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Calculations of whistler ray paths in the outer ionosphere are shown for a variety of

electron density

profile models including exponential, constant, and columnar profiles.

The Haselgrove formulation of the ray equations was used with the magneto-ionic repre-
sentation of the wave refractive index to develop a set of differential equations for ray tracing
suitable for inhomogeneous, anisotropic medium. The variation of paths with frequency,

latitude,

initial wave-normal angle, and other variables are examined for the purpose of

providing a preliminary basis for comparison of the theoretical with some of the experi-

mental results.
1. Introduction

Little work has previously been done to describe
the mechanics and physies of electromagnetic wave
propagation in an 1nhom0geneous mmotlopl(' me-
dium. Of particular interest are certain phenomena
taking place at frequencies below the plasma and
gyrofrequencies of the ionosphere. The subject
has become important during the last few years
because of the increasing interest in VLEF wave
phenomena such as “whistlers.”

Whistlers propagate in what is known as the
“extraordinary” mode in magneto-ionic theory
[Rateliffe, 1959]. This mode of propagation is
also described by the terms “whistler-mode” or
“magneto-ionic duct.”  Details of the phenomena
and additional references are given elsewhere [Helli-
well and Morgan, 1953]. The basic theory of
whistler propagation was first given by Storey
[1953]; however, his description is valid only for a
restricted set of conditions, many of which do
not apply over the complete whistler path.

The work reported here is an attempt to demon-
strate some of the complex phenomena of whistler
propagation. The set of computations described
here is in no sense complete or comprehensive; it
is meant only to demonstrate a few interesting
details of this mode of propagation and to stimulate
further thought and work. Very little attempt

“has been made to interpret the form and shape of

the results shown; such interpretations must arise
from an examination of the form of the general
solution of the ray path equations.

2. Discussion

2.1. General Procedure

Equations which are in a form useful for compu-

tation of ray paths in the ionosphere can be obtained

from substitution of the familiar Appleton-Hartree

expression for the complex refractive index into

1 Based on a report prepared by Stanford Research Institute for Stanford Uni-
versity under Prime Contract AF 18(603)-126 (Dec. 1959).

ray equations derived by Haselgrove [1954]. The
resulting equations in spherical coordinates 7, 6, ¢ are
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where
p=the real part of the complex phase
refractive index,
pr, po, ps—the physical components of a vector
of length u, and directed normal to
the phase fronts (also called the wave
normal or refractive index vector),
t=time of phase travel along the ray
(that is, (fAf)/e=number of wave-
lengths in the medium along the
ray path),
f=wave frequency,
c=speed of light.

The quantity p and its derivatives are calculated
from the Appleton-Hartree formula as follows:
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where
M=complex phase refractive index=u—jk,
X=normalized electron density= (Ne?)/(w?*me,),
Y'=normalized magnitude of the earth’s magnetic

(uoeEL,) [ (wm),

Z=normalized collision frequency = (v) /w,

2
field vector, Y=

Y=angle between ; and )%’:cos‘1 [(0, Y.+ pe Yo
+0sY 5)/ (Y],

N=electron density,
e=charge on an electron,
m=mass of an electron,
w=2mf=2r - wave frequency,
e=dielectric constant of free space,
wo=permeability of free space,
vo=-collision frequency in collisions per second,
K =imaginary part of the complex phase refractive

index.

The two values of M corresponding to the plus and
minus sign on S represent the two modes of iono-
spheric propagation commonly called the “ordinary”
and “extraordinary’” modes.

The derivatives of u are
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where 1=the coordinates 7, 6, ¢.

[NoreE: When y¢—0, 0u/0¢—0, 0y/Op,—~ = but u/dp;—0.]
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[NorE: 0¢/07 is calculated holding p constant and so measures
the change in the direction of the earth’s magnetic field in
space.]

The quantities 0.X/0i and 0Z/0i must be derived
from the space variation of X and Z which are
assumed. An arbitrary inhomogeneous ionosphere
can be represented in this manner. If an earth-
centered dipole field approximation is used for the
magnetic field, then

N8 .
=Y, (;—°> V143 cos? b

where Y,=1Y at the equator at the surface of the
earth~(8.7-10°)/f. The vector components of ¥
in spherical coordinates are
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where
f#=-colatitude and

¢=longitude.
The derivatives of ¢ for a dipole magnetic field are
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where y=angle between Y and the radial (see fig. 1).

[NoTe: y=tan~! (—¥ tan 6) for the dipole field.]
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[Nore: When y¢—0, both numerator and denominator of
0y/0vy go to zero and Oy/oy—1.]
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Fraure 1. Coordinate system for two

dimensions, r—0.
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It is usually desired to compute the following

additional quantities along with the ray path:
(1) Path length, S

s . o 1 1
dt 2\ W+ (0u/0Y)* = ray refractive index u cos o

(2) Time of travel, 7', also called group delay
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(3) Absorption, A, in nepers
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2.2.. Notes on the Method of Digital Computation Used

a. Initial Conditions Needed

Initial values for 7, 6, ¢, p,, ps, ps are needed. To
get p,, ps, and py, the wave normal direction can be
mserted as an initial condition. g is then calculated
and the p’s obtained. For example, let z;=(p;/p) =
direction cosines of wave normal with respect to the
local coordinate axes. Then, since p=u, p;= ;.

b. Stability Condition

The six basic ray differential equations contain
one more degree of freedom than there are con-
straints explicitly expressed. That is, it only takes
5 quantities to define a vector field (three space
coordinates and two direction cosines). The sixth

- 9. ¢ o o o o000 =
equation is implicit in the definition of |p|=u. The
round-off errors involved in calculating p and in

integrating dp;/dt will result in l;';éu after a few
steps of integration unless an additional constraint
is 1mposed. Thus, to maintain the equality, we
correct the p;’s at each point in the manner

M
Pt corrected— Pi "
p

This correction is made as early as possible in the
derivative calculation, i.e., immediately after calcu-
) )

. . . > .
lation of M. Since the magnitude of p is not used
in the calculation of M (oan the wave normal direc-

tion is used), no errors arising from |p];éy are allowed
to accumulate by this pr ocedure.

c. Interval Size

The A? to use depends upon the accuracy required,
the frequency, the size of refractive index gradients
encountered along the ray path, and the stablhby
and accuracy of the numerical method of solution of
the differential equations used. For the whistler
ray paths, shown later in this report, the interval
size was changed when the local truncation error
became either too large or too small. The local
truncation error was measured by noting the differ-
ence between the predicted values for the next point
and the values obtained by application of the first
corrector (an Adam’s predictor-corrector method of
solution of the D.E. equations was used). When
this difference became less than 5-1077, the interval
size was doubled using an extrapolation formula in a
special subroutine. When the difference became
greater than 10~* the interval size was halved. The
corrector was applied only once every 5 or 10 points
and only a predictor was used for the in-between
points. This was done because application of a
corrector and subsequent doubling or halving costs
several “‘points” worth of time. Thus it is undesir-
able to do this very often. The interval size used
for these whistler calculations was approximately
one-half an earth radius. Calculation was started
at the top of the F), layer.

487



d. Other Comments

The bulk of computation time is spent in calculat-
ing the derivatives of M, u, etc. Only a small frac-
tion of the total time is actually spent in the numeri-
cal method of solution calculations. Therefore, a
method of solution should be chosen that minimizes
the number of times the derivatives have to be
calculated, and that makes maximum use of the
derivatives already calculated. Thus the Runge-
Kutta methods are long and cumbersome for these
equations. A predictor-corrector method with a
minimum number of corrector cycles applied seems
to be about the best. Perhaps even a high-order
predictor (5th or 6th order) might be best, since this
would increase the interval size one could use without
increasing the calculation time proportionately.

The main weakness of the program used for these
calculations is the instability of the extrapolation
formula used for doubling. This formula has to
jump ahead two intervals. It would be better to
carry more points along with the calculations and
use a higher-order extrapolation formula that only
jumps ahead one space—or better still, carry suffi-
cient points to use no extrapolation formula at all.

If these equations are to be used for frequencies
high enough that the earth’s magnetic field can be
ignored (frequencies much higher than the local
gyrofrequency) then a separate routine should be
written for this case, since the equations simplify to
a much easier and faster computation. If the same
routine is used, many of the expressions for the
derivatives become indeterminate when Y=0. Most
of these derivatives actually become zero, but special
tests would have to be installed in the program to
handle this case.

2.3. Computations
a. General Procedure

The differential equations were programed for
numerical solution on an Electrodata 205 computer.
Only the two-dimensional case of propagation in the
magnetic meridian was utilized in these computa-
tions. Also, no losses were included (»=0). The
calculation of a whistler path was begun with the
assumed initial conditions at an altitude of 300 km.
This altitude corresponds roughly with the maximum
ionization level of the F, layer.

An electron density profile was assumed for alti-
tudes greater than this.

The computations are organized into the following
categories according to the electron density profile
used and the parametric variation examined:

(1) Exponential model—variation of frequency,

(2) Exponential model—variation of initial latitude,

(3) Exponential model—variation of initial wave
normal direction,

(4) Constant density model, and

(5) Miscellaneous.

The exponential model used in all of the first three
categories is:

N=180,000 exp [—4.183119 (r—1.0471)]
where

N=-electron density in electrons per cubic centimeter.
r=radial distance from center of earth in earth
radii.

(r=1.0471=300 km above the surface of the earth
at the beginning of the path computation).

These particular values of electron density and scale
height were obtained from Maeda and Kimura [1956].

b. Exponential Model—Variation With Frequency

Figure 2(a) gives the results of ray path computa-
tions at the frequencies 5, 10, 20, 25, 30, 50, 100,
200, 400, 1000 ke/s.  Figures 2 (a) and (b) show the
ray path for each of these frequencies. The initial
wave normal direction for each of these paths is
vertical (wave normal angle=0°). In order to
exhibit the variation of certain variables in these
computations, figures 2(c) to 2(i) have been plotted.

Some of the interesting features of these computa-
tions may be listed as follows:

c. Exponential Model—Variation With Latitude

Figure 3 gives the results of ray path computations
initiating at north latitudes of 10, 20, 30, 35, 40, 45,
50, and 60°. Figures 3 (a) to (i) show the ray paths
for each of these latitudes as well as the variation of
wave normal direction over the path. Additional
data from these computations have been plotted in
figures 3 (j) to (o).

d. Exponential Model—Initial Wave Normal Variation

Figure 4 gives the results of ray path computations
with initial wave normal angles 10, 5, —5, and —10°
measured positively clockwise from vertical (along
the radial). Figures 4 (a) to (d) show the ray paths
and wave normal direction over these paths. The
wave frequency is 10 ke/s. Additional data from
these computations have been plotted in figures 4 (e)
to ().

The behavior of the wave normal over the path
changes only negligibly with these changes in initial
wave normal direction.

e. Constant Density Model

Figure 5 gives the results of ray path computations
with constant electron density. The characteristics
of a constant density model are as follows. Since
there is no electron density gradient, the total refrac-
tive index gradient is formed by the magnetic field.
Also, since the refractive index gradient determines
the change in wave normal which in turn determines
the bending of the ray path, the bending of the ray
path is determined only by the guiding effect of the
magnetic field, not by the electron density. Thus
the ray path is the same regardless of the magnitude
of the electron density.
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f. Miscellaneous Computations

Comparisons with Maeda’s computations—Maeda
(1951) used a very approximate method of numerical
integration as well as an approximation to the refrac-
tive index gradient which is only very roughly
correct. In order to compare his computations with
the more exact formulation of Haselgrove, one of
Maeda’s published ray paths was compared with a
similar computation using the present program in
figure 6. It can be seen that the difference is
:Lppreciable. The lack of comparison is not due to the
quasi-longitudinal approximation of the refractive
index function which was used by Maeda since this
approximation was used also in Hdsclgrov s formula-
tion for this particular computation. The (lifferenc
between the Q. L. approximation and the full expres-
sion is too small to be shown. The differences
between the two computed paths may be due to the
relatively crude method of integration used by Maeda
to numerically solve the differ ential equations.

Field-alined column model—In a recent theoretical
paper it has been shown that if the ionization is
field-alined it can act like a waveguide in trapping
whistler energy [Smith, Helliwell, and Yabroff, 1960].
This would o\pldln some of the very distinet and
clear whistlers which have been recorded. In order
to answer certain questions regarding the effects of

2
N:lS0,000{ 14-C exp <b20b2°) :I}
exp [—4.183119(r—1.0471)]

where

b=r/sin29 (the equation of a field line is b=
constant),

bo=2.094 (this is a field line corresponding to 300
km altitude at a latitude of 45° and 1s the
center of the column),

C=the modulation factor, ie., the relative
increase of maximum ionization at the
center of the column over that of the sur-
rounding background level of ionization,
and

D—the standard deviation of the column.
(The column is of gaussian electron density
distribution with the standard deviation
measured in terms of the local distance
between the field lines.) This makes more
intuitive physical sense than making the
thickness of the column constant at all
points on the field line, since the individual
electrons will tend to diffuse easily along
the lines of force but not across them.

For these computations D=0.029 which corres-
ponds to a standard deviation of about 35 km at an

field-alinement, the following models have been | altitude of 300 km, and about 215 km at the top of
computed: the path.
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Ficure 2(c). Maximum altitude versus frequency.

The maximum height of the path remains essentially constant up to the frequency of minimum time 'delay [the nose
frequency, which is seen to be at about 20 ke/s in fig. 2(d)] at which point the maximum path height begins decreasing.
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Ficaure 2(d). Total path delay versus frequency.

The time delay decreases in the expected “ Eckersley’’ fashion until the nose region is reached. This region corresponds ito
the frequency reaching approximately 45 percent of the gyrofrequency at the top of the path. These calculations confirm this
behavior. The time delay at higher frequencies increases until the effect of the shortening of the path length at high frequencies
overbalances the decrease in group velocity to cause the time delay to begin to decrease again above 200 ke¢/s.

A90 T T LI N N B T T T T T T T T LI B
X

=

=l

=3

(%]

45— —
o
L
©
g
= U —
=
=
<
-4
-4
=4
=z
w

45— —
=

& INITIAL LATITUDE = 45°N , INITIAL WAVE NORMAL ANGLE =0°

z

|

Y

90 ! [ T A I I | I TR B R

1 5 10 50 100 500 1000
FREQUENCY, kc/s

RB-2241-F-5

F1curEe 2(e). Final latitude versus frequency.
The final latitude remains fairly constant at frequencies up to the nose frequency. This suggests some latitude focusingin

the ‘“Eckersley” region. Above the nose frequency, the final latitude starts shifting toward the pole until the effect of the
shortening path length at higher frequencies overcomes this tendency and results in a shift back toward the equator.
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Ficure 2(f). Wave normal—field line angle along the path.

At frequencies below the nose frequency, the wave normal swings steadily
below the field Jine as the path progresses. As the nose frequency is approached,
the wave normal tends to oscillate about a position approximately ten degrees
above the field line. At higher frequencies, the wave normal swings outward
after an initial dip toward the field line.
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Ficure 2(2). Wave normal—field line angle along the path.
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In the first two computations shown in figures 7 | field line. In that case, the guiding is even better

and 8 the initial wave normal direction is vertical.
When the modulation is 0.2, good guiding occurs.
When the modulation is reduced to 0.1, the ray is not
guided because the initial wave normal direction is
far from the field-line direction and the ray gets
pulled out of the column before the wave normal gets
properly lined up with the field line. This is in
agreement with theoretical predictions [Smith,
Helliwell, and Yabroff, 1960]. In the third case
shown in figure 9, the wave normal was set along the

than for the higher modulation of case 1. The final
case shown in figure 10 shows the modulation reduced
to zero with the initial wave normal direction on the
field line. The guiding of this ray is still good, but
less so than for the previous case of 0.1 modulation.

These calculations support the theoretical pre-
dictions [Smith, Helliwell, and Yabroff, 1960] that
wave components whose wave normals lie within a
certain angle with respect to the direction of the
magnetic field will be trapped.
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FiGure 3(j). Mazimum altitude versus initial latitude.

The maximum height of the path is seen to increase very rapidly with increas-
ing initial latitude until an altitude is reached at which the plasma frequency
becomes equal to the wave frequency. This represents the usual reflection level.
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Frcure 3(1). Final latitude versus initial latitude.

This plot of final latitude against initial value shows some focusing of rays in
the region of 45° and 33° latitude.
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Fraure 3(k). Total path delay versus initial latitude.

The total time delay is seen to be fairly constant over a wide range of initial
latitude. This may be a bit surprising since it was previously observed that the
path length changes very rapidly with initial latitude. Cl_mrly the average
group velocity must be much higher for the longer paths which are at a higher
latitude.
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Ficure 3(m).

Wave normal—field line angle along the path.

At initial north latitudes greater than 35°, the wave normal swings from the
outside to the inside of the field line along the path. For initial north latitudes
Jess than 35°, the wave normal swings farther away from the field line.
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Ficure 4(c).

Ray path with initial wave

normal angle= —5°.

Ficure 4(b).

Ray path with initial wave

normal angle=5°
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The total time delay is also seen to remain roughly constant with changes in
initial wave normal angle. This is again consistent with the idea of average

group velocity being roughly proportional to path length.
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Ficure 4(g).

INITIAL WAVE NORMAL ANGLE , deg
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Final latitude versus initial wave normal angle.

The final latitude is seen to remain constant with initial wave normal variation
even though maximum path height changes.

FiGure 5.

Constant density model.
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