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If the admittance of a missile, satellite, or drone-aircraft antenna is monitored as the
vehicle traverses an ionized region, it is possible to determine the free electron density and
the collision frequency of the region if theoretical relations between these quantities are
available. In this paper formulas are developed that relate the admittance of an electrically
short center-driven dipole or a base-driven monopole when immersed in a conducting dielec-
tric to the effective dielectric constant and conductivity of the medium. From well-known
formulas relating these quantities to the free electron density and the collision frequency
of an ionized region, these latter may be determined directly from measured admittances.
The results obtained when the antenna is treated as a lumped capacitor are considered.
It is shown that when the conduectivity of the medium is increased to a value that is still
quite small, the effect of radiation on the input admittance becomes negligible. The
electrically short antenna immersed in sea water is discussed briefly.

1. Introduction

It has been suggested that electron densities and collision frequencies in the ionosphere
may be determined by measuring the impedance of a base-driven electrically short missile
antenna, using a lumped-element impedance bridge, as the vehicle traverses the ionized region
[Jackson and Kane, 1959 a and b; Haycock and Baker, 1959]. A theoretical relation between
the reactance of the REF probe and the electron density then permits the evaluation of the
electron densities from the measured reactances. It is the purpose of this paper to derive an
approximate expression for the admittance of a center-driven dipole or of a base-driven probe
antenna in a infinite ionized homogeneous medium. The admittance so computed is approxi-
mately the same as for an antenna in a medium of finite extent, provided its boundaries are
sufficiently far away. It should be mentioned that the impedance of a stub type antenna
protruding from a missile differs negligibly from the impedance of the same antenna when
mounted on an infinite ground plane, provided the dimensions of the carrying vehicle are not
too small in terms of the wavelength.

The formula for the admittance is derived from the integral equation for the distribution
of current along the probe by means ol a technique that achieves sufliciently high accuracy in
the leading terms of an iteration procedure so that higher order terms are not required. The
leading terms in the current consist only of linear and parabolic functions with complex coeffi-
cients. A method for finding these coeflicients is described. No account is taken in the
theoretical development of residual charges on the missile [Kraus and Watson, 1958; Jackson
and Kane, 1959a; Krassovsky, 1959].

2. Integral Equation for the Current

Figure 1 illustrates a cylindrical electric probe of length 24 and radius a, center-driven at
z=0 by an idealized delta function generator of emf V. The axis of the antenna coincides
with the z-axis of a cylindrical system of coordinates 7,0,z. The quasi-one-dimensional theory
employed requires the following inequalities to be satisfied:

2ma g

h>a, fa——<1, S=.

. oo (1)

1 Contribution from the Sandia Laboratory, Albuquerque, N. Mex.
2 Consultant to the Sandia Corporation and Gordan McKay Professor of Applied Physics, Harvard University.
3 Member of the Scientific Staff, Sandia Corporation.
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Ficure 1. Probe antenna in a conducting dielectric.

where X is the wavelength in the medium. The antenna is assumed to be perfectly conducting
and in contact with the dissipative medium characterized by u, €, and o, the absolute perme-
ability, dielectric constant and conductivity, respectively.

The integral equation for the current along a perfectly conducting symmetrical center-
driven antenna of finite radius immersed in an infinite dissipative medium of arbitrary attenu-
ation is [King and Harrison, 1960]

47k
wu cos kh

4 4 (0)= f " L E(e,2")de =] [ VMOZ+UF02] @)
M —h

The only restrictions that have been imposed are given by (1).

In (2), 7.(2’) 1s the unknown complex current in the element dz” at a distance 2z’ from the
origin. The distance along the antenna from the origin to the point on the surface of the
antenna, where the vector potential A,(z) is computed, is z. The kernel K, (z,2") is

—JkR  , —ikRp

KD(Z,Z'):E I ) (3)

where R—=+/(z—2")>+a?, Ry=+/(h—z')*+da? and k is given by the expression

k=B~ ja=wyue(l—jp)=wyue [ f(p)—js(p)]; (4)
w is the radian frequency, f(p)=-cosh(}% sinh™* p) and g(p)=sinh(% sinh™! p), where p=oc/we.
Tables of the function f(p) and g(p) are available in the literature [King, 1945]. wu=Fk{, where

¢ is the characteristic impedance of the dissipative medium given by {=[jou/(c-+jwe)]'/?
=¢/l1—7(a/B)]. M,,=sin k(h—|z|) and F,,=cos kz—cos kh. 'The function U is defined by

[ e —JkR}, , LW 4 _
__]MJ (") Lp— de'=—j 7 A0). (5)

Equation (2) is applicable to an antenna of any length. An RF probe is defined for present
purposes as an antenna for which gh <0.3 radians. For such an electrically short structure,
the several functions may be expanded in powers of kh since it is postulated that

Bh<1, ah<1. ©6)
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The kernel K,(z,2"), as given by (3), may be written

Kb(z,z')zjlg—]i——(zz R,,)—|—] (R, (70)

Also,
My=sin kh—|2l) =k (h—] o) ~EOLL (1) (L BET ZEL T )

and

k*h? 22\ kAt N\ 2 k*h*
Fi.=cos kz—cos kh~ (1_h_2> ﬂ(l—ﬁ>z7 (1—p)<1 [1+}2]> (7¢)

At the driving point (z=0), M,, and F, have the amplitudes Skh and CE?h?/2, in the order
named, where S=1— (k*4?/6) and C=1— (k%?*/12). It is assumed that [1—(|z//k)] and [1—
22[h?)] adequately represent the variation, respectively, of M, and F|, along the probe. Ac-
cordingly, the simplified representations of M, and F,, are

M(,,szh( —u) (8a)
7 zl(wy( ~) (sh)

CEO h?

The function U becomes
; 1 k1, A_BL
~—jg " 1 i ) a4z )
and

cos kh ~<1 —%’L) (10)

In these expansions terms of the order of magnitude £'4* have been neglected.
=]
The final form of the integral equation for the current along a probe antenna in a con-
ducting dielectric is obtained from (2) with (6), (8), and (10). It is

RN I SR S s S R
J 12(,,)[75 s R—R) -+ (R ,,,)](L
.. 2mk?h, 2| rr AN
_ (- k2h2>|:VS< >+u;m/<1 m)] (11)

3. Some Remarks Pertaining to the Solution of the Free-Space Antenna Equation

King and Middleton [1946; see also King, 1956, Chapter I1] begin the process of obtaining
an approximate solution of the free-space antenna equation

¢ —JBR
= A,(2) f I,(z’ dz/=—j — ¢ [('l cos Bz —}—ism Bz [] (12)

by expressing 7.(z) in terms of a reference current /,(z,) and a distribution function f(z) that is

unknown. Let /7,(2)=1.(z,)f(2), so that 1.(z')=1.(z)f(z"). Then I.(2)=LI1.(2)[f(z")/f(z)]=

1.(z2)g(z,2"). A function ¢(z) is now defined in terms of ¢(z,z") by the expression

s'/(s):f_hh g(z,2’) e;;ﬁ’f dz’ =y(z1)+(2), (13)
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where z, is a suitable reference point; namely, z,=0 when h<N/4, z;=h— (A\/4) when L>)\/4.
With (13), the integral in (12) may be written in the form

2 42— f I(z) £ de'=L(2(z)+D(2), (14a)

where

D=L+ [ [ 1) —Lee | G . (14b)

It is evident that (14a) is an identity regardless of whether g(z,2”) is the correct distribution
function or not. However, the better the choice of g(z,2") the smaller is the difference function
D(z). If g(z,2") were precisely correct, the integral in (14b) would vanish, and ¢(z) as defined
in (13) would become

:%IA (2), (15)
LA

¥(2)

[\}

Nevertheless, D(z) in (14a) could not vanish simply because the ratio of the actual vector
potential to the actual current is only approximately equal to the constant ¢(z). The difference
term D(z) 1s evaluated by successive approximations and its contribution to the expression for
1.(z) 1s contained in the higher-order terms of the solution by iteration.

Owing to the analytical complexity of the higher-order terms in the King-Middleton
solution and the fact that its leading trigonometric term includes only a very rough approxi-
mation of the susceptive part and no contribution whatsoever to the conductive part of the
current, it is desirable for practical purposes to derive an approximate solution for the current
in Whlch the leading trigonometric terms are a much better approximation. This may be
accomplished if the vector potential and the current are separated into components and these
are then properly associated to permit the introduction of several expansion parameters of
the type ¢(z) in (13). Kach of these is the approximately constant ratio of a particular com-
ponent of vector potential to its associated current. Several integral equations are obtained in
this way which may be iterated independently. A study by King [1959] has shown that the
sum of only the leading trigonometric terms of these component currents with suitably defined
complex coeflicients yields the total current and driving point impedance with reasonable
accuracy. A precise solution for the distributions of current and charge, and the impedance of
an electrically short antenna in free space has been given by King [1952; see also King, 1956,
ch. II, sec. 31], using a method that is not particularly convenient when the antenna is in a
dissipative medium.

4. Solution of the Integral Equation for the Current Along an Electric Probe
in an Ionized Medium*

In the King-Middleton antenna theory, the leading reactive term in the complicated
series for the current distribution is the familiar sinusoid.  Only one g(z,2”) and its associated
Y(z) are used in solving the problem, but several iterations are required to achieve accurate
results. On the other hand (11) is arranged in such a way that the leading term consists of
two components; one varies as [1—(|z|//h)] and a second varies as [1—(z%/k*)]. The linear
distribution may be considered to be maintained principally and directly by V' (which is localized
at z=0); the parabolic distribution is induced by the retarded field distributed along the
entire antenna and expressed in terms of the equivalent voltage U (as in a receiving antenna

4 The procedure employed in this section to solve the integral equation is discussed in somewhat greater detail in Sandia Corp. Tech. Memo.
No. 53-60(14), ““ Approximate solution of the free-space antenna equation based on a determination of the complex coefficients of the leading com-
ponents and current,”” February 1, 1960.

374



situated in a uniform field). Since the leading terms consist of two components, which are
different functions of z, these may be expressed separately in terms of the appropriate distri-
bution functions gy(z,2") and gy(z,2’). These relative distribution functions prove useful
in the definition of two expansion functions ¥ (z) and ¥ (z). In order to introduce these func-
tions, it is necessary to separate the total current along the antenna and the vector potential
on its surface into component parts, and associate these parts according to their analytical
dependence on z. The ratio of a particular component of vector potential to its associated
current is the constant ¥y (z,) or ¥y (z,). Here z, and z, are the values of z where the given
part of the total current has its maximum value.

The form of the right-hand side of (11) suggests that it should be possible to approximate
the current along an electrically short antenna in a conducting dielectric by

1,(z")=AM,,.+ BF,, (16)

and evaluate the complex coeflicients A and B in such a way that when (16) is substituted into
(11), the equation is approximately satisfied. With this substitution,

h h
Af_hﬂ/,,z/ Kl)(z,s’)ll.z’—{—lff_h Fo.r Kp(z,2")dz’
. 2nkh . |2] 0
=1 77”1” Az/__é_)_{ 6( >-{—(; Ieh <] >}

The integrals that occur in (17) are

S
J {o.. (I’ 2 dz’, (18a)
J F.. <1, 7)1 (18b)
J My (R"—R2)d, (18¢)
-h
*h
J Foo(R"— R)dz", (18d)
—h

where n=1 or 2. When these have been evaluated it is found that the leading term in (18a)
varies approximately as M, and the leading terms in (18b, ¢, d) vary approximately as Fj..

Equation (17) may now be separated into two parts: One part has an M, variation; the
other an F, variation. Thus,

2 1 1 , . 27V Sk*h 2
Af_hMOZ’ {TE_E} dZ <1_k2h2){ T} (19)
and
Af M. { =5 (R—R)+i% R (17'+Bf" Fopd 1oL
LVL0z’ i ~ - 0z 11) [{h

3 TOI3R
~’§<R—R,I>+j%m2—1fz>}(zz':' 2 ’,“CZ>{ A TED

1——
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For convenience let the following notation be used:

ta=[" 0 { 3 pe=

vo= [ gt { =5 m—r)+i% -y Jax

z2=0
and

—f 9u(2,2") {—,— B (B—Ra)+i% (B I?E)}dz,

R
gz, 2y = e = (-%)
EaC
v, 2S<1——)

o 1—;>
’2

_FOz’_<1——7L—2_>

G2 )
0D
h? )

Equations (19) and (20) now become

where

v

Jun(2,2")=

. 2r Vi
A=y *Lk«th
wﬂ(“?
and
4kl
At Bia—= T

A (1-—1ih2>

respectively.’®
The substitution of (16) in (9) gives

U——j {A%mHJNAM}

(P ENS 1 BR,PREY
wi=si [ (1= 504 =g

BRI N [ ER, FRL\
Yulh)=C 2f_,.<1 h?){zeh k==5"+i g }’dz‘

The use of U from (27) in (26) gives

where

and

B=AT(®),

Yo (h)— Vs (1—@2)
v (1=555)— vty

§ Equations (19) and (20) are valid for any value of z; in particular, they are valid for z=0.
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Also, from (25),
2rVk

k2h?
Va1 wit (1 - T)

A tentative expression for the current is obtained when (30) and (32) are substituted in (16)
It 1s

A=j (32)

27V Skh

s w( o (150 ¢ {(=)rro 8 (=) 9

where use has been made of the relation wu=k¢.  Readers are reminded that in deriving (33),
all difference integrals have been neglected. The parameter 7'(h) is evaluated from the
integrals (21), (22), (23), (28), and (29). It is found that with terms of the order £*A?

h N
Ya~2 In (a)~2,
PO Y x (. x
e A T
Yeu=~2 In (%) %—}— lﬂh —j k‘h‘ r (34)

0 =2kl o 2— it (%) e,

Yu(h) =k2h? —/ A’h‘

~

An approximate formula for 7'(h) may be obtained il (34) is substituted into (31) and
terms of the order (kh)* are neglected. It is

(2 In 2— >kh— i 2w (g +1-'L2

Th) ~————

- : (35)
Y /20 7 "_,_ S SSe7.37.3
2In 2t 3k (111 ! ]2)+]9kh

In the derivation of (33) terms of the order k'A* and higher have been neglected in the
individual functions. Therefore, when the current is expressed as a series in powers of kh,
all terms of order higher than £*4* without the common factor &k, or higher than £*h* with this
factor, must be dropped. As a first step in this expansion and simplification 7'(k) as given in
(35) may be expressed as follows when terms of the order £*? and higher are neglected (since
T(h) occurs only where multiplied by an additional factor kh):

T) =5 2 75 16 In 2= Dkh—jieil (36)
()
where =2 In H(Th It follows that including terms of the order k%A%
T(h) fs,%h—l’(h ( - h2> i P Ly 16 In 2= DR —jiR): (37)

If (37) is inserted in (33) and only terms up to and including the order k*h* are retained exclusive
of the common factor, the current (33) is given by

__J2mkhV kzh2 |2\ , (31n 2—1)k2%h*—ji*h? 1__)}
o= {( 1 )T 3(2—3) (38)
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In (37) and (38) use has been made of the relations S=[1— (k?*h?/6)], C=[1— (k*h*/12)], C|S =
[14 (k*h*/12)], and [1— (k*h?/6)]/[1— (K*A?*/2)] =1+ (K*h?/3)]. The admittance obtained from (38)

with z=0 is
21rkh k2h? (3 111 2 1) .
i e e S } (39)

These are the final general formulas for the current in and the admittance of an electrically
short center-driven dipole of half-length 4. The corresponding formulas for a base-driven
monopole of length % erected vertically on an infinite ground plane are obtained from (38) and
(39) by multiplying the right sides by 2.

It is now clear why it is necessary to include cubed terms in the small quantity kh. For
if =0 so that k=g and {=¢, are real, the only contribution to the real part of Y (k) comes from
the term with k*h® as coefficient. Thus, with Y (k)=C(k)+7E5(k), the admittance for a dipole
in air with k=p,,¢={,=1207 ohms, is

L . 2mBoh )
Y60 =500 et e (15 S
where
F=14[(3 In 2—1)/(2—3)]=1-[1.08/(2—3)]. (41)
The corresponding expression for the impedance is
Z(BO) . g‘()‘l/dl 6(2;}'/2 > fﬂ‘kzl (42)

6r(2—3) [1+ ‘Zh F:l 2Bk |:1+5_0’L_

For many purposes when gih* is sufficiently small the correction terms gih*#/3 may be neglected
compared with unity.

5. Accuracy and Numerical Example When o« =0

As a specific numerical example consider an antenna for which h/a=75, Q=10 so that
Yai=6.635. With {,= 1207 ohms it follows that

Y (8y)={0.120 B3+ 2.51 Bk [1+0.385 Bh2]} X 10~* mho, (43)
1908 398.1
ZBo) =TT 0.385 gohT ) Beh [140.3%5 Fohz] M- (#4)

This last formula may be compared with the following more accurate result obtained by another
method [King, 1952; see also King, 1956, ch. 11, sec. 31]:

. 396.0

Zy=18.3 BiA*(1+0.086 Aih*)—j —g5=

(1—0.383 B3h%) ohms. (45)

The leading terms in (44) and (45) are clearly in good agreement. Specifically, when gA=0.3,
the numerical results from (43) to (45) are:

Y (By)=0.972>107°+47 0.779 X 10~* mhos, (46)
Z(By)=1.60—7 1283 ohms, (47)
Zy=1.66—7 1274 ohms. (48)
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The leading terms alone in (44) and (45) give
Z(By)=1.71—7 1327 ohms, (49)
Zy=1.65—7; 1320 ohms. (50)

It is clear that the corresponding numerical values are in very good agreement. Moreover, the
simpler formulas with leading terms only yield results that differ by only about 5 percent from
the more accurate values. The accuracy of the formulas (40) and (42) has thus been verified
when «=0 and B, <0.3.

6. General Case When «=0

When k=g—ja and §':§‘e/<1—j %) are complex because a0, the ratio of conductance to

susceptance in (39) may differ greatly from its value when «=0. This is a consequence of the
fact that contributions to the conductance may now come from the leading term with kh as
coefficient and not only from the term with £*%* as coefficient as when k=g,. If the complex
values of k and ¢ are inserted in (39) and the real and imaginary parts separated, the result is

Y(k)=G(k)+jBk), (51)

_2m [ 2a 2 s __] B“h" e a:} N

B(lc):%{ﬁh 1__7>+ ﬂ*h‘]’(]—(i 6:) ;54” w( 0% +B4>} (53)

and F=1+4+[3 In2—1)/(2—3)] as in (41).
In many applications « is small compared with 8o that with (4)

k:5<1—j %)zw\‘;(l—]’%):w\’;‘ J‘)we>

Let it be assumed that the condition
2 2 2
[—"] z[i] <1 (54)
B we

is well satisfied and (51) with (52) and (53) reduces to

BN 2a Bh . D@ (S ) .
Y ()= w{ 614 63h3F]+‘3(Q 5+ [Bh+ pir—32 B 5]} (55)

Note that (55) reduces to (40) when a=0.

As a numerical example consider the short dipole, previously considered when in air,
immersed in a region of the ionosphere where the number density of the electrons is N=1.5 < 10"
electrons per cubic meter and the collision frequency is »=1.1X10° sec™'. At a frequency of
6 Mec/s the real effective dielectric constant e and conductivity o are

where

e=lcrer=lcs (1 ———eom(vz 2)> 0.665 ¢, farads/m, (56)
Ne%
— —=01 ] =7 474
=it 3.26 107" mho/m, (57)
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where ¢ is the charge and m, the mass of an electron. It follows that 8=8,v€,=0.1025 radians/
- . e 2
m, {,={¢/Ve,=462.3 ohms, a=%a§‘827.534>< 10~ nepers/m. Since Fa:l.él 70 <1073, the

simpler formula (55) is applicable. With gh=0.3, gh=0.2447. When substituted in (55),
these values lead to

Y(k)=1.12X10"%+7 0.513X10~* mho (58)
and
Z(k)=4.26—7 1949 ohms. (59)

If these results are compared with the corresponding values (46) and (47) for the same antenna
in air, it is clear that a significant change in admittance and impedance occurs when the antenna
is moved from air into the specified region in the ionosphere.

7. Determination of the Dielectric Constant and Conductivity With a Short
Antenna

The measured change in the driving-point admittance of an electrically short dipole
when it is moved from air into the ionosphere or another conducting dielectric may be used to
determine the effective dielectric constant and conductivity of the region. If the susceptance
of the antenna when in the ionosphere is B(k), and when in air B(8,), it follows from the
imaginary parts of (55) and (40) that

B(k) _e.Boh+eFBR/3 {1+6 B hz/g}
€ (60)

B(By) . Boh+-E'BiR3/3 o 1+ F82h?/3

Use has been made of the relation ¢,=¢o/ve, and B=Be,. Since the terms with 82h? as a coef-
ficient are small, the susceptance ratio differs only slightly from the value ¢,. 1f e,~B(k)/B(8,)
is taken as the approximate value for substitution in the small correction term, the corrected
formula for e, becomes

=g+ (1 5e) | LG

where, from (42), F=1-+[(3 In2—1)/(2—3)]. When By is sufficiently small, the leading term
in (61) may be adequate.

If the admittance of the antenna when it is in the ionosphere is G (k)+jB (k) and the con-
ductance in air i1s G(B,), it follows from (55) and (40)

Z_a o (k)—fa/z G (Bo)
s By (1 Sl Fﬁ%z)

3 (62)

Asin (61) the small term % Fp*h? may be negligible when gh is sufficiently small.

8. Determination of Electron Density and Collision Frequency

The formulas (56) and (57) that relate the dielectric constant e=e¢s, and the conductivity
o of the medium to the electron density N and the collision frequency » may be solved for »
and N. Thus,
g

y=— (63)

€E— 0

Nela=orte

€€ (7/2

(64)
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If e=ese, is obtained from (61) and ¢ from (62), » and N may be evaluated. Thus, both the
number density and the collision frequency may be determined from measurements of the
impedance of a short dipole successively when immersed in air and in the ionosphere, provided
the relations (56) and (57) adequately represent the properties of the latter.

9. Static Capacitance Formula

Since it has been assumed that the antenna is electrically short, its admittance may be
determined approximately from its lumped capacitance. When the antenna is immersed in
air, the approximate susceptance is given by the leading term in (40). That is,

. ~21r,30h . (27760}?/ ~
Blfo) =l So¥ar ~ Yar ) (i)
so that with (34), the capacitance is
g=—T (66)
In ——1
a

An alternative expression frequently given for the static capacitance is [Kupfmiiller, 1932]

Co=—%p (67)
21n H(—l—ln 12

The susceptances and reactances obtained at a frequency of 6 Mc/s with h=0.3, and hja=75
are, from (67),

wCy=0.666 X 107* mho, ——;}, =—1502 ohms; (68)
0
from (66),
w('=0.754 <102 mho, _;177:_1326 ohms. (69)
More accurate values according to (46) are
B(B,)=0.779><10~* mho, Xo(By)=—1283 ohms. (70)

-

It is seen that the use of the conventional formula (67
in the susceptance of the short antenna in free space.

If the antenna is immersed in a medium with relative dielectric constant e, the appropriate
expressions for the capacitances (e and (. are simply (66) and (67) multiplied by . It
follows that

) leads to an error of nearly 25 percent

(Ye 04)6__

“(T:T,O—-—Gr.

(71)

This is the same value given by the leading term in (61). Thus, the relatively larger error in
susceptance that results from the use of the formula (67) for the static capacitance is canceled
out when the ratio (71) is evaluated. It is this ratio that was used, for example, in the meas-
urements reported by Jackson and Kane [1959a]. Note that the above discussion applies
when (54) is satisfied.

10. More Highly Conducting Medium—Plasma and Sea Water

The generality of the derivation of (39) and (51) has been limited by the conditions (6),
Bh<1, ah<1, but the relative magnitudes of « and g have not been restricted. In the
important special case corresponding to sea water, a=g, the leading real and imaginary terms
mn (51) are

Y (k) =4’r{ Bh—j 23 Fgh3 } (72)
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where /' is defined in (41). The appropriate formulas for ¢, and g are obtained from the
defining relations, with =g, ¢ > ">we. Thus,

_ . g ﬂ”’i 1/2~[?w_M]l/2
a UeH = el @

k:wmu—jwmrmzr—ﬁwd”%:a—j>[%?]”, (74)
so that

wp.a

a—p=

With Y(k)=G(k)+jB(k) as given in (72), it follows that

(k) ~ g@ ; (76)
_ 2@kPF o
B(k)= s (77)
The susceptance of the same antenna in air is
BB = o fih =2 e, (78)
g‘()'pd ¢d1
It follows that
o @ (k)
79
wer BB a

This formula may be used to determine o from measured values of the conductance G(k) of
the short antenna in the conducting medium with a=g and the susceptance B(8,) of the same
antenna in air.

Note that the radiation term with the coefficient B*A*/3(2—3), which constitutes the
principal contribution to the conductance when the antenna is in air, does not appear in (72)
since it is negligible to a high order. Thus, the entire admittance is independent of radiation
and the dipole behaves like a pair of electrodes at low frequencies. Moreover, the conductance
is very great compared with the susceptance, which is a small quantity of higher order.

The admittance of a dipole immersed in media for which the attenuation constant is in
the broad range 0 <« <pB may be considered in three ranges as follows:

1. 2a/B<<BR*/3(2—3)< < 1. The dipoleis essentially a radiating structure with a conduct-
ance that is very small compared with the susceptance.

2. Bh3(2—3)< < 2a/B<<1. The dipole is like a pair of electrodes with negligible radia-
tion. The conductance and susceptance may be comparable in magnutide.

3. a/f~1; Bh*<<1. The dipole is like a pair of electrodes with negligible radiation. The
conductance is large compared with the susceptance.

Graphs of the input admittance and impedance of an antenna with Q=10, 3h=0.3 are
shown in figures 2 and 3 as functions of «/B.

11. End-Effects and Admittance

Throughout the analysis it has been assumed that the antenna is center-driven by a so-
called delta-function generator which provides a discontinuity in the scalar potential at the
center z=0 of the antenna. The antenna consists of a perfectly conducting thin tube with
adjacent knife edges at z=0 along which an electric field £,(z)=V5(z) is maintained where
6(z) is the Dirac delta function. The entire tube with its idealized generator is immersed in
the dissipative medium under study. Strictly speaking, the generator is short-circuited by an
infinite capacitance and an infinite conductance at the knife edges, so that the current must be
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infinite. It has been shown by Wu and King [1959] that this large current that is associated
with knife edges exists only in an extremely short distance on each side of these edges. More-
over, if the current is approximated by a series of continuous functions, this part of the current
:an contribute nothing if the solution is not of too high order. Thus, the finite current obtained
in this paper is the total current minus the infinite current at the driving point.

An actual antenna used for probing a medium such as the ionosphere may be a dipole
center-driven from a two-wire line, or a half dipole base-driven from a coaxial line that pierces
a conducting plane. The current entering such an antenna is well approximated by the current
supplied by a delta-function generator (minus the infinite knife-edge current) and a small
reactive current characteristic of end-effects and coupling effects near the particular junction
region between antenna and feeding line [King, 1956, pp. 33-69]. If the line spacing is very
small compared with the length of the electrically short antenna, it is necessarily an extremely
small fraction of a wavelength. Hence end and coupling effects are negligible.

12. Conclusion

Formulas have been derived for the admittance of a perfectly conducting electrically short
dipole immersed in an infinite medium that is characterized by a conductivity ¢ and a dielectric
constant e for a range of ratios o/we that extends from zero to values that are large compared
with unity. The application of the formulas to the determination of both ¢ and e from measured
values of the admittance of the antenna when immersed in the medium and when immersed in
air has been discussed together with the evaluation of electron densities and collision frequen-
cies of media in which these quantitites may be related directly to ¢ and e. It is to be noted
that the more complicated problem of a dipole near the interface between two media has not
been treated.
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