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Reflection and coupling processes exhibited by plane electromagnetic waves propagated
in an inhomogeneous horizontally-stratified anizotropic ionosphere are associated with dis-
crete transition points or with continuous coupling regions. These arise when the fourth
order differential equations are written in first order coupled form, and many terms in these
equations become infinite at the transition points. This procedure is rendered more precise
by means of a special linear transformation that reformulates the equations in a new way,
thereby exhibiting the manner in which local courling processes are embedded in the more
general background process of otherwise independently propagated characteristic waves.
To exhibit the power of the matrix algebra involved, the case of an arbitrary number of
characteristic waves is considered; moreover, Forsterling-type coupled equations are produced
in a more generalized form than hitherto considered, and a discussion of the equations govern-
ing continuous coupling completes the paper.

1. Introduction

The equations governing the propagation of plane electromagnetic waves in a horizontally-
stratified inhomogeneous anisotropic ionosphere may be expressed in various ways, depending
upon the particular investigation for which the equations are required. If the Oz-axis of a
right-handed set of Cartesian axes Oz, Oy, Oz is directed vertically upwards, then it often proves
convenient to use second or fourth order differential equations in the dependent variables f2; or
F,. Heading and Whipple [1952] and Heading [1955] have employed this representation when
analytical solutions of the differential equations are under consideration. The reason is that
all known analytical solutions of the field equations may be expressed in terms of generalized
hypergeometric functions, hypergeometric functions, confluent hypergeometric functions,
Bessel functions and so on, these functions naturally satisfying second or fourth order differen-
tial equations.  Such functions provide the reflection and conversion coeflicients for a particular
anisotropic model ionosphere, but by inspecting the functional form of the electric field through-
out the medium no immediate physical interpretation is possible, whereby the actual process
of wavereflection and wavecoupling may be explicitly exhibited.

Sets of equations known as coupled equations have therefore been introduced, in order to
enable approximate solutions for the electromagnetic field to be obtained, and in order to ex-
hibit directly the important physical processes of wave reflection and wave coupling. Forster-
ling [1942] considered a coupled system of two second order equations; these refer to an iono-
spheric model in which the external magnetic field is oblique but in which propagation is vertical.
Gibbons and Nertney [1951, 1952] have used these coupled equations to obtain approximate
numerical solutions for various ionospheric models, while Budden [1952] has used them in dis-
cussing limiting polarization. Heading [1953] and Budden and Clemmow [1957] have given
similar coupled equations governing the case when incidence is oblique upon an ionosphere in
which the magnetic field is vertical.

When both the direction of propagation and of the magnetic field are oblique, four coupled
equations are used, each of the first order. These were first introduced by Bremmer [1949],
but more systematically using matric techniques by Clemmow and Heading [1954]. The most
up-to-date account of these first order coupled equations is found in chapter 18 of the recent
text by Budden [1961], but there the fundamental simplicity and beauty of the matrix formula-
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tion is often disguised under a multitude of symbols and approximations. Moreover, certain
important features of the matrices occurring in the coupled equations together with the possi-
bility of nonsingular embedding do not as yet appear to have been recognized.

The coupled equations exhibit those ranges of height in which the propagation of the
four characteristic waves takes place almost independently. Any point at which many of the
coefficients in the equations become singular denotes that coupling takes place there between
the characteristic waves concerned, the other characteristic waves not embraced by the coup-
ling still being propagated independently.

The present investigation consists of an examination of the equations near the coupling
points without the necessity of introducing approximations. It will be proved that the equa-
tions governing the coupling process at a coupling point are embedded in the equations
governing the propagation of the waves as a whole, such that all singularities in the coefficients
of all equations are removed at the coupling point. Moreover, although ionospheric propa-
gation is represented in terms of four first order equations, yielding four characteristic waves
in a homogeneous or slowly-varying medium, generalization to wave processes governed by
n first order simultaneous differential equations yielding n characteristic waves is easily
possible using matrix notation. The sphere of usefulness of the present investigation will
thereby be extended if n equations are considered.

2. Transformation of an rth Order Linear Equation

The preliminary study of a given linear differential equation rather than a set of first
order simultaneous linear differential equations is necessary in order to define a principal
embedded coupled matriz.

The rth order linear equation in the dependent variable u

P =y,_1(Du V4o, (2)u"" P+, . 4o (2)u +vo(2)u, (1)

where bracketed superscripts denote differentiation with respect to z, and where the »
coefficients vy, v, . . ., »,_; are given functions of z, may be expressed as a linear system using
matrix notation as follows:

& N (0 1 0 0 e 0 0 (u 3
u’ 0 0 1 0 .. 0 0 u’
d
;l—’? o —l o nNco0PcO00ACOGAa0000G00000000a0 b (2)
W= 0 0 0 0 - 0 1 we=2
) \we o 9w vz ... Vr—y U1 \ WP
or
w=Tu (3)

say, where u denotes the column consisting of 7 elements and T denotes the square 77 matrix
shown consisting of the coefficients occurring in (1).
When the matrix T is diagonalized by means of the transformation

u=A f,
the roots of the characteristic equation
det(T—ql)=0

are required. This equation has the explicit form
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QT_L'r—IQT_l—Z'r—2QT_2— .o . — 01— 0,=0,

possessing the 7 characteristic roots ¢i, ¢, . . ., ¢
The elements of the characteristic vector corresponding to the root ¢; consist of the
cofactors of any row of the matrix T—g¢;I; in particular, the cofactors of the last row are 1,

a5, ¢ - . ., ¢/ ' respectively. Hence the matrix A of the transformation may be taken to
be
1 1 1l
Ui 2 qr
A= 5
U 7!

det A= T1 (gi—q,). &)

It follows that A is nonsingular throughout any domain in the complex z-plane in which all
the » characteristic roots are distinet.
Equation (3) becomes

A'f-HAf=TAf,
or
f"=A"'TAf—A'A’f.

The matrix A~ T A is now a diagonal matrix Q, whose diagonal elements consist of the 7
characteristic roots in order; hence

' —Qf—A'A'f. (5)

If solutions of (5) are known, then u=A f are the solutions of (3), and in particular the solution
of (1) 1s

u=fi+fot ...+ (6)

The r eqs (5) constitute a set of first order coupled equations equivalent to the original
eq (1). The diagonal matrix Q will be called a principal uncoupled matriz, while the terms
A1 A’ £ will be called the coupling terms, though strictly speaking coupling arises only through
the nondiagonal elements of the matrix A~'A’.  This product A™*A’, whose explicit elements
are calculated in section 5, may be called the coupling matriz. 1t is the presence of this coupling
matrix that renders the 7 eqs (5) simultaneous and not independent, but the coupling matrix
vanishes if the coefficients in the original eq (1) are constants, owing to the presence of deriv-
atives in every element. The r transformed equations are then completely independent, and
their » solutions provide 7 characteristic waves independently propagated when a physical
picture is employved for their interpretation. Then

f=0C; exp (g;2),

where the C; are arbitrary constants of integration.
When the coefficients in (1) are not constants, usually some parameter such as the frequency
or some property of the medium attains values that cause the elements of the coupling matrix
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to be small in magnitude compared with the elements of the principal uncoupled matrix,
provided a domain is considered in which A is nonsingular so that its reciprocal exists. Under
these circumstances, the nondiagonal elements in the coupling matrix are neglected, vielding »
independent equations, whose solutions represent » characteristic waves propagated independ-
ently through the slowly varying medium.

In this paper, equations of the form (1) are considered only when all the » characteristic
roots become equal at a particular point z,. To this end, » new functions «, 8, . . . , p are
introduced, defined by the 7 linear equations

qj:a+kj~16+k2(j—l)v+ L +k(r—1)(j—1‘p’ (7)
where k=exp (27i/r). The matrix of the coefficients in these equations is nonsingular,
since it is an alternant whose elements consist of the »th roots of unity 1, &, k% . . . k™!
raised to the appropriate powers. The 7 new functions are therefore uniquely defined.

Now
T
Ur1=2, ¢
i=1

=ra-+B i k14 é k904 4 Zr JACESEASY
j=1 j=t =
But if p is an integer,
Zr) k”""”] (1—k?)=1—(k?)'=1—(k")?=0,
=1

so if p0, it follows that

T
Z kﬂ(l—l):O' (8)
j=1
Hence
a=0,_,/r.

For example, when 7=2, « and 8 are merely the two terms that arise when the quadratic
equation is solved using the standard formula, the familiar + signs being associated with the .
When =3, 8 and v arise when the reduced cubic is solved by Cardan’s method.

To lay the basis for the following sections, »,_; is now chosen to vanish identically, indi-
cating that a=0. It will be seen in the general theory, however, that no loss of generality
occeurs on account of this assumption. Coupling is then studied by postulating that the »
characteristic roots become equal at z=z,. Under these circumstances, when « is omitted
from (7) and when the 7 ¢’s are given equal non-zero values, the rank of the matrix of the coeffi-
cients of the right-hand side is »—1, since the 7 linear expressions are dependent, while the
rank of the augmented matrix is 7. The equations are therefore inconsistent. If on the other
hand the 7 equal values of the ¢’s are zero, the first »—1 equations (7) yield g=vy= . . . =p=0.
since the matrix of the coeflicients of these first 7—1 equations is nonsingular.

Hence, at 2=z, it follows that

a=¢@= ... =¢=0;

moreover, the coefficients of (1) in which »,_,=0 consist of sums of products of these 7 roots,
S0

25(20) =21(20)= . . . =0,_2(29)=0.
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This is too general for useful progress to be made, although the theory to be presented is
equally valid without any further simplifying assumptions. The special choice is made that

v (2)=0(2)= ... =0,_,(2)=0,

leaving a differential equation

T,

LY (e 0

When r=2, it should be noticed that no assumption is in fact made, and it is just this case
that usually governs wave reflection and wave coupling. The 7 values of the characteristic
roots are now given by

=k (00) " =k""1B.

Another reason why these simplifying assumptions are advantageous concerns the possi-
bility of writing down approximate solutions of (9), since (9) will form what may be termed
a comparison equation embedded in an equation of higher order. Approximate solutions of
this latter general equation are given in terms of approximate solutions of the comparison
equation. When 7=2, (9) can be solved approximately in terms of the Airy integral, while
if » > 2, solutions may be obtained in terms of functions investigated by Heading in a series
of papers [1957 a and b; 1960], though such approximations have not as yet been published.
But if (1) is considered with », ;=0 but with no further assumptions, useful approximate ana-
lytical solutions are almost impossible to obtain near a point z=z, at which » characteristic
roots become equal.

Under these assumptions, matrix T becomes

(0 1 0 0 ... 0 0
0O 0 1 0 0 0
..................... (10)
0o 0 0 0 0 1
v 0 0 0 ... 0 0J
where v, 1s now written simply as ».
The characteristic equation ¢"—ov»=0 has the 7 roots
g=H-1o"
and the alternant matrix A factorizes thus:
(1 0 0 coo N (1 1 1 . 1 )
0 o7 0 ... 0 1k fok soo LB
A= 0 0 vT o0 1 k? k* C (A= (11)
0 0 0 a0 G T " B G U Lt
=VK

say, where V and K are defined by these two square matrices.
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The matrix K being constant, it follows that

A-A=K-'VVK

1 0 0 ... (0 0 0
0 VT 0 ... || 0 o™ o 0
:K_l K
[O 0 aEl 0 0 220%™y’ frv
0 0 0

Clearly coupling only becomes large near a point at which »”/» is singular.
The explicit elements of this product have been calculated by Heading [1960]. They are

y "r—1
(A™'A )u:%'ﬁ’ (12)
a1
(A~'A )”_v 1) (13)

The coupled eqgs (5) then take the form

f() 1 1 3N
v . k—1 Pl :
v
1 1
B 0 Fev'/ 0 55 o f__ir_l _l_’: =T 0 Z,"——‘—l oo oo ¢ (14)
o 0 0 ](21,1/1' v 21 TV ] 1 :
.................... k_2—1 k-2~1 0
R IR J

The first square matrix on the right hand side of (14) is the principal uncoupled matrix.
The coupling terms become singular whenever »’/v is singular; such a point is known as a
reflection or coupling point. Mathematically speaking, such a point is called a transition
point. The coupling terms are singular at this point, but the original equation

u'=Tu
possesses a special matrix (10), associated in this particular case with no additional coupling

terms. An 7 Xr matrix of the form (10) will be called a principal embedded coupled matrizx.

3. General System

The equations governing ionospheric radio propagation may be expressed as four linear
first order differential equations with four dependent variables, given for example by
Clemmow and Heading [1954]. More generally, consider n dependent variables e, e, . . .,
e, satisfying the n linear first order equations
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In maxtrix notation,
e’ =Te, (15)

where the n>Xn matrix T contains n? elements each of which is a given function of z. In
the ionospheric case, n=4, and some of the elements of T are zero, while others are complicated
functions of height, the explicit forms of which would obscure the essential simplicity of the
present argument. The matrix T is therefore more complicated than that occurring in (3) or
the principal embedded coupled matrix (10).

If the dependent column e is now transformed to the column f by the transformation

e=Sf, (16)
it follows that
f’=S-'TSf—S-1S1.

If the n characteristic roots of T are denoted by ¢y, ¢u, . . ., ¢, let s; be the column matrix
formed from the cofactors of T—¢;I taken along any suitable row. Then the transformation
matrix

S=(si8;, . ..8,)
diagonalizes the matrix T; that is, ST'T S=Q consists of the n roots arranged in order down
the leading diagonal. The coupled equations become

f'—=Qf—(sis, . .. 8,)7 ' si8,. . .s,)f
—=Qf—S-181, (17)

valid at all points at which S is nonsingular.
Il desired, a change of independent variable may easily be effected. If =¢(2), then

df df
«Iz_d_g“? ’
vielding
df 1 e q-14S
T T

Similarly, a change of dependent variables may be made by placing
f=63(2)gs
where the n functions ¢,(z) denotes n given functions. In matrix form, let
f:tbg’

where ® is a diagonal matrix consisting of the n functions ¢,(z) arranged in order down the
leading diagonal. Then
g’ +@'g=QPg—S"'S'@g,
or
g =& 'QPg— ('@’ + @ 'STIS'®)g
=Qg—(S®)~'(S)’g,
implying that these equations would have been produced had S@ been used for the transforma-

tion matrix (16) rather than S. The characteristic vector s; is merely multiplied throughout

by ;.

602217—61

2
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Now each cofactor of T—gI is a polynomial of degree n—1 at most in ¢, the coefficients
being independent of the suffix 7. Generally,

(polynomial 1 of degree n—1 at most in ¢;
polynomial 2 of degree n—1 at most in ¢,

(‘the n coeflicients of polynomial 1

1
the n coefficients of polynomial 2 q;
¢ J

_the 7 coefficients of polynomial n
1
4

=P

¢

say, where P denotes the n>Xn matrix formed from the coefficients of the n polynomials. The
last column of P consists of n—1 zero elements, while the remaining elements is unity (when
n is even), since only one polynomial can be of degree n—1, the others being of degree n—2.

Then
1 1 1
S—(ss...s)—p| " L " —PA,
A q* q3

where A denotes the alternant matrix consisting of the roots and their powers arranged in order.
It follows that
S™IS’=A"'P Y(PA’4P’A)
=A"TA"+A'P'P’A.
The coupled equations (17) take the form
f'=Qf —A'A’'f—A"'P'P’Af,
similar to the set (5) apart from the additional coupling terms A7 P~ P’Af. As before, Q

denotes the principal uncoupled matrix, A~' A’ is the primary coupling matriz and A=* P~' P” A
is the secondary coupling matrizx.

4. Integral Equation

Let the matrix A7*A” be separated into the sum of two parts, D and (A7'A’—D) say,
where D is an arbitrary diagonal matrix, though this may preferably consist of certain diagonal
terms chosen from the explicit representation of A™'A’ given in the following section. Then

f"=(Q—D)f—(A'A’—D-+A'P'P’A)f,
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where the matrix Q—D is diagonal.
Let f, be a solution of the equation

f'=(Q—D)f,

this equation representing in effect n independent linear equations. Let Fy denote the nXn
diagonal matrix containing the elements of f, arranged down the leading diagonal. Consider
the integral equation

f—Nf,—F, f “F1(A'A’—D--A-P-1PY A dz, (19)

where N denotes an arbitrary constant diagonal matrix and @ an arbitrary constant.
This is the required integral equation, for differentiation yields

f'=Nf,—F, f: Fi'(A7'A’—D+A'P P’ A)fdz—F,F; ' (A7'A’—D-+A PP’ A)f
=Nf;—F F; {(Nf,—f) —(A~'A’—D-+ AP~ 'P’A)f
from (19).

But
F(I): (Q_D)Fu

since all matrices are diagonal, so
f’=N(Q—D)f,— (Q—D)(Nf,—f)— (A'A’—D+A'P'P’A)f
=(Q—D)f—(A'A’—D-+A'P'P’A),
since N commutes with (Q—D). This demonstrates the equivalence of the differential and

integral equations.

5. Explicit Form of the Primary Coupling Matrix

In order to appreciate more clearly the character of the coupling terms A™'A’f, it is neces-
sary to evaluate the explicit form of the product A=A’
The reciprocal of the nth order alternant matrix

1 1 1 1
A il ¢ 43 qn
VA

may be calculated to have the form

6 (=D 1S, 1 (i=0) (=128, 5 (1=0) —Si(q=0) S b
() (q1) o (q) (q)
(D)7 801(g:=0)  (Z1)"7*Sw-2(:=0) —Sile=0 8
(Qz) (([2) o ((l;’) ((lz)
»(_l)nvhgn-—l(qn:()) (_1)’L72‘gr172(er:())_ -_Sl<(In:0> S()

(qn) (¢n) o (¢.) (¢n) J
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Here, Sy(=1), S1, S, . . ., S,—1 are the elementary symmetric functions of the n quantities
Q1 @2, - - - ¢n.  The symbol S,(¢;=0) is used to denote the algebraic expression S, when ¢; is
replaced by zero. The symbol (¢,) is used to denote the product

(Qp = QII QI>Qp_QZ> . .. (QI)——QD—I)((II"([IH-]) L) ((111_Qn):(al(‘/a(/)fl:q,,v ‘Q(D
where

F=det (¢I—T).

I't can then be seen that

(A7) ;= (—=1)""78,_(¢:=0)/(gs),
and
A)u (7_1)’[1 )(I;:

so the general element in the product A™'A’ is given by
. n ,
(A_IA,)ij:kZ:l (A7) (A )y

=25 (=" 8,-x(q:=0) (k— 1) g5 74/ (¢)- (21)

In order to simplify this expression, the polynomial of degree n—1 is formed, whose zeros
are ¢i, ¢z, - . ., ¢» but with ¢; omitted.
This is

,1’ '

T TS0 (D78, (=000
2

:,2:, (—1)2S,(q:=0)g* =2~
:kzi-‘fl (=D %8, x(q:i=0)¢""", (with p=n—Fk)
vielding upon differentiation with respect to ¢
<1_(1> > (=148, =0) (k—1) . (22)
If 75#7, this result transforms (21) thus:
e F
an=s[ 5, (q—:(ﬁ)l:q,

_ ¢ [oFog _F ]
—q.)?

(¢) Lg—q
- qjq E(qz]; e

since # vanishes when ¢g=g¢;. Out of the n—1 factors in (g;), the factor (¢;—¢;) obviously
cancels with the factor (¢;,—¢;) occurring amongst the n—1 factors of (¢,).
On the other hand, when 7=, the left-hand side of (22) may be written as

a n

O(] p 1(7 (fp)’
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vielding

A~'AY) = L; — H « (p):]
( ) 0 aq (1 |

, a n )
i log pg; (q "”L

tq
pZ)l qi— an
#i

being the sum of n—1 partial fractions.
6. Classification of Transition Points

A specular transition point (a reflection or coupling point in physical terms) exists at a point
z=12, in the complex plane at which two or more characteristic roots attain equality.

A transition point of order two exists at a point where ¢,=¢,; such a point may be denoted
by z=z5,. The first and second diagonal elements each contain one partial fraction with a
denominator (¢;—¢.), so this particular partial fraction (but no others down the leading
digonal) is singular at the transition point.

Equation (23) shows that every nondiagnonal element is singular at z,, along rows one and
two only. But only columns one and two have ¢; and ¢, respectively in their numerators;
these derivatives may be singular at z,,. There is, however, a difference in the order of magni-
tude of the various coupling terms near the singularity z,. For the coupling coefficients
(A7'A7);; (=1, 2) are larger in order of magnitude 1,2 than when j=3,4, ... n. This
implies that coupling exists mainly only between f; and f,, and that f5, fi, . . ., f, are relatively
free from coupling with f; and f,. In fact, the 2 X2 matrix containing the first and second
rows and the first and second columns is the distinet factor in determining the coupled solution
near z,.

If ¢, and ¢, are expressed in the form
1 2

(11:OC+B; =a—pf,

clearly B=0 at the transition point, while the first part a=%(¢;+¢.) is a more irrelevant term
in determining the character of the coupling at the transition point.

Similarly, transition points of order two exist whenever ¢,=g¢,; such points may be repre-
sented by z=z,, Altogether, %n(n—1) sets of second order transition points exist in the z-
plane. The solution for f, and f, near z,, 1s locally associated with a 2 <2 matrix taken from
the a- and bth rows and from the a- and bth columns of A7*A’.

The determination just considered of the important terms governing the coupling process
is clearly unsatisfactory, since infinite terms occur throughout. The embedding transformation
discussed in the next sections removes this uncertainty and yields a clearer picture of the
coupling process than the matrix A™'A’; which merely shows where the coupling occurs.

Every nth order equation must of necessity possess these specular transition points of order
two, since they are merely given by the solutions of the well-defined equations ¢,=¢,. But
some equations may possess transition points of higher order, not as a matter of necessity but
exceptionally. If a point exists at which ¢,=¢,=g¢., the point z,,. 1s called a third order transi-
tion point. All elements in rows a, b, ¢ of the matrix A~'A’” are now singular at the point 2.,
but only the columns a, b, ¢ of these rows prove to be of importance, so the 3 X3 matrix taken
from these three rows and columns is the determining factor for the coupling beteen f,, f4, /..

Similar arguments may be used to define an rth (»<n) order transition point. Such a
point exists if ¢,=¢,=q¢.= . . . at 2=z, ..., where » of the characteristic roots attain
equality at this point. The essential coupling between f,, 14, f., . . . is determined by the
1> matrix selected from the appropriate rows and columns of A7'A”.
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These 7 values of the roots may be expressed according to the scheme (7), but for the
purpose of this paper it is assumed that ¢;=a-+/k’7'8.  For the usual case when r=2, no assump-
tion is thereby made.

It should be noted that of the remaining n—7 roots, s of these may also attain equality at
2=2Zupe . - .. 1f their common value v is not equal to « at 2,,. . . ., then this set of s variables is
not coupled to the previous set of » variables.

If various characteristic roots attain equality only as z—>e for a certain range of arg z, the
coupling is described as continuous coupling rather than specular.

Finally, irregular coupling may occur at points where the matrix P becomes singular,
or at points where one or more of the characteristic roots become singular. It is not intended
to discuss this form of coupling here, since it does not appear to be amenable to systematic
treatment.

7. Embedding Transformation

Specular embedding is defined with respect to a particular transition point 2z, of order »<n.
The first order coupled eqs (18) in the n variables are to be transformed in such a way that
the 7 variables associated with the transition point appear in the new equations with a principal
embedded coupled matrix (similar to (10)), while the remaining n—7 variables not associated
with the transition point appear with a principal uncoupled matrix (a diagonal matrix), in
such a way that all coupling terms in all equations are nonsingular at 2.

The independent propagation of waves not affected by the coupling is thereby exhibited,
together with the explicit form of the rth order equation satisfied by the » coupled waves. This
coupling is seen to be independent of the remaining n—7» waves.

The general coupled equations

f"=Qf—A'A’f—A'P~'P’Af

are assumed to possess a transition point z, at which ¢y=¢= . . . =¢, Il ¢;=a+k"" 3,

where k=¢7"" « and B8 being functions of z such that =0 at 2z, a new column g is defined such
that

. (I, exp (S adz) 0

0 ]

>g:Eg

say, where I, denotes the p><p unit matrix. Then

E'g+Eg’—QEg—A'A’Eg—A'P~'P’AEg,

or
g’=E'QEg—E'E’g—E'A-'A’Eg—E'A-'P-'P’AEg. (24)
Now
od, 0
E 'QE—E'E'=Q—
0 I?I,—T
(8 0 0 0o 0 ... 0
o kK 0 ... 0 0 ... 0
o 0 k8 ... 0 0 ... 0
1o o o 180 0
0 0 0 Qr+1 0
R D0 0
BK, 0
B 0 QYI—T



say, where K, is the diagonal matrix with elements 1, &, &2, . . ., k"' and Q,_, is the diagonal
J ) <) ) ) ) n—r t=]
matrix with elements ¢y, . . . | q,.
Equation (24) now becomes

BK, 0
g”_< >g—(E”AﬂAqb+E“A”P‘W”AEM- (25)
() anr

Finally, a new column h is defined, satisfying

g—R-'h,
where

(1 1 1 R | 0

B kB kB ... k18 0

2 ]‘12 2 /L.’l 2 L k-?(f—l) 2 ()

R B B B B

Br«l kr—lﬂr—l k-z(r—l)ﬁr—l . k(r—lﬂﬁr——l 0

0 0 0 ... 0 [y

B 0
= (26)
0 I,

say, where B is an alternant matrix similar to (11).

Equation (25) now becomes

BK, 0
R‘“h+R“h’:< > R-"h—(E"'A7'A’E+E~'A"'P~'P’"AE)R~'h,
0 Qu—r
or
BK, 0
h'=R R™"h—RR""—R(E-'A7'A’E+E'A~'P~'P’AE)R"'h. (27)
0 Qn~r

The original eq (15) is transformed into this form by the transformation
e=Sf
—=PAf
=PAEg
=PAER'h (28)

In the next sections, it will be shown that (27) possesses the required embedding properties.

8. Embedded Equation
The coupling matrix occurring in (27) will be considered in two stages, firstly

RR™Y+RE'A-'A’ER ! (29)
and secondly

RE'A~'P~'P’AER . (30)
Since R R7'=1, it follows that
RR™"=—R'R™.
Moreover, E and R commute owing to the special forms of E and R; hence (29) becomes
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—R’'R'+E'RA-'A’'R'E
——E'R’A-'AR'E—E'RA-VAR'E
——E~'(R'A~'+RA-")AR'E

——E-'(RA-Y)’(AR)E

—E-'(AR")~'(AR"!)'E. (31)

Also matrix (30) takes the form

(AER-)~'P~'P’(AER). (32)

At all points where coupling may be neglected (and this includes z, since the next section
will demonstrate that all coupling matrices are nonsingular at z,), equation (27) becomes

BK, 0
h'=R R~'h
0 Qn-r
<B 0 > <BK, 0 > (B"‘ 0 >
— h
0 In—r 0 Qn~r 0 In~r

<BBK,B“ 0
. )n
0 Q.-

The elements of h are thus separated into two distinet parts. If the first » elements are
denoted by h, and the remaining n—r elements by h,_,, it follows that

h, —8BK,B~'h, (33)
h;—r:Qn‘rhn-r- (34)
It may immediately be verified that
1 1 1 g 0 (R 1 g B2
A8 k8 ks ] o k8 0 .| |1 kB ko
SBK,B~'=-
I 00 kB ... 1 k7287t kg
0 1 0
0o 0 1 ...
= . (35)
g0 0

Hence the elements of h, are associated with an equation containing a principal embedded
coupled matrix, while the elements of h,_, are associated with a principal uncoupled matrix.
In fact,

" =B hi=vh,, (36)

where » vanishes at z,. The separation of the principal terms has therefore been achieved.
9. Nonsingular Coupling Terms

Every element in the coupling matrices (31) and (32) must now be shown to be non-
singular at z,.
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The elements of A R™! occurring in (31) are considered. Since

1 1 1 e (1 g s 0 ... 0
L] & ¢ U | O ot el e . et Y (R |
r o 0 o
1 kr+ig-t k*(r*l)zﬁ—rﬁ-l 0 0
0 0 0 7 0
\0 0 0 0 r)

it follows that the element (AR™"),; when 1<i<n, 1<7<r, is given by
rAAR D y=(gi g™ ... D 1 N8

(A

(k—‘l)j~l

Lr+)s-1)

— S i=1(—p+1)i—1Q—j+1
2 ¢ (k)8

:i <a+kl;—16)i~1k—(p—1)<z—1>ﬁ—.i +1
p=1

:i‘ﬁ i_l(vlai—l—l</{.p-—lﬁ) 1k—<p—1)(j—1)ﬁ~j+l

p=1 1=0
i—1 r
e W(p—1) (1—j+1) Y i—1—1Q1—j+1
— 5_/‘ ]‘,(p V(=744 i—1(~ ot B i+l
=0 Lp=1

Now il ({—j+1) is a multiple of 7,
ik‘l"”“‘f*”:r,
p=1 ’

while if ({—7-1) is not a multiple of », this sum vanishes by (8). Hence the only terms in g
arising in 7(AR™),; are those of the form p¥ where N is an integer. Moreover, the lowest
value of ({—j-+41) is —r+41, so N can only equal 0, 1, 2, . ... Hence

(AR ;=2]1-1C '~ 718"
i

where [=Nr+j—1, where N is a non-negative integer chosen so that
J—1=Z1<i—1.
In other words, this element is a polynomial in g7,
It follows that (AR™")}, contains 8 only through terms such as Nr N8’

Finally, since (AR™")"'=(adj AR™')/(det AR™') the elements of adj AR™ are further

polynomials in 87, while
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det AR'=(det A)/(det R)

n

= I (Qi_%)/ﬁH—Z' () det K

1,5=1
S

from (4) and (26). Now when 7 and j are both less than or equal to 7, the relevant factors in

the numerator are

((jr—‘qr~1) ce e (([r_ql)((]r~—l_'([r~2) ce. (({r—l_m) c e <(12_(ll)

which is proportional to

67—161—2 . 626
Hence det AR does not contain 8 as a factor, so the matrix AR™! is nonsingular at z,.

In the product (AR™')~! (AR™)’, each element contains terms of the form g7 (87)’,
where M>0, N>0 are integers. This is proportional to g =18" with M>0, N>1, the
lowest power of 8 yielding g7~'g’. If B, when expanded in terms of z—z, commences with a
term (z2—2z,)?, then '8’ contains the factor (z—zy)*~!. This is nonsingular at z, if br—12>0;
that is, if 6> 1/r. This implies that »(2)=p", when expanded as a power series in terms of
z—2,, should commence with a term that is linear at least.

Hence the elements of the primary coupling matrix (31) are nonsingular at z, under these
circumstances. The secondary coupling matrix (32) is also nonsingular at z,, since it has been
shown that AR™! is nonsingular there. It is assumed of course that P is nonsingular at z,
in the definition of specular embedding.

10. An Explicit Case

To deal with an explicit case, consider a second order transition point associated with the
third order differential equation
w'’ =vou’" +ovu’ +oyu.

u (() 1 0 (u
’—/ w’ 1= 0 0 1 u’
dz

w'’ Lnn N Vs L

1 1 1

Equation (3) is

The transformation

U= q 72 s | f
a ¢ @

vields equation (5), which, when expanded by the results of section 5, becomes

(¢ @ ¢ ¢ e )
a 0 0 Nh—q G—q G—¢ G—¢@ G—fG G—q
[ e 0lf— |- - ¢ 92 4> 9 VS
QP— @ (G3—q Q—q@ (—q¢ (Go—q3 Gi— Q>
0 0 Q3 ’ ’ ’ ’ ’ ’
L s S ' T - I/ T .
B— @ —G@ @—G —G 3— @ (3— )
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If 2y 1s a point at which ¢, =¢,, and if ¢ =a+8, ¢2=a—f, the coupling matrix has the form
r qf%ﬁ/ a/+6/ a/_‘Bl a/_B/ qé _‘(1_:;‘ ~N
G — 3 28 20 G— ¢ G—q 2B
gt e B e s G0
2B +q3— @ 28 +(j2““ 0 qz—q3+2ﬁ

arﬂ a/+Bl a/_B/ a'—ﬁ' ([:/3 q:/;
N\ B— O @G B—¢ G—@B GB—¢ G—q)

Singularities arise on account of the terms g’, 1/8, and 8//8. 1If p? is approximately linear
near z, of the form z—z,, f=(z—=2)% so the three singular terms are of the forms (z—z,) 7%,
(z—zg)"# and (2—2,) ' respectively. The p’/8 terms are obviously of a higher order of magni-
tude than the others; these give rise to the particular matrix

1 —1 0
Bl
25 =1l 1 0|
0 0 0

but other singular elements arise in rows 1 and 2 and columns 1 and 2.
(=
The embedding transformation (28), in which P=I, becomes

u=AER'h
1 1 1 exp (S adz) 0 0 (1 B 0
:% 0 ¢ s 0 exp (Sadz) 0j1 —p7! 0|h
¢ ¢ @ 0 0 1 L) 0 2
exp (S adz) 0 1
={ aexp (Sadz) exp (S adz) 7 | h,

(®+p%) exp (S'adz)  2aexp (Sadz) ¢
while the coupled eqs (27) become
0 1 0
h'=| g 0 0 [h—E-'(AR"")"'(AR"")’Eh
0 0 s

using results (31) and (35). The principal matrices vield approximately

d <h1> <0 1) <h1>
{[2 }Lg 62 0 hg

}l:;: (13}1'3-

exhibiting the embedding property. It should be pointed out that when approximate solutions
are written down, it may be necessary to retain some of the coupling terms. For example, in
the last equation, an additional term in Az must be retained on the right hand side if the W.K.B.
approximation for /; is to be obtained.
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11. A Special Property of the Coupling Matrices
Under the original transformation (16), the coupling matrix is
A-'A’+AT'PTIPA, (37)
while under the embedding transformation (28), the coupling matrix is
E-'(AR")"'(AR")E+(AER~")~'P~'P'(AER™). (38)

1t is supposed that the last coupling matrix occurs when the first 7 elements of f or h are coupled
together at z.

However, the n—7Xn—r square matrix formed by crossing out the first » rows and the
first 7 columns of both (37) and (38) are identical. This may be simply demonstrated by
partitioning all the matrices between rows » and 7+ 1 and between columns 7 and »-+1, and
expanding the products.

Hence the n—r equations (r+1<j<n) in the elements of f

fi=q.f,+Fcoupling terms in f, . . ., f,-+coupling terms in f, 41, ... f,
and the n—r equations (r+1<5<n) in the elements of h
h;=q;h;+coupling terms in Ay, . . ., h,-+coupling terms in A, 41, . . . h,

are identical as far as the coupling coefficients multiplying f,.,, . . . , f, and Ay, .
h, respectively, are concerned.

Hence any coupling diagonal terms not neglected in the equation for f; (r+1<j<n) are
identical with the coupling diagonal terms not neglected in the equation for A; (r+1<7<n).

12. Forsterling-Type Coupled Equations

As far as ionospheric radio propagation is concerned, two differential equations each of the
second order may be coupled together. The original form given by Forsterling [1942] and that
considered by Budden and Clemmow [1957] are specially simple, in that the characteristic
equation for ¢ reduces to a biquadratic. This special feature disguises the more general formu-
lation that is possible.

The general formulation of this new type of coupled equation is as follows. Let z; be a
transition point of order », namely a point at which ¢;=¢= . . . =g¢,. Then the n coupled
eqs (27) (with no singularities in the coupling coeflicients at ;) may be re-expressed in the form
of n—r+1 equations in n—r-1 variables, taking the form

h'D=p"h,+coupling terms
h,_.=Q,_ h,_,+coupling terms. (39)

The coupling terms involve only the n—7+41 variables £, and h,_,. This result may be
shown merely by eliminating A, hy, . . . , h,_; from the last n—r-+1 eqs (27), the equation
involving &/ being differentiated »—1 times in the process. The coupling terms now involve
derivatives of &,, but the coefficients themselves are also derivatives, which would be small in
a slowly-varying medium.

Similarly, if another transition point of order s (2<s<n—7) occurs such that s of the ¢’s
in Q,_, become equal, the number of equations may further be reduced.

This process is explicitly exhibited for n=4, such that a transition point of order 2 occurs at
2o at which ¢;=¢., and another transition point of order 2 at z; at which ¢;=q..

The given equation
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is transformed into
h’=0 1 0 0Yh-+coupling terms

g2 0 0 0
0 0 ¢ 0
0 0 0 g
by the transformation
e=PAER'h,
where
E=(exp (S adz) 0 0 0), R=(1 10 0.
0 exp (Sadz) 0 0 B —B8 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

Similarly, if ¢s=v-+38, gs=v—3¢, and if

F=C1 0 0 0 , S=(1 0 0 0.
0 1 0 0 0 1 0 0
0 0 exp (Sydz2) 0 0 0 1 1}

0 0 0 exp (Sydz) 0 0 6 —b

then the transformation

e—PAER'FSj

(in which E, R™', F, S7' are mutually commutative) transforms the equation into

i7=(0 1 0 0)j+coupling terms (40)
g 0 0 0
0o 0 0 1
0 0 & 0

where the coupling terms are nonsingular at z, and z;.

1 2
a(B) a5
J3 J4
and two simultaneous matrix equations are formed involving m and n; that is, eq (40) is

PR (1 000Y) v()l()())
multiplied first by <0 01 0) and then by (() 001/ This vields

/

Now let

m’=n-+Wm-+Xn, (41)
n’:<62 4 ) m-+Ym-+Zn
0 o

=Am-+Ym-+|Zn, (42)
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say, where W, X, Y, Z are 2 X2 matrices originating by partitioning the 4<4 coupling matrix
in (40).
Column m is now eliminated by differentiating (42):

n'=Aam’+A'm-+Y'm+Ym’+Zn’-+Z’'n
=(A+Y)m’'+(A’+Y)m+Zn’+Z'n
—(A+Y)(n+Wm-+Xn)+(A’+Y)m-+Zn’ +Z'n (from 41)
=An+(AW+YW+A"+Y )m+Zn’+ (AX+Y+YX+Z )n
—An+(AW+YW+A’+Y’)(A+Y)~!(n’—Zn)+Zn’ +(AX+Y+YX+Z")n

from (42). An is the only term on the right hand side whose coefficient does not involve a
derivative. Hence A is the principal uncoupled matrix, while all the other terms are coupling
terms.

The coefficient of n” is (AW-H+YW-+A'+Y")(A+Y) L. A subsidiary change of variable
will eliminate n1 from the first equation and n5 from the second equation if required.

The above process may obviously be carried out for any number of variables.

13. Continucus Coupling

Let the elements of the original matrix T (see eq (15)) be functions of z that tend to
constant limits as, say, z—— o along the negative real axis. Then the n characteristic roots
also tend to limiting values as 2——.

If a range of real z existed such that all the elements of T were constants throughout that
range, then all the coupling coefficients would be zero, in which case the n coupled eqs (18)
reduce to

f’:Qf’
or

f}ZQifjJ

implying n-independently propagated waves.
More generally, if a domain of z is chosen throughout which the coupling coefficients are
small, the coupled equations reduce to

fi=qfi—(AT'A’+AT'PTIPA) 41,

where all nondiagonal coupling terms have been neglected; such approximate equations yield
the W.K.B.-type solutions with arbitrary constants. These approximate solutions represent
the n characteristic waves in the medium, and they are independently propagated whenever
coupling may be neglected. 1In particular, only one characteristic wave may be considered,

namely f;, with fo=/;= . . . =f,=0. For this particular solution
e==~Sf,
SO
CIECo e :G,I:Su: Sgl: ohele :Snl;

thereby providing in this domain the varying ratios of the values of the n original dependent
variables associated with this characteristic wave.

The problem demanding attention concerns what happens to these ratios as z—>—.

The coupling coefficients may not be neglected when:

i. coupling is specular; the previous embedding theory yields equations dealing with this
case;
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il. coupling is irregular; namely, when P7'P’ or when one of the ¢’s is singular. 'This
paper is not concerned with this case;
iii. coupling is continuous, namely when some of the ¢’s tend to equality as z—>—o.

To be definite, let ¢;, ¢5, . . . ¢, have a common limit as 2—>—o. Then the denominators
of many of the coupling coefficients considered in section 5 tend to zero. Thus continuous
coupling between ¢y, ¢», . . . , ¢, 1s embedded in the background provided by the complete n

equations. Previously, specular coupling has been explicitly exhibited without approximations.
Here, however, it proves advantageous to use approximations in the equations.

Moreover, it is assumed that the coupling coeflicients do not become large in the range of
continuous coupling. Kvery denominator of the form (¢,—¢;), 1<4,7<r, contains a derivative
in its numerator, and as 2—>—o it is assumed that the derivative is such that the whole ratio
remains finite at least.

Above the region of continuous coupling, a definite approximate solution is considered,
namely f;, with f,=f;= . . . f,=0. Within the region, e=S f, with f,,,=f,..= . . . =£{,=0
throughout. Then

(A8 5 o o :6":21 Sl,f1+21 Aqufj §aaoo Z] S,,j‘fj
j= j=

i=
T T T
:_Zl Slj(f//fl) : Zl Sz](fj/fl) et Z} Su](fj/fl) (43)
= = i=
ratios depending upon the r—1 values ./, fs/fi, . . ., f:/f.
These ratios are denoted by 7,5, 73, . . ., 7, respectively, and their initial values above the
region of continuous coupling are all zero.
The coupled equations
f'=Qf—S-!S’f
simplify to
T
.ﬂ:(lffi"z (S™'8")esf 5 (1<4<r)

J=1

in which the diagonal elements in S7'S” may oftentimes be neglected since these would be small
compared with the ¢;.

A new set of 7——1 equations may now be derived, with 7, 75, . . ., 7, as the dependent vari-
ables. The differentiation of », 2<i=<r) yields

A O
= [ —3 S0 e [qlfl—g S8 |

j=1 =1

:(117'1'_2 (S_IS,)ijrj-ri I:([r'—i (S-IS’)Urj:I,

being »— 1 simultaneous nonlinear differential equations for ry, 73, . . ., 7,. These are the appro-
priate differential equations governing continuous coupling. Integration starts with zero

values, yielding 7., 75, . . ., r, as z—>—o, which yield in turn the required ratios (43) of the ¢’s
associated with this characteristic wave. In the region of continuous coupling, the original
ratios Si:Su: . . .18, are converted into the final values.
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