinc t parts. If the first r elements are 
denoted by hT and the remaining n - r elemen ts by hn - n it follows that 

It ma,\' immedi a tely be verified that 

1 1 1 {3 0 

o 1 0 

o 0 1 

{3T 0 0 

o 1 .B- 1 {3- 2 

1 k- I{3 - 1 k- 2.B- 2 

1 k- 2{3- 1 k- 4.B- 2 

(33) 

(34) 

(35) 

Hen ce the elements of h r are associated with an equa tion containing a principal embedded 
coupled matrix, while the elemen ts of hn - T are associated with a principal uncoupled matrix. 
In fact, 

(36) 

where v vanishes H t Zoo The sepam tion of the principal terms has therefore been achieved . 

9. Nonsingular Coupling Terms 

E very elemen t in the coupling m atrices (3 1) and (32) must now be shown to be n011 -
singular at Zo o 
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The elements of A R- I oCC' lIJ"ring in (31) are considered. Since 

r: o 

o 

o 
o 

o 
o 0 0 r 0 

00 . . . : ... ~ ....... ' 0 ~. j 
it follows that the element (AR-I)/J when l ::::';i::::';n, l::::';j ::::';r, is given by 

r(AR- I) iJ= ( qi - I q~ - 1 . . . q~- I ) r 1 l (3 -1+ 1 

(k- I)H 

I (k - Z) J-I I 

L~;+ ,),- ,j 
r 

= :B q;)-1(k- 1)+I) J- l(3- 1+ 1 

1) = 1 

r 
= :B (a+ kp - 1(3) i- 1k- (p- I)(J-ll (3-1+1 

p = 1 

N ow if" (L- j + 1) is i l multiple of r, 

T 

:B e V - 1J(1-J+ 1l = r, 
p = 1 

while if (l - j + 1) is not a multiple of 1', this sum vanish es by (8) . H ence the only terms in (3 
arising in r(AR- l)i f ilre those of the form (3NT where N is an in tege r. ;'IIoreover, the lowest 
valu e of (L-j+ 1) is - 1' + 1, so N can only equal 0, 1,2, . . . H ence 

where L= Nr + j - 1, where N is a non-negative integer chosen so that 

In other words, this clement is a poly nomial in {3T. 

It I"ollows that (AR-l );J contains {3 only through terms such c\S Nt {3Nr-I{3' . 

Finally, since (AR- J)- l= (adj AR- l)/(det AR- l) the elem ents of adj AR- I are furt her 
polynomials in (3r, while 
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det AR- I= (det A)/ (det R) 

n 
= IT (qi-q)I{3 I+ 2 . . . +(r- I) det K 

i ,j= l 
i>i 

from (4) and (26). Now when i andj are both less than or equal to T, the relevant factors in 
the numerator are 

which is proportional to 

Hence det AR- I does not contain {3 as a factor , so the matrix AR- I is nonsingular at Zo o 

In the product (AR- I)-I (AR- I)" each element contains terms of the form (31IU({3 N')' , 
where M2: 0, N2: 0 are integers. This is proportional to {3(l\HN)r-I{3', with 1112: 0, N~ 1, the 
lowest power of {3 yielding {3r-I{3'. If {3, when expanded in terms of Z-Zo commences with a 
term (z- ZO) b, then {3r- I{3' contains the factor (z- zo)br- I. This is nonsingular at Zo if bT- l2: 0; 
that is, if b2: I l l'. This implies that v(z) ={3r, when expanded as a power series in terms of 
Z- Zo , should commence with a term that is linear at least. 

Hence the elements of the primary coupling matrix (31 ) are nonsingular at zo under these 
circumstances. The secondary coupling matrix (32) is also nonsingular at Zo, since it has been 
shown that AR-I is nonsingular there. It is assumed of course that P is nonsingular at Zo 
in the definition of specular embedding. 

10. An Explicit Case 

To deal with an explicit case, consider a second order transition point associated with the 
third order differential equation 

U'" = V2U" +VIU' + VoU. 

Equation (3) is 

d: [:' ]~[: 
1 or ] 0 1 U' 

V2 lUff . u" Vo VI 

The transformation 

u+: 
1 II 
qz q3J f 
q~ q5 qi 

yields equation (5), which, when expanded b~r the results of section 5, becomes 

~+~ 
ql-q2 q3- ql 

~+~ 
q2- ql q3- q2 

~+--2L 
qZ- ql qz- q3 

~+~ 
q3- ql q2 - q3 
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If Zo is a point at which ql = q2 , and if ql = a+ /3 , qz= a - /3, the coupling matrix has thei'orm 

1
0" + /3' 0/.' + /3' 0" - /3' 0" - /3' 
ql - qa+~ ~-+ qa- ql 

0/.' + /3' 0" + /3' 0"-/3' 0" - /3' - ---+---- ---+---

l 
~ ~-~ ~ ~ - ~ 

a' + /3' +0/.' + /3' a' -/3' a' - /3' ---+---qa - ql q2 - q3 q3 - q2 ql - q3 

Singularities arise on account of the terms /3',1 //3, and /3' //3. If /32 is app roximately lineal' 
Ilear Zo, of the form Z-Zo, /3.' (z-z)t, so the three singular terms are of the forms (z-zo) -t, 
(z-zo)-i and (z-zo)-l l'espectively. The /3' //3 terms are obviously of a higher order of magni­
tude than the others; these give rise to the particular matrix 

bu t other sillgular elem ents arise in rows 1 a nd 2 and columns 1 Hild 2. 
The embedding tmnsformn,tion (28), in which P = I, becomes 

u= AER- lh 

~~ [:: 
1 1] [OXP (fool,) 

0 

q3 0 exp (J adz) qz 

q~ q~ 0 0 qi 

[ 

exp (J adz) 

= a exp (J adz) 

(012+ /32) exp (J acZz) 

o 
exp (J adz) 

20' exp (J ad z) 

or /3- 1 

- /3- 1 
o II 
1 0 0 

j whil e the coupled eqs (27) become 

1 

o 

o 

using results (3 1) and (35). The principal matrices yield approximately 

exhibi ting the embedding propel't~- . It should be pointed out that when approximate solutions 
are written down , i t may be necessary to r etain some of th e coupling terms. For example, in 
the last equ ation, an addi tional term ill ha must be retained on the righ t hand side if the W.K.B. 
approximation for h3 is to be obta ined. 
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II. A Special Property of the Coupling Matrices 

Under the original transformation (16), the coupling matrix is 

(37) 

while under the embedding transformation (28), the coupling matrix is 

(38) 

It is supposed that the last coupling matrix occurs when the first l' elements of for h are coupled 
together at Zo o 

However, the n-1' X n-1' square matrix formed by crossing out the first l' rows and the 
first l' columns of both (37) and (38) are identical. This may be simply demonstrated by 
partitioning all the matrices between rows l' and 1' + 1 and b etween columns l' and 1' + 1, and 
expanding the products. 

Hen ce the n - 1' equations (1'+ 1SjSn) in the elements of f 

j ;=qdj+coupling terms in .fl, .. . ,}r+coupling terms in i r+1 , ... i n 

and the n - 1' equations (r+ 1sjsn) in the elements of h 

h;= qjhj+coupling terms in hI , ... , hr+coupling terms in hr+l' ... h" 

are identical as far as the coupling coefficients multiplying j r+l, . . . ,j~ and hr+I' . . . , 
hn respectively, are concerned. 

Hence any coupling diagonal terms not neglected in the equation forj; (1' + 1SjSn) are 
identi cal with the coupling diagonal terms not n eglected in the equation for hi (r+ lSjSn). 

12. Forsterling-Type Coupled Equations 

.' 

• 

As far as ionospheric radio propagation is concerned, two differential equations each of the e'l 
second order may be coupled together. The original form given by F6rsterling [1942] and that 
considered by Budden and Clemmow [1957] are specially simple, in that the characteristic 
equation for q reduces to a biquadratic. This special feature disguises the more general formu-
lation that is possible. 

The general formulation of this n ew typ e of coupled equation is as follows. Let Zo be a 
t ransition point of order 1', namely a point at which ql = q2 = . . . = qr' Then the n coupled 
eqs (27) (with no singularities in the coupling coefficients at zo) may b e re-expressed in the form 
of n - 1' + 1 equations in n - r + 1 variables, taking the form 

h ( ~ ) = iJrhr+coupling terms 
h~_r=Qn_rhn_r+ coupling terms . (39) 

The coupling terms involve only the n - r+ 1 variables hr and hn_r- This result may be '\ 
shown m erely by eliminating hI , h2' . . . , hr _ 1 from the last '11 - 1' + 1 eqs (27), the equation .II 
involving 11,; being differentiated 1' - 1 times in the process. The coupling terms now involve 
derivatives of hr, but the coefficients themselves are also derivatives, which would be small in 
a slowly-varying medium. 

Similarly, if another transition point of order s (2S ss n - r) occurs such that s of the q' s 
in Qn- r become equal, the number of equations m ay further be reduced. 

This process is explicitly exhibited for n = 4, such that a transition point of order 2 occurs at 
Zo at which ql = q2, and another transition point of order 2 at Zl at which Q3= q4' 

The given equation 

e' = Te 
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is transformed into 

h'T 1 0 : T+coupung term, 

{32 0 0 

l: 0 q3 

:.J 0 0 
b~~ the transforma tion 

e = PAER- 1h, 

wher e 

E~re,p (~adZ) R= 

:1 
0 0 0 , 1 1 0 

exp (Jad z) 0 0 {3 - {3 0 

l 0 0 1 0 0 0 1 

:J 0 0 0 1 0 0 0 

Simihdy, if qa= 'Y + o, q4= 'Y - 0, a nd if 

F~r; 0 0 0 

l' s~r; 0 0 

:1 1 0 0 1 0 

l: cxp (J 'Ydz) 

oxp (;,J l: 0 0 1 

'J 0 0 0 0 - 0 

then the tr l1nsfol'mation 
e = PAER- IFS- lj 

(in whi ch E , R- I, F , S- l ,Ll'e m.utually commut<lti ve) t.ransforms the cqu lltion in to 

j' = 0 1 0 :i +COUPling tm-me 

(32 0 0 

(40) 

0 0 0 ~J 0 0 02 

wher e the coupling terms ar e nOllsing ular at 20 and 21 . 

N'ow le t 

m = G) 

and two simultaneous m a trix equations ar e formed involving m and n ; t hat is, eq (40) 1S 

mult iplied first by G ~ ~ ~) and th en by (~ ~ ~~} This yi elds 

m' = n+ Wm + Xn, 

n , = ({32 0) m+ Ym + Zn 
o 02 

= ..:lm + Ym + Zn, 
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say, where W, X, Y, Z are 2 X 2 matrices originating by partitioning the 4 X 4 coupling matrix 
III (40). 

Column m is now eliminated by differentiating (42 ) : I ,. 

from (42). 
derivative. 
terms. 

n" = .dm/ + .d/m + Y/m + Ym/ + Zn' + Z/n 

= (.d+ Y)m/ + (.d/ + Y/)m+ Zn / + Z/n 

= (.d + Y)(n + Wm+ Xn) + (..:l / + Y/) m + Zn/ + Z/n 

= .dn + (.d W + YW + .d/ + Y/)m+ Zn/ + (.dX+ Y + YX + Z/)n 

(from 41) 

= .dn + (.dW + YW + .d/ + Y/)(.d+ Y)-I (n /_ Zn) + Zn/ + (.dX+ Y + YX+ Z/) n 

.dn is the only term on the right hand side whose coefficient does not involve a 
H ence .d is the principal uncoupled matrix, while all the other terms are coupling 

The coefficient of n / is (.d W + YW + .d/ + Y/ )(.d+ y )- l. A subsidiary change of variable 
will eliminate n~ from the first equation and n~ from the second equation if required. 

The above process 1l1.ay obviously be carried out for any number of variables . 

13. Continuous Coupling 

Let the elements of the original matrix T (see eq (15)) be functions of Z that tend to 
constant limits as, say, Z-'> - 00 along the negative real axis . Then the n characteristic roots 
also tend to limiting values as Z -'> - 00 • 

If a range of real Z existed such that all the elements of T were constants throughout that 
range, then all the coupling coefficients would be zero, in which case the n coupled eqs (18) 
reduce to 

f /= Qf, 

or 
f ;= q.ti" 

implying n-independently propagated 'waves. 
More generally, if a domain of z is chosen throughout which thc coupling coefficients are 

small, the coupled equations reduce to 

where all nondiagonal coupling terms have been neglected; such approximate equations yield 
the W.K.B.-type solutions with arbitr ary constants . These approximate solutions represent 
the n characteristic waves in the medium, and they are independently propagated whenever 
coupling may be neglected . In particular, only one characteristic wave may be considered, 
namely f1 ' with.f2- i 3= . . . - j n= O. For this particular solution 

e= Sf, 
so 

thereby providing in this domain the varying ratios of the values of the n original dependent 

, 

0--

1 
.~ 

variables associated with this characteristic wave. "1' 
The problem demanding attention concerns what happens to these ratios as z-) - 00 • 

The coupling coefficients may not be neglected when : 
1. coupling is specular; the previous embedding theory yields equations dealing with this 

case; 
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ii. co upling is irregular ; namely, when P- 1P' or when one of tbe q's is singular. Thi 
paper is not concerned with this case; 

iii. coupling is conLinuous, namely when some of the q's tend to equality as z ---'7 -co. 

To be definite, let qt, q2, .. . qr have a common limit as z - co Then the denominators 
of many of the coupling coeffi cients considered in section 5 tend to zero. Thus continuous 
coupling b etween qt, q2, . .. , qr is embedded in the background provided by the complete n 
equations. Previously, specular coupling has been explicitly exhibited without approximations. 
H ere, however, it proves ad vantageous to use approximations in the equations. 

110reover , it is assumed that the coupling coefficients do not becom.e large in the range of 
continuous coupling. Every denominator of the form (qt - qj) , l ~i,j~r, contains a derivative 
in its numerator, and as Z ---'7 -co it is assum ed that the derivative is such that the whole ratio 
remains finite at least . 

Above the reg ion or continuous coupling, a definite approximate solution is cOllsidered, 
namely j1, withj2= j3= ... f n= O. Within the r egion , e = 8 f, withjr+ t- j r+2= ... = j .. = O 
tbroughou t. Then 

ratios dep ending upon the 1' - 1 vahlCsjd fl ,j3/J1, ... , j r/JI. 

These ratios are denoted by 1'2,1'3, ... , 1'r respectively , and the ir ini tial values above the 
reg ion of continuous coupling are all zero. 

The coupled equations 
f' = Q f - 8- 18'f 

simplify to 

in which t he diagonal clements in 8- 18 ' ma)' often times be neglected since these would be small 
compared with the qi. 

A new set of 1' -- 1 equations may now be derived, with 1'2, 1'3, ••• , r r as the dependen t vrui­
abIes. The differentiaLion of 1' i (2~i~T) yields 

bein g 1'-1 simultaneous nonlinear differential equations for 1'2,1'3, •• . ,1'r. These arc the appro­
priate differential equations governing con tinuous couplin g, Integration starts wi t h zero 
values, y ielding 1'2, 1'3, . . ., 1'r as Z ---'7 - co, which yield in turn the req uired rat ios (43) of t lle e's 
associated with t his characteristic wave. III the region of continuous coupling, the original 
ratios Sit: S2t: . . .: S nt are converted into the fin al values. 
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