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For some purposes, partic ul arly in connection with the study of the random structure 
of t he lower ionosphere, using very low frequencies, i t is necessary to find t he detail ed 
statistical proper ties of a r andom s ignal diffracting in free sp ace. Mathematical too ls for 
evaluat ing these parameters have been developed, and are applied in th is paper. All owance 
is made for t he effcet of spheri city of t he wave incident on the ionosphere, a nd anisotropy 
of the irregular variations of signal is permitted . The case of oblique incidence of a wave 
on t he ionosphere is also considered. 

1. Introduction 

There has of l::t te been an increasing intere t in the irregular structure of the lower iono-
phere, particularly in connection with scatter propagation. In order to interpret irregular 

fluctuations in radio signals observed at the ground in terms of irregularities in the ionosphere, 
it is first necessary to fmd how much the nature of the signal changes as it propagates from the 
ionosphere to the earth. This propagation, which takes place in free space, will be termed 
"diffraction," in the sense used in a previous paper [Bowhill, 1957]. 

Most of the method so far proposed for dealing wiLh this stati tical problem assume that 
the signal at the layer is l ike the signal produced when an infinite plane wave passes through 
a thin diffracting screen. The field at the screen is t hen resolved into a number of plane waves 
propagating in various direc tions, their amplitude being given by the Fourier spectrum of 
the field variation. The signal at any distance from the screen is then given by the vector 
sum of the signals from the various plane waves, combined with the appropriate phases. 
Booker, Ratcliffe, and Shinn [1950] stated this principle, bu t H ewish [1952] was the first to show 
quantitatively how the magnitude of t he irregular field variations changed with distance from 
the screen . H e assumed a rectangular distribution or spat ial wave numbers in the screen. 
Feinstein [1954] has used a rather differen t approach based on Huygens' principle, which has 
also been exploited by Chemov [1960]. R atcliffe [1956] has summarized the physical prin
ciples involved in these approaches. 

Pitteway [1958] has r ecently given an analytic method for calculating the field due to any 
particular assembly of irregularities; this, however, is diffi cult to apply in a statistically random 
medium. 

It is important to distinguish at this point between the various types of random screen 
postulated . The two types most commonly considered are screens which modulate the phase 
or the amplitude of the signal. A phase screen is said to be " deep" or "shallow" depending 
on whether the phase excursion of the signal is substantially larger or smaller than one radian. 
The deep phase screen problem has been approached by H ewish [1951] by using a sinusoidal 
variation of phase with distance, but the extension of a detailed theory to this case presents 
considerable difficulties. The shallow phase screen, on the other hand , is exactly equivalent 
to a shallow amplitude screen [Bowhill , 1959]. This interchangeability of phase and amplitude 

1 Contribution from Ionosphere Research Laboratory, The Pennsylvania Staie University, University Park, Pennsylvania. 
' T be researcb reported in this paper was sponsored by the Geopbysics Research Directorate of the Air Force Camhridge Research Center, 

Air Research and Development Co= and, under Contract A];' 19(604)-1304. 
' Paper presented at the Conference on 'rransmission Problems Related to High-Freqnency Direction Finding, at UCLA, June 21- 24, 1960. 
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is exploited in ' the phase-contrast microscope, in which variations in phase are changed into 
varifttions in amplitude by artificially retarding the phase of the specular component by 7r/2. 
It is well known that this only gives an improvement in visibility when the phase variations 
arc SInftll (i.e ., the phase screen is shallow). 

The results of the analysis in this paper will be applied principally to the random diffrac
tion of very low frequency radio waves. The fading for these frequencies is usually shallow 
indicftting that a shallowly modulated random field at the ionosphere must be responsible. 
Attention will therefore be confined to shallowly modulated screens. 

To illustrate the method of analysis, it will first be applied, in section 2, to a one-dimen
sional random screen. The extension to two dimensions is made in section 3. Section 4 deals 
with the cOITelation between amplitude and phase in the signal , and section 5 with the effect 
of wave sphericity. The work is extended to obli.que incidence in section 6. 

2. One-Dimensional Diffraction Problem 

In treating the spatial correlation function and spatial frequency spectrum of the signal 
variations, it is much more convenient to use purely real quantities, rather than the complex 
variables of amplitude and phase. This enables the use of complex Fourier transforms to re
late field variations over the screen to the complex angular spectrum of plane waves which 
they produce. 

For an amplitude screen, which alone will be consid ered (in view of the equivalence 
indicated above) , the electric field Ii at the screen is given by 

where A(xo) is a purely real quantity. The field at a distance z from the screen is then defined 
to be 

(1) 

where Ej(x) and E 2 (x) are both purely real, and represent the phase components of E(x,z) in 
phase and in quftdrature with the undiffracted portion of the incident plane wave~ For ft 
shallow screen, Ejex) gives the amplitude variation, and E2 (x) the phase variation. In the 
analysis whi.ch follows, various statistical parameters of the quantities El (x) and E2 (;1.,) , which 
are actually observed in experiments at ground level , are evaluated in terms of the corre
sponding parameters of the original amplitude variation A (xo) . 

Using the notation of Booker, Ratcliffe, and Shinn [1 950], we have for the angular 
spectrum at the screen, in terms of s= sin 0, where f} is the scattering angle, 

(2) 

where 'A is the wavelength. The diffracted field E(x,z) is given by the Fourier transform of 
this, together with the phase factor exp (27ricz/ 'A) , -;here c= cos O. 

If· J' oo !!!,(x, z)=>.., _00 exp {27ri(sx+ cz) /'A }ds ' _00 A(xo) ,exp (-27riSIo/'A)dxo 

=~ f I _oo", A(Xo) . exp {27ri [(X-Xo)s + czl/'A }dxods. (3) 

By the defin ition of E1(x) in equation (1), 

Ej(X) =.%'{ ~ II-"'", A(xo)' exp {27ri[(x-xo)S-(1-C) zl/'A }dXodS } 

=2~ I I-"'", A(xo) [exp {27ri [(x- Xo)8- (l-c) zl/ 'A } +exp { -27ri [(X-Xo)S- (l -c) zl/ 'A } 1 dxods 
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si nee 1 (xo ) is purely real. The spatial spectrum PI (v) of El (x) is now defined by a similar 
expression to (2) : 

f oo . 1 JJJ' oo P I (v) = _ 00 E l (x) . exp (- 2nivx/X)elx= 2f., _ 00 A (xJ) . [exp {2ni [(x- xo) s- vx- z(1- c) l/X} 

+ exp {- 27fi [(x - xo)s+ vx- z(1- c) l/X} lelxoelxels. 

Since the in tegrand is a well-behaved function, and all the limits of th e integra tion are 
- co to + co, the in tegration can be carried out in any order. In faeL, it is convenien t to in
tegrate with respect to first s and then x. With the approximation (valid for small s) that c= 
1- s2/2, P 1(v) is easil.'T E'valu atcrl as 

PI (V) =~ I _oooo A(J'c)[cxp {27fi (- vxo+zv2/2) /X}+exp {27fi(- v.ro-zv2/2)/X} lelxo 

= cos(7fzv2/X) 'I _oooo A(J'o) . C'XP (- 27fi v.ro/'A)dxo 

or 
(4) 

from equ ation (2). This equ ation gives the spatial spectrum of E 1(x) n,t a ny distance z from 
the screen . The powe7' spectrum WI (v) of this vari ation is defined by 

(5) 

the asterisk denoting the complex conjugn,te, and the bn,r dcnoting averaging of the resul t 
" over sys tems"- i .c., thc mean for a number of statistically similar screens . This quan tity 
is essentially real, and is a r elatively smoothly varying function of v, becau e of the proccss of 
avem gll1 g. It cn,n be related by equ a,tion (4) to the spatial power spectrum W o(v) at the screen : 

or 

(6) 

wb ere 

Similar qu an tities P2 (v ) and W2 (v) can be defined for the quadrature componen t E2 of the fi eld 
(see equation (5)); a similar analysis to the preceding gives 

P 2 (v)= Po(v).sin (7fzv2/X) } 
W 2(v) = W o(v) .sin2(7fzv2/ 'A) 

(7) 

Equations (6) and (7) enable the spa tial correlograms of EI(X) and E 2 (x) in the diffrac
t ion pa ttern to be determin ed. Ass LUning tha t th e correlogram of A(x) is given, the Wiener
Khintchin e theorem can be used to give W o(v). Th e power spectrum W1 (v) is then calcu
la ted from equation (20), and the correlogmm of E1(x) found by the inverse vViener-Khintchin e 
th eorem. 

This on e-dimensional a nalysis, in which th e random varia tions in signal are taken to 
occur in the x-direction only, represents an unrealistic physical model. However, as some 
existin g work [Hewish, 1951 , 1952 ; Jon es, Millman , and N ertn ey, 1953] has assumed this 
typ e of variation , some results worked out for this case will be quoted in the n ext section, 
for comparison with t he two-dimensional r esults. 
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3. Two-Dimensional Diffraction Problem 

In this section the diffraction pattern of a two-dimensional random screen is considered 
t 

using an analysis closely similar to that employed in the previous section for the one-dimen-
sional casco The modulation is once again assumed to be in amplitude only, as there is again 
an equivalence between shallow phase and amplitude screens. The effect of anisotropy of 
the screen will be taken into consideration by defining a spatial power spectrum Wo(v,x), 
related to a two-dimensional spatial correlogram Po(a,{3) of the field A(x,y) at the screen by 
a two-dimensional form of the Wiener-Khintchine thereom. As the field A(xo,Yo) is purely 
real, the correlogram po(a,{3) is given by 

( (3) A(x,y) A(x+a, y + (3) - A(x,y? 
Po a, . . 2 

A2(X,y)-A(x,y) 

The field A(x,y), the mean field over the whole screen, has a constant phase at all points since 
A(x,y) is real, and propagates as a single plane wave. It is convenient to imagine it removed; 
A(x,y) then has both positive and negative values, and will be defined to have a mean square 
value of unity; so 

and the correlogram is given by 

A(xo,Yo) = O 1-
A2(xo,yo) = 1 ) 

po(a,{3)=A(xo, Yo)A(xo + a, yo+ (3) . 

(8) 

The single plane wave, which will be called the "specular component" (by analogy with 
specular reflection from a mirror, compared with irregular reflection from a rough surface), 
can be reintroduced when necessary into the diffraction pattern as a constant added to EI(x,y). 

Proceeding exactly as in section 2, the two phase components of the diffracted field are 
defined by the vector field at (x,y,z): 

E(x,y,z) = [EI(x,y) + iE2(x ,Y)] exp (2rriz/)...). (9) 

The phases of the diffracted waves at z are given by purely geometrical considerations. Let 
the plane of one wave intersect the (x,z) plane at an angle sin-Is, and the (y, z) plane at an 
angle sin-Jr. Then the angle between the wave front and the (x,y) plane is 

tan- I{ (S- 2_1) - I+ (r- 2_1) - 1 }1I2 

and the phase of the wave at a distance z from the screen is 

If sand l' are small, this can be expanded to give, to a first order, 

The corresponding equation to (3) for !j}(x,z) is therefore 

!!.(x,y, z) exp (-2rriz/).,.), 

=~ f f f f-"'", A(xo,yo) . exp {2rri [(x- xo)s+ (y-yo)r-s2 z/2-r2 z/2] /)... ) ds drdxo dyo (10) 

and by similar steps to the previous analysis, it can be shown that 

PI (v, x) = Po(v,x) ·cos{ rr z (v2+ X2) / )... } 
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where Po(v,x) is the two-dimensional spectrum of the field at the screen. Similarly 

and the spatial power spectra of E 1(x,y) and E2(x,y) are given by 

lifTl (v, x) = Wo (v,x) .co 2{ 7rZ(v2+ X2) /A} } 

W2 (v, x) = Wo (v, x) .sin2 { 'trZ(V2+ X2) /f.. }. 
(12) 

'These spectra are proportional to the area of the diffracting screen; Lhi will be shown below 
in deriving (16). The spatial correlogram Pl(ex,(3) of E1(x,y) is given by the usunJ rclntion 

( (3) EI(X,y)El (x+ a,y+f3) 
PI ex, 

EI(x,y) 
(13) 

:since the mean value of E1ex,y) is zero. On comparing this defini tion with (9) , it will be 
.seen that (13) has the term E Hx ,y) in the denominator, whereas, from (8), A 2(xo,Yo) = 1. In 
fact, the mean square fluctun.tion in A(xo,Yo) at the screen appears, at SOI11.e distance away, a.s 
a fluctua tion partly in E2 (x,y) . It is easily shown from (12) that 

(14) 

the sum of the mean quare values of E 1(x,y) and E2(x, y ) remaining constan t at all distances 
from the screen . These mean square values represent, in the case of an amplitude screen , the 
amount of flu ctuation of the ampli tude and the phase respectively at a distance z from the 
:screen. 

The auto covariance of E l can be calculated from Lhe spectrum W1(p,x) in (12) by the 
Wiener-Khintchine theorem; .B;Hx,y ) is then its value for ex= f3 = O. Before this can be cal
culated, the power spectr um liV1(v,x) of the signal A(xo,Yo) at the screen must be found. Some 
.assumption is needed for the spaLial characteristics of t he signal. They will be assumed to 
be n.s follows: 

i. A(x,y) has a Gaussian correlogram ill n.ll directions. 
ii . The contours of the two-dimensional eorrelogram are ellip tical. 
iii . Th e ellipses have their principal axes oriented along the x and y axes of the co-ordinate 

:system. 
Th e p= O.61 con tour on the two-dimensional correlogram is used to define two structure 

sizes Dl and D2 of the screen in the x and y directions. The correlogram of A(x,y) is then 

The angular sp ectrum at the screen is given by an equation like (2) 

and the power spectrum is given by 

Wo(s,r) = Po(s,r)·P6(s,r) = mean of{ff_"'", A(xo,Yo)' exp { -27ri(sxo+ rYo) /A}dxodYo 

X Jf-"'", A(x~,y~)· exp { 27ri(sx~+ry~) /A } dX~dY~ } 

(15) 

= J J f f -"'", A(xo,Yo)-A(x~,y~). exp { 27ri[(x~-xo)s+ (y~-yo)rl/A } dxodYodx~dy~ 
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where x~ and y~ arc variables of integration, analogous to Xo and Yo, but differentiated from 
them to avoid confusion. So 

where a= x~-xo, (3 = y~- yo. By (14), it is evident that 

and therefore 

Now n either Xo nor Yo appears in the integrand; so the integration with respect to Xo and Yo will 
give a Wo(S,T) which is proportional to the total area S of the diffracting screen: 

(16) 

Substituting for po(a ,{3) from (15) and integrftting, 

(17) 

The spatial power spectra of E1(x,y) and E 2 (x,y) are found by substituting from (17) into (12): 

Wj (v,x) = 27fBD1D2 . exp { _ 27r2(DIV+ Dlx2) r>,.2} .cos2{ 7r z(v2+ x2)/ f.. } } 
W 2 (v, x) = 27fBDID2.exp { - 27rZ(D12v2+ D22XZ) If..Z} .sinz { 7r z(v2+ x2) If.. } (18) 

It is now possible to find the numerator of (13); tbe covariance of E1(x,y) and El (x+a, y + {3). 
The inverse transform. corresponding to (16) is 

with the value of W1 (v, x) given by (18). The integral is evaluated by putting 

As (19) is the inverse of (16), the term 1/2 gives simply (1 /2)po(a ,{3) . The two remaining 
terms in (40) are identical except that the sign of z is reversed. The integral can be simplified 
further by separating completely the integrals with respect to v and x. This gives 

E1(x,y) .El(x+a,y+{3)=7r~~f2 {1(a,Dl,z)l((3, Dz, z)+ l (a , D1, -z) l({3,D2' - z)}+(l j2)po (a+{3) 

(21 ) 
where 

l (a, D1, z)= I _oooo exp {27ri[av+ (z+7riDI/ f..)v2]jf.. }dv 

f..(1 + a2)-1/4 . 
/ 1 exp {-(l j2) tan - 1al-(1-wl)a2j2Dj(1 + aD } (22) 

"\ 2rrD l 

where the importan t substitutions 

f.. Z f.. Z 
al = - D2' a2=-D2 7r 1 7r 2 

have been made. These parameters will appear as the measures of distance on all the graphs 
depicting the behavior of the various statistical parameters of the diffraction pattern. 
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Finally, on substituting rrom (22) and (21), 

E I(x,y)EI(x+a,y + {3) = (1 /2)exp { -a2(2DI2- {32 /2Dn 

+ (1/2) (1 + a1 2) - 1/4 (1 + a22) - 1/ 4exp { - O'2(2D/(1 + a/) - {3/2D~(l + aD } 
* 

x cos { alO'2/2D/(1 + aI2) + a2{32(2Dl(1 + a22(1 + a22) - (tan- tal + tan - la2)/2}. (23) 

By putting O' = {3 = O 

Ej2(X,y) = 1/2 + (1 /2) (1 + a t2) - 1/ 4. (1 + al )- 1/4·cos { (tan - Ial + tan - la2) /2}· (24) 
* 

The correlogram PI(O' ,{3) is given by the ratio ot (23) to (24). T he expressions for tbe auto
covariance of E2(x,y) are id entical, except that the positive signs, denoted above with asterisks, 
become negative. Some special cases will now be investigated. 

(i) /Ileal' the screen al = a2= O, and 

as would be expected, since EJ (x,y) = A(xo,Yo) at the screen. 
(ii) VeryjaTjrom the SCTeen a1,2-700, tan - Ial = tan- Ia2 = 7r/2, 

and 

(25) 

The second result in (25) means thaL tbe space corr-elation of both amplitud e and phase at a 
great distance from an amplitude screen is just the same as tbe correlation at the screen . This 
is not true at in termediate distances, as we shall shortly see. Th e first result in (25) shows that 
the fluctuations occur equally in amplitude and phase under these conditions . The phase
ampli tud e locus of the instantaneous signal at large distances therefore form s a circular " cloud" 
around tbe vector denoting the mean carrier signal, as in figure l. 

(iii) I sotropic SCTeen DI = Dz= D , and a l = a2= a. 

EJ (x,y)EI (x + o',y + (3) = (1/2)exp { - (a2+ (32) j2D2} 

+ (1/2) (1 + a2) - 1/2· exp { - (0'2+ (32) (2D2(1 + a2) } ·cos{ a(O'2+ (32) /2D2(1 + a2) - tan - Ia }. (26) 

The quantities a and (3 appear in this expression only as (O'2+{32), so the contours of correlation 
are circles at all distances, and the diffraction pattern is n ever anisotropic. Also 

LOCUS OF RANDOM 
CO MPONENT AS ONE 
AXIS IS TRAVERSED 

SPECUL ARLY 
REFL ECTED 
SIGNAL 

----~---.... E,( x,y) 
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FIG URE 1. A possible phase- amplitude diagram for 
the diffracted signal a long way from a random 
screen. 



the asterisk signifying, as previously, the sign which is to be reversed to give the corresponding 
value 1'01' EHx,y). E 12(X,y) and E22(X,y) are plotted on figure 2. It can be seen that the mean 
square values of EI and E 2 are virtually equal at distances from the screen greater than that 
corresponding to about a= 4. It will be shown later that, under these circumstances, the 
diffraction pattern is not correlated with the signal at th e screen. 

Slight r earrangement of (26) gives 

E1 (x, y) E1 (x+aj y + j3) = (1 /2). exp { -(a2+j32) /2D2 } 

+ (1 /2) (1 + a2)-I. exp { - (a2+ j32) /2D2(1 + a2) } [cos{ a (a2+ j32) /2D2(1 + a2) } 
* 

(iv) One-dimensional SCTeen 
From (24), 

EI2(X, y) = 1/2 + (1 /2)(1 + a2) - 1/4 .COS { (tan- I a) /2} 
* 

= 1/2+ (1 /2) {[I + (1 + a2)1/2][1 + a2t1/2 p/2. 
* 

This also is plotted in figure 2, for comparison with the curve for the two-dimensional case. 
Evidently the mean square values of E1(x,y) and E 2(x,y) become nearly equal much closer to a 
two-dimensionally irregular screen than a screen which is irregular in one dimension only. 
This illustrates that a one-dinlensional model may give a quite inadeq uate represen tation of two
dimensional diffraction phenomena. For this case, 

El (x, y) E1(x+ a, y + J3) = (1 /2) exp( -a2/2D2) 

+ (1 /2)(1 + a2)- 1'4 exp { -a2/2D2(1+ a2) }·cos {aa2/2D2(1 + a2) 
* -(tan - 1 a) j2 }. 
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It will be noted from (27) thftt the correlogram is not Gaussian in form, though El(x,Y) has a 
Gilussian correlogram for a= O, and both El(x,Y) and E 2(x,Y) have Gaussian correlograms as a 
~ DO (see equation (25)). This introduces some difficulty as to what is to b e called the "struc
ture size" d of the diffraction pattern, for compaJ'ison with experiment. The following defini
tio n is adop ted 

d = Structure size in x direction = (- o2pjo0'2);l/l_o 
= Dl 1'01' t he correlogram Po(O',{3). 

This definition bases tbe structure size on the Gaussian curve which is the best fit to tbe correlo
gram, n ear the origin of 0' . It can best be found by expanding (23) in powers of 0'2 and {32, and 
neglecting terms of order higber than th e second; using equations (13) and (24), 

1+ (l + aD - l/4(1+aD-1/4 cos {(tl1n- l al + tan - l az) /2} 
* l +(l + aD 5/ 4(1 + aD 1/4 [cos (tan 1 al + tan 1 a2) /2- al sin {(tan 1 a1 + tan 1 a2) /2}] 

* 
1+(1+aD - l/4(1+ aD - 1/4 cos {(tan - l al + tan - l a2) /2} 

* l + (l + aI) 1/4(1. + aD 5/ 4 [cos (tan la1 + tan la2) /2- a2sin {(tan lal + tan la2) /2}j 
* (28) 

To belp in Ullderstanding the ignificance o[ th ese resul ts, a number of speciftl cases are 
examin ed below. 
(v) Near the screen, al fmd a2 0, and dl D1, d2 D2 for El(x,Y), as founcCpreviously un der (i). 
For the quadrature component E 2(x,Y) however, it i easily shown that 

where K = DdD2. 
(vi) Isotropic screen Dl = D2= D, J{= 1. 
N ear the screen, d= D for El (x,y) as found previously. 
From (29) d= D/-fJ for E2(x,y). 

(29) 

This result implies that t be structure size of the shallow phase variations nem' an ampli tude 
sereen (or of the ampli tude variations near the phase screen) is 1/-fJ times th e structure of 
the creen itself. In addition , t he correlogram of E2(x, y) is far from Gaussian; it can easily 
be shown by expanding (23) in powers of a that, near th e screen, 

(30) 

exactly . This is plotted in figure 3, and has an oseillating form . At any distance from an 
isotropic screen, (28) reduces to for El(x,y) : 

for E2(x, y) : 

These relations are shown plotted in figure 4. The structure size of El (x,y) actually has a 
maximwn at intermediate values of z. 
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(vii) One-dimensional screen Dl = D; D2 --7 co, a2--70, K --70. Near the screen, 

d = D for E 1(x,Y), d=Dj-15 for E 2(x,Y), 

showing the effect described in (vii) to an even greater extent. At any distance, 
for El (x,y): 

{ 1+(1+a2) - 1/4 cos{ (tan-1a)/2 } ""I 1/2 
d= D 1+ (1+ a2) 5/ 4 [cos{(tan la)/2 }-asin{(tan la) j2} ] J 

{ 1-(1 + a2) - 1/4cos {(tan - 1a)/2} } 1/2 
d= D I.. 1- (1 +a2) -5/ 4 [cos{ (tan - Ia) /2} -a sin { (tan -la)/2}] . 

In th e general case of an anisotropic screen, (28) can be used to find the structure sizes d l 

and d2 in the x and y directions. To clarify the ki.nd of behavior that may occur, figure 5 has 
been prepared. This shows how the contours of the correlation ellipse change shape with 
increasing distance from a random amplitude screen. The two screens shown are 

(a) isotropic, with DI = D2= 1 
(b) anisotropic, with D1= 2, D2 = 1. 

The distances from th e scr een were chosen as 0, 00, and 7rDIjA. It is interesting t.o note that 
the phase correlation ellipse for th e anisotropic screen does not keep the same shape as th e 
screen is approacbed- its minor axis is reduced by a greater factor than its major axis. This 
is because as it approaches the limiting case of an anisotropic screen- namely, a one-dimen
sional screen- the major axis of th e phase correla tion ellipse neal' the screen approaches the 
true structure size DI of the screen, while the minor axis is reduced by the factor -15 establish ed 
above in (vii ). 

The reason for dealing with this topic in such detail is to demonstrate that the structure 
size of th e i.rregularities in the diffraction pattern produced by a shallow phase or amplitude 
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F IGURE 5. ContoltTS of the spatial corl'elogram of the 
wave di.!Jracted fr'om two k'inds of amplitude screen , 
at different distances. 

modulated scr een is not ftlwftys th e sam e as th ft t of tb e scr een itseH. Th e precedin g leng th y 
m a th ema tical argum en t is n ecessar y to establish the precise effect of th e diffrac tion process, 0 

that existin g experimental dft tft may b e interpreted with confid ence. 

4. Cross-Correlation Relationships for El and E2 

A good deal of ft t tention h as been paid by vftrious workers ([or in stan ce, Jones, Millman, 
and Nertn ey [1953]) to Lil e ques tion of wh eth er tb e signftl in th e diffraction pattern is th e sam e 
as th e signal at ft ra ndom screen direc tly opposite to it. It must b e emph asized t ha t the 
ques tion is not wh eth er th e signals ar e statistically similar , i.e., have tbe sam e structure size or 
fadin g time, but wh etll er th e detai led ch f1,l1 ges in signal ar e similar at th e two plan es. Expressed 
in more exact lang uage, th e cross-correlation is to be evalu a ted between, for ins tan ce, th e 
ftmplitud e of t he signal at th e scr een a nd the amplitud e ftt ft distrmt plan e. 

Anoth er cross-correlation coefficien t of consid erable importan ce is t hft t b etween the 
amplit ud e a nd the phase of th e diffracted signal [Bowhill, 1957]. Jon es, Millman , and N ertn ey 
[1953] assumed that this correla tion arises as a result only of correlation b etween th e amplitude 
and phase of th e signal at the scr een. It is shown h er e, however , that th ey may b e correla ted 
even for a scr een which changes th e phase only or the amplitude only . 

The theory is d ev eloped for a shallow amplitude modulating scr een, a nd is extended to the 
case of a phase screen. Th e quan tity El (x,y) therefore represen ts th e amplitude of the signal in 
th e diffraction pattern (with th e specular componen t removed ) and E 2(x, y ) r epresen ts the phase 
of th e sign al. The qUftl1 ti ti es 

(3 1) 

ftr e to be calculated; the known values of E I(x, y ), E~(x,y) and A 2(x, y ) then give the cross
correla t ion coefficients Pll between A(x, y) ftnd EJ (x, y ) , and Pl2 b etween El (x,y) and E 2(x,y). 

Th e quantities (31 ) are computed from tb e r ela tions 

A(x,y)EJ (x,y) = (1 /2)Ei (x ,y) + (l /2 )~ - (l /2)[A(x,y) - E 1(x ,y)]2 

EJ (x, y)E2(x, y) = (1/2)Ef(x, y ) + (1 /2)A2(x,y) - (l /2)[E1 (x ,y) - E 2 (x,y)]2. 
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The last terms in these equations represent the areas under the power spectra of 
[A (x,y) - E1 (x,y)] and [E1(x,y)-E2 (x,y)], since the mean square value of any random variable 
with zero mean is given by the integral of its power spectrum with respect to frequency . 

Th e power spectrnm of [A (x,y)-El(X,y) ] can be found from (11); 

P1(V,X) = PO(V,X). cos {7rz(v2 + x2)/A}. 

The spectrum of [A(x,y) - E 1(x,y)] is therefore 

and its power spectrum is given, exactly as in (6), by 

Wo(V,X) [1 - cos { 7r z (v2+ X2) fA} ]2 = 4 [W2(v,X)] z/2- [W2 (v ,x)] z 

and substitu ting in (32), 

A (x,y)E1 (x,y) = (l /2) [Ei(x,y)].+ (1 /2) -2 [E~(x,Y)L /2 + (l /2)[EHx,y)].= 2 [Ei(x,y)]Z/2- 1 

(11 ) 

a relation which holds for any autocorrelation function at the screen. Using Ei(x,y) from (24), 
the correlation Pll is given by 

for a screen with a Gaussian correlogram. 
For an isotropic screen, al = a2 = a, and this reduces to 

This function is plotted as the full curve in figure 6. The correla tion is perfect near the screen, 
since then E1(x,y) = A(x,y). It decreases progressively to zero with increasing distance, 
reaching a value of 0.1 when a= 7.2 . 

The corresponding function for a one-dimensional screen , a1 = a, a2= 0, is given by 

Pll 
2(1 + a2/4)-1 /4 cos {[tan- 1 (a/2)] /2} 

This function is plotted as the broken curve on figure 6. Th e correlation decreases much less. 
rapidly with increasing distance from the screen than for the two-dimensional case. 

<l: 

To find the correlation P12, (32) is rearranged to give 

1. 0 

O. B 
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El (x,y)E2 (x,y) = 1/2- (1/2) lEI (x,y) - E 2(x,y) J2 
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and the power spectrum of [E1(x,y)-E2 (x,y) ] is given from (11) by 

[F\ (v,x) - P 2(v,x) 1 [Pj(v,x) -Pi (v,x) 1 

= Wo(v,x) [ cos {7r Z(V2+ X2) /\ } -sin {7r Z(v2+X2) />-. })2= Wo(v,x) - Wo(v,x) sin {27r Z(V2+ X2)/>-. }. 
So 

E1 (X,y)Ez(x, y)= (1/2>-'28) I I :ro Wo(v,x) sin {27rZ(V2+X2)/>-. }dvdx 

= (7rD1Dz/2i >-.2) I I _rooo [exp {27riz(V2+X2) / >-. } - exp { -27ri z(V2+ X2) />-. }] 

. exp {-27r2(DIv2+ mX2)/>-.2}dvdx. 

= (7rD1Dz/2i>-.2) {I-OOoo exp {27riv2(z+ 7riDIM/>-. }dv I -OOoo exp { 27rix2(Z+7riD~M/A}dx 

- I -OOoo exp {27riv2(- z+7riDIM />-. }dv I -OOoo exp { 27rix2(_ Z+7riD~M/>-. } dx } 

and on integrating this expression by the usual methods 

E 1(x,y)E2(x,y) = (1/2) (1 + aD - 1/4(1 + aD - 1/4 sin { (tan - 1 al + tan - 1 az)/2} . 

Also, fTom (24) 

4· Ei(x,y) . E~(x,y) = 1- (1 + ai) -l/2(1 + aD - 1/2 cos2 { (tan - 1 a1 + tan-1 az) /2} 

and the correlation P1 2 between E1 (x,y) and Ez(x,y) is given by 

(33) 

For an isotropic screen, a1 = aZ = a; this reduces to 

P1 2= (1 + aZ)- 1/2 
which is plotted in figure 7. The correlation between EJ (x, y) and E 2(x,y) has a maximum 
value of 1/ 2 at the screen, and decreases to zero with increasing distance. For an aniso
tropic screen, (33) must be expanded in powers of al and 02' The correlation as al and a2~O 

is given by 
al + a2 1+ K2 

P12 [3ai+2a1aZ+3a~jl / 2 [3K 4+2K2+ 3jl/2 (34) 

where K = DdD2 expresses the degree of anisotropy of the screen, as in (29). Whatever the 
value of K, (34) shows that this maximum value of the correlation P12 lies between the values 

P1Z = 1/-/2 for an isotropic screen al = az 
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and 
P12= 1/-/3 for a one-dimensional screen al~a2. (35) 

The cross-correlation coefficients PH and P12 between the phase components E1 (x,y) and 
E 2(x,y) must now be related to the amplitude and phase characteristics of the diffraction 
pattern. For an amplitude screen, it is apparent from figure 1 that for a shallow screen, 

Amplitude in pattern~ (specular signal) + El (x,y) 

Phase in pattern~-E2(x,y) / (specular signal) 

since the positive phase direction is opposite to the positive E2 direction, taking an increase 
in phase to mean a retarding of the wave. This means that: 

Correlation between amplitude in pattern and at screen = Pll, and correlation between 
amplitude and phase in pattern = - P12. Similarly, for a phase modulating screen 

and also 

Amplitude in pattern~ (specular signal) + E2(x,y) 

Phase in pattern~El(x,y) / (specular signal) 

Correlation between phase in pattern and at screen = PH 

Correlation between phase and amplitude in pattern = P12. 

It has therefore been established that the correlation between the amplitude and phase in it. 

diffracted signal is zero at large distances, but at smaller distances is positive for a phasemodu
lating screen and negative for an amplitude screen. This occurs at a distance from the screen 
given by a"-'l, or a "-'D2(X. This is closely related to the Rayleigh distance for an optical 
system of aperture equal to the structure size of the screen irregularities. 

This result has been derived by setting up the wave solution. It may be partially con
firmed by a physical-optical argument, as follows. Consider a one-dimensional phase-modu
lating screen, with a phase profile tj>(x). The signal at a point near the screen is determined 
only by the properties of the screen in its immediate neighborhood. In fact, any small portion 
of the screen centered about Xo acts as a positive lens of focal length 

(36) 

The plane wave incident on the screen can be imagined as coming from a point source of 
waves, very far away. The image formed by the effective "lens" of the phase screen appears 
to have angular magnification = (l-z jF)-l where z is the distance of the point of observation 
from the screen. The image of the source appears the same brightness as the source itself, so 
the signal power arriving at z is proportional to the angular magnification. So the signal am
plitude is proportional to (l- z/F)-1/2; if z is assumed much less than F, approximately 

signal amplitude ex:: l +zj2F= 1-(>.. zj41r) [dd2~J 
x X=Xo 

on substitution from (36). Any correlation between the amplitude and phase in the pattern 
must therefore arise through correlation between tj>(z) and (-d2tj>/dx2). 

In fact, it can easily be shown that if tj>(x) is a Gaussianly distributed random function, 
there is a correlation between these two quantities of [p"(O) jp" "(O)]I /2, where pea) is the cor
relogram of tj>(x) . For a Gaussian correlogram, which has been assumed throughout this 
section, this reduces to 1;";3; a result which is identical with that given for the same case 
in (35). It should be emphasized, however, that geometric optics can only be used near the 
screen, where the diffraction effects have not yet developed appreciably. 
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5. Effect of a Point Source of Waves 

In all t he previous sections it has been assumed that there is no systematic variation of 
phl1se across the random screen. However, if the screen i illuminated with radiation from a 
point source a distance z' from the screen, instead of from a plane wave source, the phase of 
the wave before passing through the screen varie with distance. The signal emerging from 
the screen is now given by 

If the cone angle of the diffracted waves is small , the important regions of the screen are for 
Xo, Yo«z' . So the approximation 

(Z'2+ X6+ Y5 ) 1 / 2~Z' + x5!2z' + y5/2z' (37) 
may be used. 

Exactly as in section 3, the vector signal 1!..(x,y,z) at a distance z from the screen can be 
found and the phase components E1(x,Y, z) and E 2(x,Y, z) evaluated by a relationship similar 
to (9) . In that equation, the phase of the specular component is independent of x and y since 
the specular component is a plane wave. In the present case, however, the specular wave 
is spherical and so tbe analogo us equation to (9) is 

and for x,y«z, 
(38) 

The corresponding equation to (10) can then be written down as 

E(x,y, z) exp {-27ri [(Z+Z' )2+X2+ y2)1 /2/X}= (I/X2) JJJI-"'", A(xo,Yo) . exp:{ 27ri [(x- xo) s 

+ (y-yo)r+ (z' 2+ X6+ yfi)1 /2+ z(l -s2/2-r2/2) ]/X} dxodwlsclr 
or 

where 
G= (x -xo)s+ (Y- Yo) 1+ (z ' 2+~fi+Y5)1 / 2+z( l -s2/2 - r2/2)- [(z+ z') 2+ X2+y2]1I2. 

By substitu tion from (37) a,nd (38), approximately 

G= (x-xo)s+ (y-yo)r+z' +x5/2z' + y5/2z' +z-zs2/2- zr2/2-z-z'-x2/2(z+ z' )-y2/2(z+z' ) 

= (x- xo)s+ (y-yo)r+x5/2z' + y5/2z' -zr2/2-zs2/2- x2/2(z+z' ) - y 2/2(z+z' ). 

The phase componen ts E1(x,y,z) and E 2(x,y, z) are given by 

'" ~~ 
El (x,y,z) = !?lI { E(x,y, z) } = (1 /2X2) II J I-'" A (xo,Yo){ exp (2iG/X) + exp (-2iG/X) } dxCclYGdSclr } 

E 2(x,y,z)=y {E(x,y,z) }= (1/2X2) J1JI-"'", A(xo,yo){ exp (2iG/X)-exp (-2iG/X) }clxoclYoclsclr 

and the spatial spectra of E1(x,y,z) and E 2 (x,y, z) are given, as before, by 

Jf '" ""I 
P1(v,x) = ,_",'" E1(x,y, z), exp {-27ri(vx+xy) jX}clxcly l 
P 2 (v,X) = I1 _'" E 2(x,y,z) . exp {-27ri(vx+xy) /x }clxcly. J 
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On substituting from (39) into (40) and integrating with respect to s, r, x, and V, an analogous 
expression to (30) is obtained: 

PI (v,X) = z~,z ' cos {7r(V2+ X2) z( z+ Z' )/AZ' } . f f-"'", A(xo,Vo) exp { -27ri (vxo+ XVo)( z+ Z') /AZ' } dxodVo. 

(41) 

The differences between (41) and (11) can be accounted for by supposing that there are ap
parent values of Z and A which, when substituted in (11) and in all the results derived from i t, 
just allow for the fact that there is a point source of waves at a distance z' from the screen. 

In comparing (41) and (11), the double integral will first be considered . Both v and x in the 
exponent are multiplied by the factor (z+z' )/z; so the angular spectrum must be scaled down 
in width by the reciprocal of this factor , relative to its width in the plane wave case. 

The "generalized autocorrelation function" of Booker, Ratcliffe, and Shinn (1950) given by 
the Fourier transform of the angular power spectrum, is invariant with distance in the plane 
wave case. With point source illumination, its width increases proportionally to (1 +z/z') , 
and finally increases proportionally to z. In the case of vertical incidence of waves on the 
ionosphere z=z', and the apparent structure size of the screen irregularities is just twice the 
actual structure size. 

These results can be appreciated physically by considering the behavior of the diffraction 
pattern as A----?O, and an analogy can be drawn with geometrical optics. If an amplitude screen 
(see fig. 8) is illuminated with a point source of light at a distance z' from it, the scale of the 
amplitude variations a distance z away from the screen will just b e (l +z/z') times the scale of 
the amplitude variations at the screen. 

The other respect in which (41) and (11) differ is in the argument of the cosine. The quan
tity (v2+ X2)Z(Z+Z') /z' replaces (v 2 + X2)Z. But the quantities v and X have already been found 
to be multiplied by (1 + z/z') ; so z in (30) must be replaced by 

z(z+ z') 1 zz' 
Z' (1+z/z' )2 z+z' 

where Zell is the effective value of z. In the case of vertical incidence on the ionosphere, 
Z= z' , and Zell = z/2. 

SOURCE OF WAVES 

+ 

__ DIVERGING WAVE 

SCREEN 

PLANE OF OBSERVATION 

z' 
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distance from a point source of waves. 



It is interesting to note that 

which is exactly comparable with the object and image di tance r elations for a zone plate, the 
theory of which is closely related to that given above. 

6 . Effect of Oblique Incidence 

If a plane wave is incident at an fl,ngle i to a diffracting scr een, the equations corresponding 
to those of section 3 can be deduced by an exactly similar method . If y axis is in the plane 
of the incident wave, we may write s=sin i +sl, wher e (sin- I s-sm- I Sl) is the scattering angle. 
The phase of the specular signal at a distance z from the screen is now 

(27riz cos i) /"A 
and (9) must therefore be written 

:?!(x,y ,z)= [EI (x ,y )+ iE2(x, y)) exp [(27riz cos i)/"A) . 

The phase of the scatter ed wave at distance z is again given by 

Putting s=sin i +sl and expanding in powers of Sl and r, this becom es 

27ri z(cos i -sl tan i - !SI sec3 i - !r2 cos3 i )/"A 

and the exponent in the r esul ting equation for (E1+ jEz), analogous to (1 0), is 

27ri { (x-xo-z tan i)sl+(y-yo)r-~sI z ec3 i_~'2Z cos3 i } /"A . 

Comparing this with the exponent in (10), it is evident that 

(42) 

(i) the origin of x has been effectively displaced a distance z tan i in the plane of propa
gation- namely, to the "mid-point of the path", in propagation terminology. 

(ii) the effective distance of the observin g point from the screen has been multiplied by 
factors of sec3 i and cos3 i respectively for the x and y variations in the scr een . 

To make this more easily compreh ensible, consider the case of oblique incidence on a 
diffracting screen with an isotropic spatial correlation function, Gaussian in form . The 
structure size of the interference pattern is foulld by putting 

a l = a see3 i 'I 
a2=acos3 i f 

in (28) . Near the screen , from (29), 

. { secN i + (2/3) secl2 i + 1 } 1/ 2 
cll= D 24 .+ 12 .+ sec ~ 2 sec ~ 5 

Another llllportant effect of oblique incidence, which does not enter explicitly into this 
analysis, is the following. If the random screen is composed of a "buclded specular reflector", 
it will act as a phase screen for normally incident waves. However , at oblique incidence, the 
phase change it causes in the wave is scaled by a factor cos i. This is related to the familiar 
phenomenon that an optical surface becomes more nearly a specular r eflector at grazing inci
dence. The same effect is observed for radio waves. 
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7. Conclusion 

Detailed calculations have been given for the statistics of a radio wave diffracted by a 
random screen. The results, some of which have been used in a previous paper [Bowhill, 1957], 
now take account of anisotropy of the diffracting screen, and oblique incidence of the waves 
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