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If the admittance of a missi le, satellite, or drone-a ircraft antenna is mo ni tored as the 
ve hi cle t ra verses a n ion ized region , it is possible to de te rmine t he free elect ron dens ity and 
t he collision frequ ency of the region if theoretical re la t ions bet wee n t hese qua nt it ies are 
available. In t his paper formu las a re developed that relate t he ad mittan ce of a n e lectricall y 
short cente r-driven d ipole or a base-drive n monopole when immersed in a cond ucting d ielec­
t ri c to the e ffect ive dielectri c co nstant and conductivi ty of t he medium. F ro m wejl-known 
formulas re latin g these qu a nt ities to the free r lectron density a nd the co ll ision frequ ency 
of an ion ized r egion, t hese latter may be determin ed d irectly from measured ad mi ttances . 
The results obtain ed when Lhe an tenna is t reated as a lumped capacito r a rc cons idered. 
It is shown t hat wh cn Lhe co ndu ctivity of the mcd ium is in creased to a value t hat is st ill 
qui t e small, t he c ffect of radi a tio n on t he inpu t adm ittance becomes negligible. The 
e lcct rica ll y short anLenna imlll ersed in sea wate r is discussed brieRy. 

1. Introduction 

It has bee n suggesLed that electron densities and collision frequencies in the ionosphere 
may be de termined by mC<Ls Llring the impedan ce of a base-driven clecLriefLlly shor t missile 
antenna, using a lumped-clement impedan ee bridge, fLS the vehiele traverses the ionized region 
[Jackson and Kane, 1959 a and b ; Hayeoek and Bakel', 1959] . A theol'eLieall'elation between 
the reactanee of the RF probe and Lhe eleetron density then pOl'miL the evaluation oJ the 
electron densities Jrol11 Lhe measured reaetanees. It is the purpose of this paper to derive an 
approximate expression for the admittanee of a eenLer-driven dipole or of a base-driven probe 
antenna in a infinite ioni zed homoge neous m edium. The admit timee so eo mputed is approxi­
mately the same as for a n a nte nna in a medium ornnite extent, provided its boundaries are 
suffieiently Jar a\\·ay. It should be mentioned that the impedan ee of a s tub type antenn a 
pro truding from a missile d iffers negligibly from the impedanee of the same an tenna when 
mounted on a n infiniLe ground pla ne, provided the dimensions of the earrying vebiele arc not 
too small in terms of the wa,velengLh . 

The formula for the admittance is derived from the in tegral equation for the distribu tion 
of eun-en t along the probe by means of a teehnique that aehieves suilieien Lly high aeeuraey in 
the leading terms of an iterat ion proeedure so that higher order terms ar c no t required. The 
leading terms in the eurrent consist only of linear and parabolie Junetion with eomplex eoeffi­
cients. A method for finding these coeffi cients is deseribed. No aeeount is taken in the 
theoretieal developm.ent of residual eharges on the missile [Kraus and 'Watso n, 1958; Jackson 
and Kane, 1959a; Krassovsky, 1959] . 

2. Integral Equation for the Current 

Figure 1 illustrates a cylindrieal electric probe of length 2h and radius a, cen ter-driven at 
z= Q by an idealized delta function generator of emf V. The axis of the antenna eoineides 
with the z-axis of a cylindrical system of coordinates T,(}, Z. The quasi-one-dimensional theory 
employed requires the following inequalities to be satisfied : 

h»a, 
27ra 

{3a=~«l , 
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FIGURE 1. Probe antenna in a conducting dielectric. 

where X is the wavelength in the medium. The antenna is assumed to be perfectly conducting 
and in contact with the dissipative medium characterized by J.1. , e, and <7, the absolute per'me­
ability, dielectric constant and conductivity, respectively. 

The integral equation for the current along a perfectly conducting symmetrical center­
driven antenna of finite radius immersed in an infinite dissipative medium of arbitrary attenu­
ation is [King and Harrison, 1960] 

47r A z(z)= f h 1,(z')KD(z, z' )dz' = j 47rk kh[-21 VMoz + UFozJ . 
J.1. - h WJ.1. cos 

(2) 

The only restrictions that have been imposed are given by (1). 
In (2), 1,(z' ) is the unknown complex current in the element dz' at a distance z' from the 

ongm. The distance along the antenna from the origin to the point on the surface of the 
antenna, where the vector potential A ,(z) is computed, is z. The kernel KD(z,z' ) is 

(3) 

where R = .J(z-z 'F+ a2 , R h = .J(h-z')2+ a2 , and k is given by the expression 

(4) 

w is the radian frequency, ](p ) = cosh 06 sinh- 1 p ) and g(p)=sinh(~ sinh- 1 p ), where p = <7/we. 
Tables of the functionf(p) and g(p ) are available in the li terature [King, 1945]. wp, = kr, where 
r is the characteristic impedance of the dissipative medium given by r= [jwp, / (a-+jwe)]' /2 
= re/ [l - j (a/iJ )]. M oz = sin k(h -I zl) and Fo,= cos kz - cos kh. The function U is defined by 

(5) 

Equation (2) is applicable to an antenna of any length. An RF probe is defined for present 
purposes as an antenna for which iJh~0.3 radians. For such an electrically short structure, 
the several functions may be expanded in powers of kh since it is postulated that 

(6) 



The kernel KD(z,z') , as given by (3), may be written 

(7a) 

Also, 

and 

k2h2 ( Z2) k4h4 ( Z4) kW ( Z2) ( Ph2 [ Z2J) ~o =cos k z-cos kh ",, - 1-- - - 1-- "" - 1- - 1- - 1+- . , 2 h2 24 h4 2 11,2 12 h2 (7c) 

At the driving point (z= O), ]vIol and Foz have the amplitudes Skh and CJc2h2/2, in the order 
named , where S= I -(kW /6) and C= I - cPh2/12). It is assumed that [1 -(lzl/h)] and [1 -
(z2/h2)] a dequa tely r epresen t the v aria tion , r espectively, of M o, nnd Fo, along the probe. Ac­
cordingly, the simplified r epresenta tions of 1vlo, and Fo, are 

(8a) 

Fo ",, -- CPh2 1- - . 1 ( Z2) 
, 2 102 

(8b) 

The function U becomes 

U . W J.l J" 1 ( ' ) ( I 'k k2R ,,+. P R?) d 1 ""-] - ,z - - ] - -- ] -- z 
47fk - Ii R" 2 6 

(9) 

and 

(10) 

In these expansions term s of the order of magni tude k4h4 have been neglected . 
The final form of the in tegral equa tion 1'01' the curren t a long a probe an tenn a in a con­

ducting dielectric is obtained 1'1'0111 (2) with (6), (8), a nd (10). It is 

J~h 1,(zl) [*- j~Ii_ ';2 (R - RIi)+j ~ (R2_ HD] dz' 

~ j W" (:~'~') [ VS (l_ I~ I)+UCkh (l-~:)J (11 ) 

3. Some Remarks Pertaining to the Solution of the Free-Space AntennaEquation 

King and Middleton [1946 ; see also King, 1956, Chapter II] begin the process of obtaining 
an approximate solution of the free-space antenna equation 

(12) 

byexprc sing l z(z) in terms of a referen ce curren t 1,(zo) and a dis tribution function f(z) that is 
unknovvn. Let 1,(z)=I ,(zo)f(z), so tha t 1,(zl )= I ,(zo)f (z') . Then 1,(zl )= I ,(z) [j( z' )/f(z) ]= 
l zCz) g(z,z' ). A function f ez) is now defined in term s of gCz,Z' ) by the expression 

J" e-JfJR 
f Cz)= -Ii g(Z,Z' ) --r dz' = f (zl)+'Y( z), (13) 
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where ZI is a suitable reference point; namely, ZI= O when h~"A/4, zl = h- ("A/4) when h> "A/4. 
With (13), the integral in (12) may be wTitten in the form 

471" I" e - i~R - A z(z) = 1z(z') - R d z' = l z( z)l/;( zl) + D(z), 
).t -II 

(14a) 

where 

III [ ] e -j~R 
D(z)= l z(zh( z)+ - Ii 1z(z') - l z(z)g( z,z') --rr- cl z'. (14b) 

It is evident that (l4a) is an identity regardless of whether g(z,z' ) is the correct distribution 
function or not. However, the better the choice of g(z ,z' ) the smaller is the difference function 
D(z ). If g(z,z' ) were precisely correct, the integral in (14b) would vanish, and I/;( z) as defined 
in (13) would become 

I/; (z) =~~ A z(z). 
).t l ,( z) 

(15) 

Nevertheless, D(z) in (14a) could not vanish simply because the ratio of the actual vector 
potential to the actual current is only approximately equal to the constant 1/I (ZI)' The difference 
term D(z) is evaluated by successive approximations and its contribution to the expression for 
1,(z) is contained in the higher-order ternls of the solution by iteration. 

Owing to the analytical complexity of the higher-order terms in the King-Middleton 
solution and the fact that its leading trigonometric term includes only a very rough approxi­
mation of the susceptive part and no contribution whatsoever to the conductive part of the 
current, it is desirable for practical purposes to derive an approximate solution for the current 
in which the leading trigonometric terms are a much better approximation. This may be 
accomplished if the vector potential and the current are separated in to components and these 
are then properly associated to permit the introduction of several expansion parameters of 
the type I/; (zr) in (13) . Each of these is the approximately constant mtio of a particular com­
ponent of vector potential to its associated current. Several integral equations are obtained in 
this way which may be iterated independently. A study by King [1959] has shown that the 
sum of only the leading trigonometric terms of these component currents with suitably deflnr,d 
complex coefficients yields the total current and driving poin t impedance with reasonable 
accuracy. A precise solution for the distributions of current and charge, and the impedance of 
an electrically short antenna in free space has been given by King [1952; see also King, 1956, 
ch. II, sec. 31], using a method that is not particularly convenient when the antenna is in a 
dissipative medium. 

4 . Solution of the Integral Equation for the Current Along an Electric Probe 
in an Ionized Medium 4 

In the King-Middleton antenna theory, the leading reactive term in the complicated 
series for the current distribntion is the familiar sinusoid. Only one g(Z,Zl ) and its associated 
I/; (z) are used in solving the problem, but several iterations are required to achieve accurate 
results . On the other hand (11 ) is arranged in such a way that th e leading term consists of 
two components; one varies as [1 - (lzl/h)] and a second varies as [1 -(z2/h2 )] . The linear 
distribution may be consider ed to be maintained principally and directly by V (which is localized 
at z= O); the parabolic distribution is induced by the retarded field distributed along the 
entire antenna and expressed in terms of the equivalent voltage U (as in a receiving antenna 

• The proce1ure employed in this section to solve the integral equation is discussed in so mewhat greater detail in Sandia Corp. Tech . Memo. 
No. 53- 60(14) . " Approximate solution of the free·space antenna equation based on a determination of the complex coefficients of the leading com· 
ponents and cUT'I'ent / ' February], 1960. 
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situated in a uniform field ). Since the leading terms consist of two components, which are 
different functions of z, these may be expressed separately in terms of the appropriate distri­
bution functions gv(z,z' ) and gu(z,z'). These relative dis tribution functions prove useful 
in the definition of two expansion functions ifi v(z) and ifiu(z). In order to introduce these func­
tions, it is necessary to separate the total current along the antenna and the vector potential 
on its surface into component parts, and associate these parts according to their analytical 
dependence on z. The ratio of a particular component of vector potential to its associated 
current is the constant ifi v( zv ) or ifiu(zu). Here Zv and Zu are the values of z where the given 
part of the total current has its maximum value. 

The form of the right-hand side of (11 ) suggests that it should be possible to approximate 
the current along an electrically short antenna in a conducting dielectric by 

1 z (z' ) = A1Vloz' + B Foz' (16) 

and evaluate the complex coefficients A and B in such a way that when (16) is ub tituted in to 
(11 ), the equation is approximately satisfied. With this substitution , 

A f~/\;[oz' KD(z,z ')d z' +B f~h Foz' K]) (z,z' )dz' 

~j W"rk~;) {V8(1- 1~1)+UCkh(1-p') } . (17 ) 

The integrals that occur in (17) arc 

(ISa) 

Jh Fo.' (~-~)dZ " 
-h R Rh 

(18b) 

J' h 

-h Moz· (Rn-R~)dz ' , (18c) 

(l Sd) 

where n = 1 or 2. \~Then these have been evaluated it is found that the leading term in (18a) 
varies approximately as Moz and the leading terms in (1Sb, e, d) vary approximately as Foz. 

Equation (17) may now be separated into two parts: One part has an J.11oz variation; the 
other an Foz variation. Thus, 

(19) 

and 
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For convenience let the following notation be used: 

and 

where 

J'" { II } ifidl= g.(z,z') R-I[ dz' 
-II II z ~O 

(1-42) 
(1_ !~ 1 )' 

28(1-42) 
Ckh(l-fz), 

(1-~) 
(l-fz)" 

Equations (19) and (20) now become 

. 27rllk 
A ifidl= J ( Ph2 ) 

WJ.L 1- -
2 

and 

respectively.5 
The substitution of (16) in (9) gives 

where 

and 

The use of U from (27) in (26) gives 

B = AT(h), 
where 

T(h) 

, Equations (19) and (20) are valid ror any value of z; in particular, they are valid ror z~O. 
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(29) 

(30) 
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Al 0, from (25), 

(32) 

A ten tative expression for the current is obtained when (30) and (32) are substituted in (16) 
It is 

. 27fYSkh ( ( Izl) r C kh( Z2) } 
1. (z)=) ( k2h2) l 1-71: +T(h) S 2 I-hi J 

if;at 1- 2 t 
(33) 

where use has been made of the relation wJL = kr. R eaders are reminded tha t in deriving (33), 
all difference integrals have been neglected. The parameter T (h ) is evaluated from the 
in tegrals (21) , (22), (23) , (28), and (29). It is found that with terms of the order !c3h3 

if;al "'"2 In G)-2, 
2kh . k 2h2 P h? 

if;az"'"T-) 3 -18' 

.1, 2 1 (2h) 3 5 12/2 . 2 k3h3 
'I'd" "'" n a - + 12 Ie b - ) 9 ' (34) 

An a pproximate formula for T (h) may be obtained if (34) is ub tiLuted into (3 1) ftnd 
terms of the order (kh )4 are neglec ted . It is 

T(h) 
( 2) . 2 (1 In 2) 21n 2- '3 lch-) '3 !cW-kW 9 + - 3-

2 1 2h 3 lc"12 (1 2h 11)+. 4 pp . n a- - - b n a- 12 ) 9 b 

(35) 

In the derivation of (33) terms of the order lc4h4 and higher have been neglected in the 
individual fun ctions. Therefore, when the current is expressed as a series in powers of !ch, 
all terms of order higher than k3h3 wi thout the common factor lch , or higher thftn lc4h4 with this 
factor, must be dropped. As a frrst step in this expansion ftnd simplification T (h ) as given in 
(35) may be expressed as follows when terms of the order Ph3 and higher are negleeted (since 
T(h ) occurs only where multiplied by a n addi tional factor kh ): 

T (h) 3(Q~3) [(3 1n 2-1)lch-jkW]J 

2h 
where Q= 2 In - . It follows that including terms of the order k3h3, 

a 

(36) 

(37) 

If (3 7) is inserted in (33) and only terms up to and including the order Ph3 are retained exclusive 
of the common factor, the current (33 ) is given by 

1. ( z) j27fkhV ~ (l+ k2h2) (1_8)+ (3 1n 2- 1)kW-jkW (1-Z2)"\.. (38) 
Ndt \.. 3 h 3(Q-3) h2 j 
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In (37) and (38) use has been made of the relations S= [1 - (k 2h2/6)], C= [1 - (kW/12)], C/S~ 
[1 + (Ph,2j12 )], and [1 - (kW/6)] / [1- (kW/2)] "" [J + (k2h2/3)]. The admittance obtained from (38) 
with z= O is 

Y(k) = ' 27rkh { 1+ kW [ 1+ (31n 2- 1)J _' k3h3 } . 
J Ndl 3 (Q - 3) J 3(Q-3) (39) 

These are the final general formulas for the current in and the admittance of an electrically 
short center-driven dipole of half-length h. The corresponding formulas for a base-driven 
monopole of length h erected vertically on an infinite ground plane are obtained from (38) and 
(39) by multiplying the right sides by 2. 

It is now clear why it is necessary to include cubed terms in the small quantity kh . For 
if a= O so that k = (3 and .I= .le are real, the only contribution to the real part of Y(k ) comes from 
the term with kW as coefficient. Thus, with Y(k) = G(k) + jB(k), the admittance for a dipole 
in air with k= (30,.I= .lo~1207r ohms, is 

(40) 

where 

F = 1+ [(3 In 2-1 )/ (Q - 3)] = 1+ [1.08 / (Q-3)] . (41) 

The corresponding expression for the impedance is 

(42) 

For many purposes when (3~h2 is sufficiently small the correction terms (35h2p /3 may be neglected 
compared with unity. 

5. Accuracy and Numerical Example When a =0 

As a specific numerical example consider an antenna for which h/a= 75, Q~ 10 so that 
lfdl = 6.635 . With .10 "" 1207r ohms it follows that 

Y((3o) = {0.120 (3W + j 2.51 (3ch [1 + 0.385 (3W ]) X 10- 3 mho, (43) 

19.0 (3W . 398.1 h 
Z((3o) [1 + 0.385 (3WF J (3ch [1 + 0.385 (3W] 0 ms. (44) 

This last formula may be compared with the following more accurate result obtained by another 
method [King, 1952; see also King, 1956, ch. II, sec. 31]: 

Z o= 18.3 (3W(l + 0.086 (3W) - j 3::hO (1 - 0.383 (3W) ohms. (45) 

The leading terms in (44) and (45 ) are clearly in good agreement. Specifically, when (3oh= 0.3 , 
the numeri cal results from (43 ) to (45 ) are : 

Y ((3o) = 0.972 X 1O- 6+ j 0.779 X lO- 3 mhos, 

Z ((30)= l.60 - j 1283 ohms, 

Zo = l.66-j 1274 ohms. 

378 

(46) 

(47) 

(48) 



The leading terms alone in (44) and (45) give 

Z({3o)=1.71-j 1327 ohms, (49) 

Zo=1.65-j 1320 ohms. (50) 

It is clear that the corresponding numerical values are in very good agreement. Moreover, the 
simpler formulas with leading terms only yield results that differ by only about 5 percent from 
the more accurate values. The accuracy of the formulas (40) and (42) has thus been verified 
when 0'=0 and f3oh~0 . 3. 

6. General Case When (l'~ O 

When lC= {3-jO' and r= re/(l-j~) are complex because O'~O, the ratio of condu ctance to 

susceptance in (39) may diJIer greatly from its value when 0' = 0. This is a consequence of the 
fact that contributions to the conductance may now come from the leading term with kh as 
coefficient and not only from the term with le4h4 as coefficient as when 1e = f3o. If thc complex 
values of Ie and r are inserted in (39) and the real and imagi nary parts separated, the result is 

Y(lc) = Q(le ) + jB(lc) , (5 1) 
where 

(52) 

_ 27r { . ( 0'2) 1 33"( 0'2 0'4) (34h4 0'( 0'2 O'4) } 
B(lc) - t eY;al {3h 1- (32 +3 f3 h Ii 1-6j32+;¥ -3(11- 3) (3 5- 10 f32+;¥ , (53) 

and F = 1+ [(3 1n 2- 1) / (11 - 3) ] as in (41 ). 
In many applications a is small compared with f3 so that with (4) 

Let it be assumed that the condition 

[ 2O'J2 [(J J2 If ~ W~ «1 (54) 

is well satisfied and (51) with (52) and (53) reduces to 

(55) 

Note that (55) reduces to (40) when 0'=0. 
As a numerical example consider the short dipole, previously considered when in ail', 

immersed in a region of the ionosphere where the number density of the electrons is N = 1.5 X 1011 
electrons per cubic meter and the collision frequency is JI = 1.1 X I05 sec- 1 . At a frequency of 
6 Mc/s the real effective dielectric constant ~ and conductivity (J are 

Ne 2 ) ( 2+ 2) = 0.665 ~o farads/m, 
~om JI W 
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where e is th e charge and m , the mass of an electron . It follo\vs that 13 = t3o ,~ = 0 .1025 radians/ 

m , s.= soi'llEr = 462.3 ohms, a=~()"S.= 7.534 X 10-5 nepers/m. Sin ce 2t3(X= 1.470 X 10 - 3, the 

simpler formula (55) is applicable. With t3oh= 0. 3, t3h= 0.2447. When substituted in (55), 
these values lead to 

Y (k) = 1.12 X 10- 6+ j 0.513 X 10- 3 mho (58) 
and 

Z(k)=4 .26 - j 1949 ohms. (59) 

If these results are compared with the corresponding values (46) and (47) for the same antenn a 
in air, it is clear that a significant change in admittance and impedance occurs when the antenna 
is moved from air in to the specified region in the ionosphere. 

7. Determination of the Dielectric Constant and Conductivity With a Short 
Antenna 

The measured change in t he driving-point admittance of an electrically short dipole 
when it is moved from air into the ionosphere or another conducting dielectric may be used to 
determine the effective dielectric constant and condu ctivity of the region. If the susceptance 
of the antenna when in the ionosphere is B(k), and when in air B(t3o) , it follows from the 
imaginary parts of (55) and (40) that 

B(k) 
B(t3o) 

E ,t3oh+ E~Ft3W/3 
t3oh+ FsW/3 

(60) 

Use has been made of the relation s.= sol-/;; and t3= t3o~;; . Since the terms with 135hz as a coef­
ficient are small , the susceptance ratio differs only slightly from the value E, . If E,=B(k)/B (t3o) 
is taken as the approximate value for substitution in the small correction term, the corrected 
formula for E, becomes 

(61) 

where, from (42), F = 1+ [(3 1n 2 - 1)/ (Q-3) ]. When t30h is sufficiently small , the leading term 
in (6 1) may be adequate. 

If the admittance of the antenna when it is in the ionosphere is G(k)+jB(k ) and the con­
ductance in air is 0(130), it follows from (55) and (40) 

2a ()" G(k) - E~/ 2 G(t3o) 

B (k) (l+~Ft3Wy 

As in (6 1) the small term ~ Ft32h2 may be negligible when t3h is sufficiently small. 

8 . Determination of Electron Density and Collision Frequency 

(62) 

The formulas (56) and (57) that relate t he dielectric constant E= EOE, and the conductivity 
()" of the m edium t o the electron density N and the collision frequency jI may b e solved for jI 

and N . Thus, 

(63) 

(64) 
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If E= EOEr is obtained from (61) and rr from (62), jJ and N may be evaluated. Thus, both the 
number density and the collision frequency may be determined from measurements of the 
impedance of a short dipole successively when immersed in air and in the ionosphere, provided 
the relations (56) and (57) adequately represent the properties of the latter. 

9. Static Capacitance Formula 

Since it has been assumed that the antenna is electrically short, its admittance may be 
determined approximately from its lumped capacitance. Wh en the antenna is immersed in 
air, the approximate susceptance is given by the leading term in (40) . That is, 

so that with (34) , the capacitance is 

0= 7rEoh . 
11, 

In - - 1 
a 

An alternative expression Il'eq uen tly given for the static capacitan ce is [ICiipf'muller, 1932] 

a _ 27rEoh 
0- 211, 

21n - - In 12 
a 

(65) 

(66) 

(67) 

The sll sceptances and reactances obtained at a frequ ency of 6 Mc/s with (3oh= 0.3, and h/a= 75 
are, from (67), 

wCo= 0.666 X 10- 3 mho , 
1 

--n=-1502 ohms; 
wvo 

(68) 

from (66), 

wC= 0.754 X 10- 3 mho , 
1 

- wC= - 1326 ohms. (69) 

More accurate values according to (46) are 

B ({30) = 0.779 X 10- 3 mho, Xo({3o) = - 1283 ohms. (70 ) 

It is seen that the use or the conven tional formula (67) leads to an error of nearly 25 percent 
in the suscep tance of the shor t antenna in free space. 

If the antenna is immersed in a medium wi th relative dielectric constant Er , the appropriate 
expressions for the capacitances C. and ('0. are simply (66) and (67) multiplied by ET • It 
follows th at 

C. Co. 
0= CO = ET • 

(71 ) 

This is the same value given by the leading term in (6 1). Thus, the rela tively larger error in 
susceptance that results from the use of the formula (67 ) for the static capacitance is canceled 
out when the ratio (71 ) is evaluated . It is this ratio that was used, 1'01' example, in the meas­
urements reported by J ackson and Kan e [1959a]. Note that the above discussion applies 
when (54) is satisfied. 

10. More Highly Conducting Medium- Plasma and Sea Water 

The generality of the derivation of (39) and (5 1) has been limited by the conditions (6), 
{3h< l , Cl'h < l , but the relati.ve magnitudes of CI' and {3 have not been res tricted. In the 
impor tant special case corresponding to sea water, CI' = {3, the leading real and i.maginary terms 
in (5 1) arc 

(72) 
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where F is defined in (41) . The appropriate formulas for .Ie and {3 are obtained from the 
defining relations, with a={3, (J> >W~. Thus, 

- [ . aJ [ }wjJ. JI/2 [2w!J.JI /2 .Ie- 1-J - - - . - "'" - , 
f3 (J+Jw~ (J 

so that 

a= f3 = [ w~(J J/2. 

With Y(k) = G(k) + jB(k) as given in (72), it follows that 

G(k) "",~/~h (J , 
'I'd 1 

? h3F B(k) - ~7r 2 - - -- w!J.(J 
3if;dl 

The susceptance of the same antenna in air is 

It follows that 
(J G(k) 

w~o = B({3o) . 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

This formula may be used to determine (J from measured values of the conductance G(k ) of 
the short antenna in the conducting medium with a = {3 and the susceptance B({3o) of the same 
antenna in air. 

Note that the radiation term with the coefficient (34h4/3(Q-3), which constitutes the 
principal contribution to the conductance when the antenna is in air, does not appear in (72) 
since it is negligible to a high order. Thus, the entire admittance is independent of radiation 
and the dipole behaves like a pair of electrodes at low frequencies. Moreover, the conductance 
is very great compared with the susceptance, which is a small quantity of higher order. 

The admittance of a dipole immersed in media for which the attenuation constant is in 
the broad range 0 Sa S {3 may be considered in three ranges as follows: 

1. 2a /f3 < < (33h3/3(Q-3) < < 1. The dipole is essen tially a radiating structure with a conduct­
ance that is very small compared wIth the susceptance. 

2. (33h3/3(Q-3 )< < 2a/ f3< <1. The dipole is like a pair of electrodes with negligible radia­
tion. The conductance and susceptance may be comparable in magnutide. 

3. a/{3'"'-' 1; f3W < <1. The dipole is like a pair of electrodes with negligible radiation. The 
conductance is large compared with the susceptance. 

Graphs of the input admittance and impedance of an antenna with Q= 10, (3h=0.3 are 
shown in figures 2 and 3 as functions of a/ f3. 

11. End-Effects and Admittance 

Throughout the analysis it has been assumed that the antenna is center-driven by a so­
called del ta-function generator which provides a discontinuity in the scalar potential at the 
center z= O of the antenna. The antenna consists of a perfectly conducting thin tube with 
adjacent knife edges at z= O along which an electric field Ez(z) = Vo( z) is maintained where 
o(z) is the Dirac delta function. The entire tube with its idealized generator is immersed in 
the dissipative medium under study. Strictly speaking, the generator is short-circui ted by an 
infinite capacitance and an infinite conductance at the knife edges, so that the current must be 
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FIG aRE 3. Nor malized conductance and l·esistance 
oj shm·t antenna in a dissi pative medium. 

infini te. It has been shown by Wu and King [1 959] tha t this htrge current t hat is associated 
wi th knife edges exists only in a n ex tremely shor t distance on each s ide of these edges. :'101'e­
over , if the curren t is appL'Oxim ated by a series of co ntinuous functions, this par t of th e current 
ca n con tribu te no thing if the solu tion is no t of too high order. Thus, the fini te curren t ob tain ed 
in this p ftp er is th e total current minus the infini te current at Lhe driving poin t. 

An actual an terma used for probing a m edium s uch as the ionosphere may b e a dipole 
center-driven from. a two-wire lin e, or a h iLl[' dipole b ase-driven from a cOitxialline that pierces 
a conducting plane. The curren t en tering such an an tenna is well approximated by th e current 
supplied by a del ta-function generator (minus th e infinite knife-edge current ) and a sma ll 
r eactive current ch aracteristic of end-effects and coupling effects n ear t he par ticular junction 
r egion between antenna and feeding line [King, 1956, pp. 33- 69]. If the lin e spacing is very 
small compared wi th the length of the electrically sbort a n tenna, i t is necessarily an extr em ely 
small fraction of a wa velength . H ence end and coupling effects ar e negligibl e. 

12. Conclusion 

Formulas have been derived for th e admit tance of a perfectly conducting electrically short 
dipole immersed in an infinite m edium that is characterized by a conductivity (J and a dielec tric 
constant € [or a r ange of r a tios rr/w€ tha t extends from zero to values that are large compared 
wi th uni ty. The applica tion of the formulas to th e determin a tion of bo th rr and drom m easured 
values of the admittance of the an tenna when immersed in the m edium and when immersed in 
air has b een discussed together with the evalua tion of electron densities and collision frequen­
cies of m edia in which these q uan titites may b e r ela ted direc tly to (J and €. It is to be noted 
that the more complicated problem of a dipole near the interface between t wo m edia has not 
been tr ea ted . 
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