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In calculation of the theoretical scattering coefficient for a terrain, previous authors
tentatively assumed the normalized autocovariance function p(r)=e=47 for the ground
elevation as a function of distance from a given point. Recently autocorrelation studies
were made using maps with contours ranging from one to twenty-five feet. These resulted
in curves of p(r), which are approximated by exp (—|r|/B). The theoretical scattering
cross section (o9) of many such terrains can be expressed as
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where o, \, k, and 6 are standard deviation of the target terrain, wavelength, wavenumber

(27 /N) and the angle of incidence respectively.

to k, the above expression becomes
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For the case where 1/B is small as compared
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These expressions, when normalized, are in agreement with experimental results of other

authors.

It is also noteworthy that the results obtained with an acoustic simulator model
compared very well with this theoretical expression.
that the ground is conducting and has random elevation variations.

This work is based on the property
Theoretical results

alculated on the basis of varying ground impedance rather than its elevation are also in

agreement with this expression.
1. Introduction

In recent years, the calculation of backscatter
from a rough surface, with very obvious extension
and application to the radar return from the moon,
has attracted considerable attention. Here we
follow the basic approach of Davies [1954] as modi-
fied by Moore [1957] and Cooper [1958]. The
modified Kirchhoff-Huygens’ principle is employed
in the calculation using modified spherical variables
of integration. The ground model used assumes
“facets,” of variable size and height above mean
ground level, whose position is described statistically.

Instead of assuming a correlation model for
terrain, as is usually done, the present approach
used contour maps of different terrain samples in
the United States to calculate the terrain-elevation
autocovariance and other statistical properties.
The overall approach to the problem is an approxi-
mation, but the results so obtained are very reason-
able indeed, insofar as the comparison with terrain
return and moon-echo data reported in various
publications [Briggs, 1960; Hughes, 1960; Nielson,
1960] is concerned.

! This work was sponsored by the Naval Ordnance Test Station, China Lake,
Calif., under contract No. N123(60530)18138A.

2. Statistical Properties of Terrain

Various autocovariance [Ament, 1953; Davies,
1954; Moore, 1957b; Daniels, 1960] functions for
rough terrain have so far been assumed. In some
instances [Cohen, 1948] an effort was made to
derive an approximate expression for the autocorrela-
tion from actual data on terrain elevation. A
general expression [Norton, 1960] for space correla-
tion function p (7) describing the random variation
of the refractive index over space is given here:

o= 0] () % (7)

ly=characteristic scale
p=constant
I'(p)=gamma function

K, <%>:mo(liﬁod Bessel function of the second kind.
0

2.1)

where

It seems to cover some of the most commonly as-
sumed [Wheelon, 1959] expressions for correlation
functions.

A search of the literature shows that small-scale
perturbations of the terrain elevation have not so far
been used to calculate an experimental autocovari-
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TasLe 1. Location of terrain samples and the surface

characteristic constant, B

Average | Standard| Sampling Surface
Sample General location clevation | deviation| interval | characteristic
constant, (1/B)
Jt Jt It
Lawrence, Kans_____ 853. 5 5. 63 30 0.1193 x 103
Tees Nos, Ariz______ 5254 49 5 1.3213 x 103
Turtle Mountain,
N.Dak __________ 1990 8.2 5 0.7070 x 10-3
Gila River, Ariz_____ 2617 13.6 5 L9236 x 10—2
White River, Ariz__ 5028 5.18 5 1.3610 x 10—2
| Mountain Park,
N. Mex.oooco___ 7530 1030 62. 5 0.2729 x 103
S Sandia rk,
N. Mex._ ... 6780 250 20 L9860 x 10—

ance function. For this reason, contour maps for
seven different terrains in the United States were
selected, as listed in table 1. This set included
relatively flat land, rolling plains and some rugged
mountain areas. The average elevation (above sea
level) and standard deviation of these samples varied
from 850 to 7,530 ft and 5 to 1,030 ft, respectively.
Three distinetly different but random lines were
drawn on each of these contour maps. Along these
lines, the elevation of the terrain was read to within
one tenth of a foot (by interpolation) on 1-ft contour
maps, and within 5 ft on 20- and 25-ft contour maps.
Using a reasonable compromise between resolution
and confidence level [Blackman and Tukey, 1958],
and due to the unavailability of less-than-one-foot
contour maps, horizontal sampling intervals of 5, 20,
30, and 62.5 ft were used. The number of points
for a subsample varied from 58 to 610. The auto-
covariance was calculated using a CRC-102 com-
puter. The resulting curves were averaged for each
type of terrain. A simple theoretical approximation
of these curves for high confidence level portions was
found to be

—171/B

p(r)=e (2.2)

where

B=characteristic constant
r=distance between points

Seven cases for the experimental autocovariance are
shown in figure 1.

In figure 1 the autocorrelation curves for samples
1 and 3 seem to slope off faster than the rest. In case
of sample 1 this is caused by the lag distance for a
given number of lags being greater than for samples
2 through 5 and 7. In view of this, if all these
curves were plotted on a semilog paper (as in fig. 1),
for a given lag distance rather than for a fixed number
of lags, these would plot approximately as straight
lines over limited distances. These two curves can
also be approximated as p(r)=e 1”2 cos e¢r, where ¢
was found to be 0.2188 and 0.7931 deg/ft for samples
1 and 3, respectively. For near vertical incidence,
the distances involved are rather short, and therefore
cos cr is approximately unity. It is felt that the
apparent cosine factor in the autocovariance appears
because of the relatively short length of the sample
used in this case. This seems to indicate that the
autocovariance function p(r) often varies as e I"/2,
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Frcure 1. Normalized autocovariance curves—(portions with

highest confidence level).

Length of data | Sampling
Sample No. and type of terrain (points in each | interval
subsample)
|
1 It
1 (relatively flat) ... 58,101, 079 30
2 (rolling and flat) 252, 276, 215 5
3 (rolling) e ______ 189, 194, 144 5
4 (irregular, sloping)._.____ 226,196, 261 5
5 (flat, slight slope) - —___ 287, 264, 272 | 5
6 (very rugged mtn.)____ 216, 187, 187 62.5
7 (rugged mountain) ______ 187, 187, 187 20

It is known [Cohen, 1948; Isakovitch, 1952] that
the slope of p(r) at 7 equal to zero should be zero
unless the ground elevation function has infinite
slopes. In this instance, p(7) has a slope of —1/B
which is in most cases believed to be of the order of
1073 (see table 1). Considering the minute size (in
the general range of 1073 to 10~* m) of the earth parti-
cles, this may be quite a reasonable approximation to
the exact description of the terrain roughness.

It was also found that the ground elevations
generally are normally distributed. For a certain
type of terrain, the ground elevation data along a
random line is most probably a random function
belonging to a large, approximately stationary en-
semble. It is further suspected that the expressions
obtained for the scales of roughness covered in this
study when reduced by a scale factor, might well
describe extremely minute variations of ground
roughness as seen by very high frequency waves.



3. Scattering Coefficient

The expressions for vector waves, in radar return,
although easy to set up are very difficult to evaluate.
For this reason the Kirchhoff-Huygens’ principle has
been applied to scalar waves. This leads to difficult
integration problems and other such complexities, so
certain simplifying assumptions were made. Similar
assumptions were made by others [Davies, 1954;
Moore, 1957b]. These are as follows:

(1) No portion of the ground is shielded from the
incident radiation.

(2) The ground is considered to be a perfect
conductor.

(3) The magnitudes of the surface currents are of
the same order as those of a plane reflector, but the
phase varies in a random manner, depending on the
height of a particular point.

(4) The reradiation from a particular small area
on the ground is isotropic.

(5) The antenna gain @ is essentially uniform for
—00<_0<_0o, and is zero outside of this range.

(6) The results of this scalar wave approach are
an approximation to those for the vector waves, as
most field vectors would be nearly parallel to the
surface involved

The variables ¢ and ¢’ were replaced with ¢ and
¢, where ¢ is the sum of ¥ and « as shown in figure 2.
This change of variable was made following Davies’
[1954] work, in order to make the integration a little
less complex.

’
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Ficure 2. Geomelry of the problem, showing interrelation

between various vartables of integration.

The radar equation as applied to pulse radar
[Moore and Williams, 1957a], gives the average re-
ceived power 2, from many scatterers as

2R
I Pi<t—7‘) G2(0)a0(O,N, . . )

" 302 o R?

dR. (3.1)

where

Pr=power transmitted
R=range
so=scattering coefficient per unit area (assumed
independent of ¢)
t=time
c=velocity of propagation (velocity of light)
G=antenna gain (assumed independent of ¢)
A=wavelength
6, p=angles as shown on figure 2.

The field £ at 0’ is obtained by applying Huygens’

principle to the modified geometry of figure 2, and
can be written as
F— 1 I.n)V2 cos Be—*TRNJA 3.2)
L= VL; ( ,gn) cos ve aLl. ( V4
where
I[,=P;G|(4rR*)
n=intrinsic impedance of free space
dy
dA=area element on the ground <:]1’dl£ snd/)

One arrives at the following expression for K by
applying (3.2) to a rough surface,

cr
»

E—l 4 (6 cotd &Gn_)”“"
MN-eJ-a RO\4xR?
4

exp [72k(R—56 cos 0)]dydR  (3.3)
where
k=wave number (2%()
r=pulse width
26,—beam width of the antenna '
6—=08(Ry+s,¥-+a)=elevation of ground height

above mean ground level at a point located
at range R,+s and modified azimuth angle
+ a. )
Ro=range to the projection of a point at range I,
on the mean ground level (see fig. 3).

Equation (3.3) takes into account the variations in
phase and neglects the other effects of the changes in
range. This is based on the approximation that the
percentage changes in range are not appreciable for
near-vertical incidence. The received power is

1 [EE Gx
P;-———z‘%e[ 7 AT

(3.4)
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pos % (R,0,y)

80=8(Ro,¥)

MEAN GROUND LEVEL

Ficure 3. A typical point, at a random height 5, above mean

ground level.

where I£* stands for complex conjugate of £ and Ze
is the symbol for ‘real part of’ the expression follow-
ing it. 'The difference in ranges of two points on
ground located at (R,0,¢) and (R’,0’,¢’) can be ex-
pressed as follows with the help of figure 3,

R—R’'=[Ry—5(R,¥) cos 0]—[Ro—d8(Rq, ¥’) cos 6]
=—s+[0(Ro+s, ¥+a) cos 8" —3(Ro,¢) cos 4]
=—s+(6—6) cos 0 (3.5)

where 6 ~60" (assumed)

0=06(Ro+s,¢+a)
do=0(R, ¥)
Ri~Ry+s
The substitution of (3.3) in (3.4) results in

1 P1G? cos 6 cos 6
Pr= HKe z ;{0222’005 €

327r2 % —j?k(R—R’)dAdA/.

(3.6)

where the primed quantities refer to a point at (R’,
0/ ‘l//)

"The average received power can now be expressed
in terms of R, s, ¢, and a by substituting (3.5) in
(3.6) as

[ 1 fvrfwoj‘“’ fRO PG? cot 6 cot 6’
"32r) o 20, —Ry-yJ B T RR’

"3

exp [j2k{s+ (8,—0) cos 0}|dRdsdpda (3.7)

where primed quantities refer to values at a point
different from that for unprimed quantities. The
limits —26, to 26, on the variable y are used to cover
the entire 360° of the azimuth angle.

It is apparent from the statistical studies of contour
maps that the probability density function for ter-
rain elevation above the mean (say 6) can be written
as

1 82/ (202
p(5)=(27ra.2)1/2 =870,

(3.8)
The conditional (normal) density function for the
elevations 6 given &, at two points on the ground, a
distance » apart, is given by

1 _ (6=
€ 2a2(1—pY.

p(a}aoy’”)=[2ﬂ_ 2( (39)

a2(1— pZ)]I/2

The expression exp [j2k{s—+ (8—38) cos 6}] in (3.7)
is first averaged over § using (3.8) and the result is

exp [j2ks—a’k? cos® 6+72ks,(1—p) cos 6],
(3.10)

where
a?=20%(1—p?).

Now (3.10) is averaged over § using (3.9), and it
becomes,

exp [j2ks—4k*c*(1—p) cos? 6]. (3.11

One can deduce from Davies’ [1954] approximation
r*=R%’+s? cosec? § (see fig. 2) that

s% cosec? 6
r~Rat+—F—"—-

o (3.12)

It can be now shown that the integration of (3.7)
after substituting (3.11), (3.12), and (2.2) results in
an expression, which when rearranged, becomes

)\2f PTG2> 4@#( 6
7322 R3 B2 \sin 0)
(4/c2:r2) "(cos2 0) n+1

(o
—4k252 cos2 §
€ 2 1812

n=t (n—1)![2/!a2 sin® 6+

P —

dR. (3.13)

Here it has again been assumed that R’ and 6’ are
approximately equal to R and # respectively, for
near-vertical incidence. From the comparison of
(3.1) with (3.13) it is clear that the scattering coef-
ficient, oo, is given by

4+2r B? < 6 )
Cii=—

A2 sin 6

¢~ k22 cos? 0 = (4k2a?)"(cos? 9)"+!
a=i (n—1)1 [2k2 B2 sin? §+n2]?/2

(3.14)
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The value of 1/B is far less than k for nearly smooth
surfaces, and hence the scattering coefficient for such
surfaces can be approximated from (3.14) as

o (for nearly smooth surfaces) = BA (0 cot'd) (3.15)
for 6#0°.

4. Experimental Verification

For nearly smooth surfaces, the surface character-
istic constant 1/B =0, and (3.15) gives the scattering
coefficient. This result compares very closely with
published results [Nielson, 1960] for new ice as shown
in table 2.

For rough (not nearly smooth) surfaces, (3.14)
describes the relationship of the scattering coefficient
gy and other variables such as the angle of incidence
6, wavelength X\, standard deviation ¢ and surface
covariance constant B, etc. Two curves of the scat-
tering coefficient o, versus 6 for each of the three
values of N\/B, 0.1, 0.5, and 1.0 for ¢/\ equal to 0.05,
and 0.1 are shown in figure 4. It may be noticed
that as the surface becomes rougher, or as \/B
increases for a specified X\, the scattering coefficient
curve becomes flatter, showing the relative impor-
tance of the contribution of the power return from
the surface at angles other than those near zero.
As expected, when the surface becomes smoother or
1/B decreases, the received power seems to come
primarily from near-zero angles. These curves are
quite similar to those recently published [Campbell,
1959; Dye, 1959; Edison, 1960]. The experimental
data [Nielson, 1960] on desert and new ice also seems
to follow the pattern of these theoretical curves de-
seribed above.

TasLe 2. Comparison of theoretical versus experimental scat-

tering coeflicient
(Normalized)

a9 Theoretical oo Experimental

1.000 1. 000
40 0.291 0. 308
50 .088 . 089
60 .022 .021
70 .004 . 004

30 !

Similar results ? obtained by an acoustic simulator
at the University of New Mexico also verify these
theoretical conclusions. It is interesting to note
that an experimental expression (oy=ae'" for
6 in radians) for the scattering coefficient [Hughes,
1960] of the Moon, verified by photographic astro-
nomical [Briggs, 1960] calculations, is a very close
fit to the graph of eq (3.14) for ¢/A=0.1 and A\/B=1.0
in the range of incidence angles of 3 to 14 deg. The
authors believe that other values of B and ¢ may
well be appropriate, as only a limited set has been
tried to date.

2 A. R. Edison and R. K. Moore, Preliminary report on an acoustic simulator
for investigation of backscatter of E.M.waves, unpublished report of the Univer-
sity of New Mexico, Albuquerque, N. Mex. (1961).
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Ficure 4. Scattering coeflicient versus the angle of incidence.

5. Conclusions

The scattering coefficient (¢;) for nearly smooth
surfaces 1s inversely proportional to the wavelength,
but-varies directly with (¢%), (6 cot* 8) and 1/B, where
o, 0, B are standard deviation, angle of incidence,
and the terrain characteristic constant respectively.
For rough surfaces it has a negative exponential
a* cos’ 0
L
times a constant. The surface characteristic con-
stants B and o can be calculated from the radar
return data. Although approximate, the theo-
retical results agree well with the experimental data;
and therefore, suggest the usefulness of the approach.
The application of these results may be extended to
the moon-echo data, with proper corrections for
Faraday and liberation effects, etc. This investi-
gation has established that for near-vertical inci-
dence, the normalized autocovariance for the terrain
elevation is more often of the exponential form exp
(—|r|/B) rather than the Gaussian form, exp (—7/B).
The former may well be more approprlate for finer
terrain irregularities than those considered in this

factor, where the exponent is made up of
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paper. It may also be representative of the normal-
1zed autocovariance of the moon surface. An exact
theoretical, but usable, expression for the scattering
coefficient has been very reasonably approximated
by the results of this study.
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