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The VLF and ELF modes excited by a horizontal magnetic dipole (vertical loop) in the
spherical shell between a finitely conducting earth and an isotropic sharply bounded iono-

sphere are shown to have a nearly transverse magnetic character.
With the exception of the zero order mode, the propa-

to those of a vertical electric dipole.

The modes are similar

gating modes excited by the magnetic dipole are of slightly higher amplitudes, provided
that the far fields of the horizontal magnetic and vertical electric dipoles are equal over flat

earth in the absence of ionosphere.

The transient fields generated by a current step in the magnetic dipole are in the first
approximation similar to the fields generated by a current impulse in a vertical electric

dipole.

1. Introduction

The mode theory of VLE transmissions has been
developed by Watson [1919], Budden [1953], Schu-
mann [1954], and Wait [1957, 1960a, 1960b] for
excitation by vertical and horizontal electric dipoles
and also by vertical magnetic dipoles (horizontal
loops). Additional references on this subject have
been listed by Wait [1960a, 1960b].

The reciprocity theorem has been found to be use-
ful for relating the fields of a horizontal electric dipole
to fields of vertical electric and magnetic dipoles
[Wait, 1960a]. The reciprocity relations may be
also applied to relate the fields due to horizontal
magnetic dipole excitation to known fields due to
vertical electric and magnetic dipoles.

2. Reciprocity Relations

The reciprocity theorem states that the voltage V5,
induced in antenna 2 by current /, of antenna 1 is
the same as the voltage V; induced in antenna 1 by
an identical current 7/, flowing in antenna 2.

A vertical electric (VE) dipole of length ds at zj=z,
and a horizontal magnetic (HM) dipole parallel to
the z-axis (or a vertical loop of area da in the y, z
plane) at z;=z, are shown in figure 1, where sub-
sceripts 7 and ¢ refer to receiver and transmitter
coordinates respectively. The only nonzero H
component generated by the VE dipole is H;. The
magnitude of the voltage induced in the FHM dipole
Vs maximum if Hyo s parallel to the a-axis,
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Response of the zero order mode of the magnetic dipole has been calculated.
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magnetic and vertical electric dipoles respectively.
With the same current applied to the HM dipole
only the vertical electric field 7, will contribute to
Ve and

V=T (e 2= S (2)
75
4
HM
Ty S A
”
) y 4
VE (VM)
¢ :
x .
2y ® &g
> y.
¥

Fiaure 1. Coordinate systems for defining reciprocity relations.
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Equating (1) and (2) results in
El™(zy=2,,20=2;)
=—1wyu sin ¢HY (20=2,,20=2,)da/ds. (3)

A vertical magnetic (VM) dipole (or a horizontal
loop of area da™ parallel to the 2/, ¥ plane) at
zo=2, and a horizontal magnetic (HM) dipole par-
allel to the z-axis (or a vertical loop of area da" in
the v, = pldne) at zy=z, may be considered in the
geometry shown in figure 1. The only nonzero H
component generated by the VM dipole is I{,,. The
magnitude of the voltage induced in the HM dipole
Vimis maximum, if /1, is parallel to the r-axis,
which occurs for ¢=0 or =. Hence

Lﬂzm_Yw’u Hzm(N 7{4’ 2 ) cos ¢(l@hm (4)
where the superscript om refers to the vertical mag-
netic dipole. With the same current applied to the
HM dipole only the vertical magnetic field 7, will
contribute to V" and

Vo= —twu )" (20=2,,20= 2r)da™. &)

Equating (4) and (5) gives for da =da"

H B (=2 20— 7)== CosloH T (2i="2)s 20— 27 ) (6)
For spherical coordinates the z component is replaced
by r component and the p component by the 6 com-
ponent of the fields.

The reciprocity relations apply to dipoles in the
presence of any linear media. The fields of dipoles
above plane earth derived by solving the wave equa-
tion should also satisfy (3) and (6). Thus (27) and
(116) of Norton [1937], which have been derived for
unit dipoles, check the validity of (3). Some algebra
isinvolved in verifying (6) from (35.1) of Sommerfeld
[1949] and from (2) to (6), (17) to (19), and (30) of
Norton [1937].

3. Fields of the Horizontal Magnetic Dipole

The dipole fields will be examined with the aid of
reciprocity relations in an idealized spherical shell
that is bounded by a homogeneous earth of radius a
conductivity o, and dielectric constant ¢, and by a
homogenecous ionosphere of radius (a+4), conduetiv-
ity o; and dielectric constant ¢;. ‘The above model
neglects the effects of the earth’s magnetic field.

The vertical electric field £ is computed by (3)
applying (5.1), (6.16) of Wait [1960a] and using the
relation

d

7 P,(—cos 6)

=[cos OP,(—cos ) +P,_1(—cos 6)]/sn . (7)

This results in

I(da)iwu, sin ¢ &
- hr,

14
sin »r sin 4

E}}}m Z fn(‘t)/.n( T)

n=0

[cos 6P, (—cos 6)+ P, _1(—cos 6)]. (8)

The vertical magnetic field /" is computed by
(6) applying (9.1), (9.2) of Wait [1960a] and using
the relation (7) as

_q](dar)w/un cos ¢ &
2lchr

5m;}lvm (27) M

=i sin psin 6

Hhm —
r

[t ute |

[cos 0P, (—cos ) +P,_(—cos 0)]. (9)

Using the second order representation of the radial
functions, applying (6.9), (6.17), (9.3), and (9.4) of
Wait [1960a] yields

2f(2) =e™C[RE(O)] 7P +e  *C[RECHIV?  (10)
sin 2kh(C,
5q:< in_k‘h(’ (11)

where ¢ is an integer equal to either n or m and where

iy fl=0
]?p«Jn)”_‘n’p(v”_}‘(wp (] 2)
C
Ry(C=0n s 13
N i (13)
C,=J1—82, (14)
C,=+1—(S,/n,)?, ()
p+0.5 ;
S, =22 T (16)

The plus sign of (11) should be used with ¢=mn,
while the minus sign is appropriate for g=m. In
(16) p is a complex number, which is equal to » of
(8) or equal to u of (9), k=w/¢, c=velocity of light.

The refractive index n of the boundary medium
characterized by subseript p is
n: = (o,+1we,)/€ (17)

where ¢, and €, are the conductivity and permit-
tivity of the boundary medium and where ¢, is the
permittivity of free space (e,=(36m)"! 10=° farad/
meter). The boundary medium can be either ground
(p=g) or ionosphere (p=1). The refractive index
of ground is

ni:~a,/(lwe) (18)
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where g, 1s the ground conductivity. The refractive

index of the ionosphere is

ni=1+0,/(iweo). (19)
The ionospheric conductivity o, is defined by
2
o =% (20)
4

where » is the electron collision frequency in the
ionosphere and w, is the plasma frequency (w?=3180
N, N=number of electrons per meter?). (, and
(', are roots of the modal equations
RI(CHRI(C)=exp (+2ikh(,). (21)

S, that is related to /, by (14) has a magnitude of
approximately unity and a small imaginary part
for propagating modes of low attenuation. With
S, and §,, determined from (14), » of (8) and u of
(9) follow from (16). This completes the formal
specification of the fields £ and FH"".

The expressions for £%" and H"" may be simplified
by introducing further «1|)|)l'0,\'imu1i()ns. The con-
sideration will be restricted to cases where

ry=r A, (22)
kO, 2,1, (23)
kC 2, k1, (24)
ng>1. (25)
This gives

RM(C,) =1 —H:; T 1, (26)
RP(C) w1+ 22} (27)

v K )
1.z )le\u;,(’f , (29)
Fn(2) =0/ (in,Cp) = Oy (imy) (29)
Afn(2)[dz=1kn,Cof n(2) =ikngfn(Z). (30)

Approximating the Legendre functions by [Watson,
1919 ; Bremmer, 1949]

e ) e [i(,,%)(r—o)—im]

(31)
results in
Jomd
P Thm ([/a’ N (l/)\ . T_l I
£ S \/ sin (dja) /N
i2%d- S g
Z 6” ) ('3"‘)

n=0

" / dla__~dx 1515
],I:un:_ 08 sl 00 Y 1
cos ¢ mg N sin (d/a) h/)\
(o] _imsm
c > 8, (1—8%)S%e * T, (33)
m=1
where the distance along the curved earth is
d=ab, (34)
and where
. 2md
o _r/((/(l)n i .
= (59

is the vertical electrie field of the source at a distance
d in the direction of maximum intensity on a per-
rectly conducting plane earth,

4. Comparison of Harmonically Excited
Dipole Fields

The fields of the horizontal magnetic dipole £}
and ™ will be compared first with the correspond-
ing field components of the horizontal electric dipole.
It follows from (9.37) and (9.42) of Wait [1960a]
that for the »n™ and the m™ mode

l,l'im/i D Iu

—=mm| = ., tan e 36)
]4‘1’1”” In L ( d) I‘ :){ n (
I[t“"j 1[)11 ‘f

= b O () 37
14‘(’)”": d) I‘lr | m ( )

where the superscripts he and ve designate field com-
ponents of horizontal electric and of vertical electric
dipoles respectively. £} is defined in (35), /7 is the
corresponding expression of the vertical electric dipole
defined by (6.25) or (9.38) of Wait [1960a]. 'The
approximation (,~1 was used in the expressions
for £ and H™ in order to make them consistent with
the (l(‘ll\(ltl()ll leading to (32) and (33). (,=1 con-
stitutes a better approximation than f,(z)~1 and
the assumption f,(z)=1 [Wait, 1960a] should be
followed by €, ~1.

Comparison of (32) and (33) shows that pH!" is
several orders of magnitude smaller than /27" because

ng '<1 (38)
and because

1 —82<1 (30)
for propagating modes of low attenuation. The

II’”” fields of a given mode are proportional to
ng'~+yw/a,. The fields are decreased with decreas-
ing frequency w or increasing ground conductivity
o, Similar comments apply to the transverse electric
(TE) field components that may be derived from
H,. The TE fields will not be considered in more
detail.

The component £}™ that is associated with trans-
verse magnetic (7M) fields may be compared with
the corresponding component ££}¢ of a vertical elec-
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tric dipole using an expression of the K¢ fields de-

rived under similar assumptions [Wait, 1957]. Thus
oam| __SID QET" e _tkI™da e 4
B : S E, =g I"ds sin ¢! (40)

Provided that the fields of the two antennas are the
same in the given direction over a perfectly conduct-
ing plane earth (sin ¢Ei"=E?%), (40) may be simpli-
fied to

Ee

=
h n:
Erm n

(41)

Substituting the reciprocity relation (3) in (40) fol-
lows that (£2;¢)/(nHY?) also satisfy (41). The latter
ratio, obtained from (13), (15), and (16) of Wait
[1960b] when used in conjunction with (3) provides
an alternate way of obtaining (40) and subsequently
(41).

A more exact treatment of the horizontal magnetic
dipole fields cannot be expected to lessen the im-
portance of 7'M relative to TFE field components.
A better approximation to the 7'M fields of the hori-
zontal magnetic dipole may be worked out from the
exact ratio [22°/ "™ derived in the appendix. As long
as the source and observation point are at equal
radii 7 the ratio involves only the azimuthal 4 func-
tions explicitly. However, the accuracy of the roots
S, and of £ depends on the approximations to the
azimuthal and radial functions.

Numerical values of S, are available from mode
calculations of the vertical electric dipole [Howe

and Wait, 1957]. For o,— the values are as
follows:
AN 3.5 3.5 7
e/ (whh) 0.1 ‘ 0.01 0.1
3 PN A 0.9975-i 3X10~4 0.997-i 10-3 0.995-1 6X10-8
4 . 98-i 3X10-3 .97-i 8X10-3 . 992-i 4X10-4
.93-10.01 . 91-i 9X10-3 98- 10-3
. 87-i0.02 .85-10.01 . 985-1 2X10-3

The n=0 mode is severely attenuated for fre-
quencies above a few kilocycles [Wait, 1957]. In
the lower frequency range the first order perturba-
tion solution of the modal equation may be used
[Schumann, 1954], which gives

G, iG]
e s S

The cutoff frequency of the nth mode is

7L
TL

an="7" (43)
The perturbation method applies for 70 if (', =w,/w.
Substituting this for C'z' in the right-hand side of

(42) and expanding the square root expressions

e G r) 5t

=

(44)
% n3 +n1

The latter expression may be also obtained by solving
(42) as a quadratic and by subsequently ignoring the

second order perturbation. Applying (14), (42)
simplifies for n=0 and |n,|, |n;/>1 to

@ [ 1l .

SO——‘/ 1‘|—m I:;L—g—’rﬁ::l' (45)

For ng>n; and ¢,=1.2X10~ 6(a>2/1/—1 35X10°) Sy
has the following values

10*
1.04 e—i2°

103
1.14 ¢-i7°

102
1.46 e-it°

w

S

The above tabulations show that |S,| or the ratio
|[re M| are decreased with increasing mode index
7 and, with the exception of S, also with decreasing
frequency. The phase angle between the propa-
gating modes of the two dipoles is negligible. The
largest difference between the fields of the two dipoles
may be expected for the lowest propagating fre-
quencies or near the mode cutoff of 70 modes.
The values of S, near the mode cutoff may be deter-
mined from an approximate solution of the modal
equation. The first order perturbation solution is
applicable only to the lower order modes. A differ-
ent approximate solution is obtained by observing
that S, is small near the cutoff (S,=1/(2 ka) at the
mode cutoff for perfectly conducting ground and
ionosphere according to Schumann [1954]). Hence
one may look for solutions of the modal equation of
the form

Cy=T=Si=1—

where |A,/<1. Substituting (46) in (12), letting
p=1 and defining

(46)

Ttk 47)

2
g; wyp

results after neglecting terms with A2 and higher
powers of A, in

2A,+/L

\—’l

—i(L—i—2yT /L—z,(l— ) Lid-, L.

(48)

Considering 72>>1, substituting (46) in (12) and

letting p=g gives

Rrm1—2n;1 ¢4 (14A,)=G1+A,Gs.  (49)
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The solution of the modal equation (21) becomes

=2i(kh—7rn)—lnL1G1.
L2 G2
21kh+Ll+G1

(50)

A

It is simplified at the cutoff of the respective mode
by applying (43) to

(1)

- lnL1G1
A= e

The caleulated curves of |S,| and of its argument are
depicted in figures 2 and 3 for infinite ground con-
ductivity. |S,| is smallest for small values of
[=mcy/(ho?) (or for large ionospheric conductivities)
and for the higher modes (higher cutoff frequencies
wy,=nme/h). The argument of S, exhibits a rela-
tively small variation with n. The increase of [S,]
and of arg S, with increasing [ signifies the increase
of mode attenuation with decreasing ionospheric
conductivity. The increase of |S,| from the g,—=
to the ¢,=0.07/h;, curve (o,=10"* mho/m for h=70
km) is less than 20 percent for the n=1 mode in
figure 4. This relative increase is even smaller for
the higher n values.

The amplitude ratio between electric and magnetic
dipole fields in (41) will be larger for propagating
modes than near the mode cutoff. The cutoff ratio
is larger than 0.25 for the n=1 mode and larger than

——————

Ficure 2. Magnitude of the constant S, near mode cutoff for
perfectly conducting ground.

0.15 for the first 8 modes with 7>0.01 (or for
6;>1.2%X107°% with A=70 km). It may be noted
that this comparison is made for dipoles that exhibit
equal far fields above a perfectly conducting plane
ground in the absence of ionosphere. The knowledge
of the above amplitude ratios would enter in a com-
parison of antenna radiation efficiencies. However,
no such calculations have been attempted in this

paper.

ARG S, ,deg

0.01 0.l 1.0

me
h

I=
]
Fiaure 3. Cutoff arguments of thefconstant S, for perfectly
conducling ground.

]

O | S
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_ v
I—T-;z
Fiaure 4. Magnitude of the constant S, near culoff for the

n=1 mode.

309



5. Transient Fields

The transient fields of the horizontal magnetic
dipole may be computed as the Fourier integral of
(32) for a specified spectrum of the antenna current.
For a step of current the far field approximation (32)
gives

— e
EM(w)=Kyiw > 8,S5%¢ ¢ ™"

n=0

(52)

with
sin ¢ [y dan

(53)

 2hey/2mac sin (d/a)
and with 6,=0.5 and §,,=1.

The response of the n=0 mode may be reduced
to tabulated Fourier integrals after approximating
Sy of (52) by a power series. With n,>n>1 (45)
reduces to

: |
St z\/H——,T .
! h\'?,w,u,cri

Expanding VS, and S, in powers of (1/y/iw) and
ending the expansions with the quadratic terms
results in

(54)

[t (w> :Ked/@pfﬂ) \a+£_ 5 _ 6_2-“’7(1__\2“;’_’1
' 28 8621w ’
(55)
where I
B=2h+/po;. (56)

Applying the transform pairs (806), (801), and
(807) of Campbell and Foster [1948] gives

1/u—0.25/% 1 1 1 g
E:L;n(T)zKe -<1 - —%] (57)

%l Sjaz 222 z\ wu) w?
where
r=rla, (58)
7= (—d/c) >0, (59)
o (l 2__ E()(ZQ o y‘d2
a—<ﬁ _2101~h2—4wf,h2’ (60)
9 32 .
_ 2cp 8ok Mo 61)

"= ({ o d €

The power series expansion of (54) is applicable to
frequencies where w >w,= (h*us;)~*. Hence (57) will
be most accurate for 1< < 2w/w, or for

s T2
T2 [%\/@] =7u?/8.
(l €y

Considering =90 km, d=10* km, ¢,=107% mho/m
as an example, r,=2.3 with ©=2.4. The representa-
tion of the transient peak in figure 5 will be accurate
even for this pessimistically low o; value at d=10*

(62)

RESPONSE E,"" (x] a"*/k

_ t—d/c

T a

Frcure 5. Response to a currenl step of the n=0 mode of a
horizonlal magnelic dipole.

km. Higher ¢; and smaller d result in larger x,
(and u), which improves the accuracy of the transient
tail representations.

It follows from reciprocity relation (3) that for
equal current wavelforms /" (t) and /'(t) in the
HM and VE dipoles

Bl () =—uH Y (t) sin ¢da/ds. (63)
A current in the VE dipole that is proportional to
the time derivative of the current in the /M dipole

re)=Tr"@), (64)
results in
Bl () =—po sin ¢daH (t)/(Tds). (65)

The response £ (t) to a current step lyu(t) should
be proportional to the response ) °(t) to a current
impulse /,76(f). Assuming that (64) applies and
assuming [urther that

(this is obviously incorrect at the lower {requencies),
it follows from (40) that

EM™(t) = —sin ¢E (t)da/(cTds). (67)

The impulse response of a vertical electric dipole
has been calculated considering factors proportional
to finite powers ol S; equal to unity [Schumann,
1952; Wait, 1960bj. The calculated impulse response
of the VE dipole [Schumann, 1952; Wait, 1960b]
will be compared with the step response of the HM
dipole (57) by means of (65) and also by means of
the approximate relation (67). The leading term

310



of the impulse response (42) of Wait [1960b] (eqs
(38), (39), (40), and (42) of Wait [1960b] should be
multiplied by 7/2), when substituted in either (65) or
(67) results in £ (¢) that is equal to (57) with the
two terms proportional to u' and u =2 of the square
brackets set equal to zero. There is no agreement
between the higher response terms because of the
Sy approximation as discussed earlier. The impulse
response of Schumann [1952], when substituted in
(67) 1s the same as (57) with u— o .

The first order perturbation solution of the modal
equation becomes iaccurate for the higher [re-
quencies involved in calculating the transient re-
sponse of the n#0 modes. Even the simplest (and
inacceurate) expressions of S, that may be obtained
from (44) and (14) for |ngd>>|n,/ >>1 involve
integrals similar to those encountered in the transient
analysis of lossy rectangular waveguides [Cerillo,
1948].  The transient response of the 770 modes
has not been calculated in this paper.

6. Appendix. Radial Eleciric Fields of
Vertical Electric and Horizontal Magnetic
Dipoles

The fields of a vertical dipole may be derived from
a single scalar function. Applying (29) of Schumann
[1954] to (3)

e ds, a% (\sin 0 Oallg_l) -
[57,;2 = — (68)
T rk? cos ¢ da, sin 6

ou,
Q9
where for u, the coordinates of the source and of the
observation points are interchanged relative to ;.
As long as the source and the observation point are
approximately at the same radius (r,~r,), both u
functions are the same. The ratio of the vertical
clectric fields of horizontal magnetic and vertical
electric dipoles for equal currents on a perfectly con-
ducting plane ground is

=

06! ads

Elm kda,

(69)

With
(70)

Uy =uy~P, (—cos 6)
(68) becomes
Er By i (t1)sind P, (—cos6)
E!"™ Kl cos ¢ rk cos 6 P, (—cos 0)+,_y (—cos 6)
(71)
The earlier approximations will reduce (71) to (41).
However, more accurate » values [Wait, 1960a, ch.

12] and a better approximation to 7, (—cos ) may
be used in (71) to obtain a more exact 27/ ratio.
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patterns which lead the authors to claim support for Stormer’s
theory of the aurora. Although it may be possible to argue
against these claims by attacking the methods of analysis
and/or the Stormer theory itself, an entirely different approach
is used in the paper presented here: an examination of per-
tinent points of Stormer’s theory shows that the analytical
spirals mentioned cannot be Stormer spirals and this con-
clusion holds regardless of the soundness of the analyses and,
indeed, of the validity of Stérmer’s theory.

Supplementary world maps of F2 critical frequencies and
maximum usable frequency factors, Donald H. Zacharisen,
NBS Tech. Note 2-2 (PB151361-2) (Oct. 1960) $3.50.

This report supplements NBS Tech. Note 2 (April 1959),
and completes the basic data required for F2-layer maximum
usable frequency predictions. Prediction charts are given
for the months of February, April, May, August, October,
and November. Auxiliary charts are included to aid in
predicting F2-layer M UF's.

The four parameters used for predicting MUFs are foF2 and
the 4000 km M UF factor for a twelve-month running average
Zurich sunspot number of 50, and the rates of change of fok'2
and 4000 km MUF factor with sunspot number. The first
three parameters are presented in map form for each even
hour of Greenwich Mean Time. The fourth parameter is
presented on a chart of geomagnetic latitude and local time.

The height of maximum luminosity in an auroral arc, I'. 1.
Roach, J. G. Moore, E. C. Bruner, Jr., H. Cronin, and S. M.
Silverman, .J. Geophys. Research 65, No. 11, 3575-3580
(Nov. 1960). )

The height of maximum luminosity of an auroral arc is
estimated from simultaneous observations at three stations
in western United States during a night of general auroral
activity (November 27-28, 1959). Photometrically this arc
is characterized by a selective enhancement of the [OI] 6300 A
line. From twenty-four individual measurements the height
is found to be 412 km with a standard deviation of -+ 23 km
for one observation and -5 km for the mean. The geo-
graphical position of the arc, its orientation, and its movement
during the night are discussed.

FM and SSB radiotelephone tests on a VHF ionospheric
scatter link during multipath conditions, J. W. Koch, W. B.
Harding, and R. J. Jansen, IRE Trans. Commun. Systems
CS-8, No. 3, 183—186 (Sept. 1960).

Experiments have been carried out on an ionospheric-scatter
link to observe the effects of long-delayed multipath signals,
caused by /7, propagated back scatter, on the intelligibility
of voice communication. Frequency modulation and single-
sideband modulation equipments were used for the tests.
During periods when the back-scatter signal levels approached
the level of the mnormal ionospheric-scatter signals, the
frequency-modulation voice transmissions were unintelligible;
however, under the same conditions, single-sideband voice
communication intelligibility remained at almost 100 per
cent although there was some loss in quality.

Radio refractometry, Jack W. Herbstreit, NBS Tech. Note 66
(PB 161567) (July 1960) 50 cents.

The optical refractive index is known to be determined
principally by the temperature and pressure of the atmos-
phere, whereas the radio refractive index is, in addition,
affected by the water content of the atmosphere, the relation-
ship between these quantities being expressed in the following
way:

N=(n—1) 106:(7;(5) (P+14810e/T) (1)

where total air pressure P, and water vapor e, are in millibars,
and the temperature 7' is in degrees Kelvin [Smith, 1953].
The quantities P, ¢, and 7" have long been routinely measured
at the surface of the earth by standard weather bureau sta-
tions. For some time they have been measured from the
surface up to great heights using balloon-borne radiosonde
equipment at a large number of places over the earth’s
surface. More recently, equipment has been developed to
measure rapidly and directly the radio refractive index of the
atmosphere using radio techniques. The measurement of the
radio refractive index properties of the atmosphere and the
application to radio propagation problems is the subject of this

paper.
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