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Formulas are derived for the estimation of the variances of position lines from fixes
with unknown target positions. Two approaches are considered, (1) that presented by
Daniels [1951], and (2) an analysis of the squares of the errors in the position lines assuming
the target is at the least squares estimate for its position.

1. Introduction

An important problem in position fixing is to estimate the accuracy of one’s position
lines. This can be done by assigning a variance to each line, see for example Daniels [1951]
and Beale [1961]. These variances are usually estimated from fixes on targets whose true
positions are known to the analyst. There are two major difficulties about estimating vari-
ances from fixes where the true position is unknown: (1) The estimates depend critically on
the assumption that errors in different position lines are independent; and (2) The statistical
problem is difficult, and any valid method seems to involve a substantial computing effort.

In spite of these difficulties, the problem deserves attention, because it is sometimes
impossible to set up a satisfactory program of check fixes on known targets. Two approaches
are considered in this paper. One follows Daniels [1951], the other is based on an analysis
of the squares of the errors in the position lines assuming that the target is at the least squares
estimate for its position.

Section 2 of this paper presents the basic assumptions common to both these approaches.
The next 3 sections are concerned with Professor Daniels” approach to the problem. The
approach is presented in general terms in section 3. Specific formulas for the important
special case of 4 lines per fix are developed in section 4; and the application of these formulas
is considered in section 5. The formulas for the alternative approach are developed in sec-
tion 6, and their application is considered in section 7.

Finally, in section 8 some suggestions are made for an artificial sampling experiment to
try out both these approaches.

2. Basic Assumptions

The basic assumptions made in this work are: (1) The earth is flat near the true position;
(2) the position lines are straight lines; (3) an error of observation displaces the line parallel
to itself; (4) the errors have zero means and are statistically independent; and (5) the errors
are normally distributed, and we have rough estimates of their variances.
Given these assumptions, we can take Cartesian coordinates, and denote the 7™ position
line by the equation
@ sin 0;,—y cos 0;=pj, (2.1)

where 6, is a known constant, and p; is regarded as a random variable with mean

£ sin 6;—n cos 6,

1 Contribution from Admiralty Research Laboratory, Teddington, Middlesex, England.
2 Paper presented at the Conference on Transmission Problems Related to High-Frequency Direction Finding, at UCLA, June 21-24, 1960.
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and variance o7, where (£¢7) are the unknown coordinates of the true position. In our theo-
retical work, we assume that £=7=0, so that the mean value of p, is zero; but we must re-
member that p; is then not a directly observable quantity.

Some discussion of these basic assumptions may be helpful.

The first 3 assumptions are introduced to make the model linear, i.e., to make the value
of each observation in the absence of errors a linear function of the unknown parameters
£and n. It is clear that in some DF situations, notably when the DF stations have a narrow
base line, the problem is decidedly nonlinear when expressed in terms of obvious parameters,
such as the distances of the target east and north of some origin. But there is evidence to
suggest that the “intrinsic nonlinearity’” as defined by Beale [1960], is nearly always small
for DF problems. This implies that any results derived from the standard linear theory will
be valid, provided that they are expressed in terms independent of any particular system
of parameters (and provided of course that any other assumptions made about the error
distributions are valid).

Using the language of Beale [1960], we must define all the quantities we use in terms of
sample space and the solution locus, and not solely in terms of parameter space (or possible
target positions on the Earth, which is a representation of parameter space). Now a position
line can be defined in sample space as the intersection with the solution locus of the hyperplane
where one coordinate, i.e., one observation, is constant. All we require in this work is an inter-
pretation of the quantities p;, 6;, and o3. This can be obtained by taking some specific point 7'
on the Earth near the true target position, and imagining a parameter system that coincides
locally with distances east and north of 7. Now let 8; denote the actual 7* observation. (In
the DF problem this is the bearing from the 7 DF station.) Let 8;7 denote a hypothetical 7
observation giving a position line passing through 7', and let p;(8,) denote the (signed) distance
on the Earth of the j™ position line from 7" as a function of ;.

Let \; denote d p;/dB;, evaluated where 8;=8;.

Then we can write p,=X\ ;(8;—B8,r), oi= Mvar (8,), and 6, is the angle that the hypothetical
7™ position line passing through 7" makes with some arbitrary z-axis passing through 7.

Note that it is not necessarily legitimate to interpret 6; as the angle that the observed
position line on the Earth makes with some z-axis; or to interpret \; as dp;/dB; evaluated for the
observed B3;. It is important that the same point 7" should be used for all position lines in the
fix. (This approach can be used to derive the standard (Gauss) iterative procedure for finding
the least squares estimate for the target position when the variances of the 8; are assumed
known. The point 7" must then be taken as the trial value of the least squares point at each
stage.)

Our 4th basic assumption, that the error distributions have zero means and are inde-
pendent, is very important. In certain circumstances it will not be satisfied in practice, in
which case the least squares point will usually be a less accurate estimate of the target’s true
position than standard theory suggests, even if the variances are correctly estimated; and
furthermore the variances will be underestimated by the methods described in this paper. If
we had numerical values for all correlations involved, we could allow for them, but in general
there seems to be no practical alternative to assuming independence, hoping for the best, but
realizing the possibility of being misled by correlated data.

Our 5th assumption, that the errors are normally distributed and we have rough estimates
of their variances, is not so critical. It is only required to give appropriate weights in our least
squares estimation of the variances, and to estimate the accuracy of our final variance estimates.

3. Daniels’ Approach in General

The problem considered in this paper was considered by Daniels [1951]. In section 9,
Daniels writes:
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“When the true position corresponding to each cocked hat is unknown, . . . it is found that the method of
maximum likelihood is useless for estimating the variances of the lines. It gives in general inconsistent answers,
and sometimes no answer at all . . . . The method [breaks down because] the number of incidental parame-
ters to be estimated increases with the number of cocked hats used.

“Nevertheless a simple method of estimating the variances does exist requiring no assumptions about the
error distributions, provided parallel displacement is assumed and the errors are independent. Suppose there
are N three-line cocked hats, not necessarily for the same true position, the lines having variances oi, o3, o3
to be determined. The expression

u=mp; sin (6;— 6;) + . sin (63— 6;) +p; sin (6;—6) 3.1)

has the same value whatever the point from which the perpendiculars p;, p;, and p; are dropped on to the lines,
and w is easily measured by taking the point at a vertex. . . . If the point is chosen at the unknown true po-
sition it follows that

E(u?) =oaf sin 2(0y—63) + a3 sin? (63—6,) + o3 sin2 (6, —6,). (3:2)

If N >3, the N equations with the observed values of «? replacing F(u?) may be solved by least squares. Since
for normal errors var (u2) =2{E(u?) }2, arbitrary weights have to be used in the first solution and correct weights
approximated to in subsequent iterations. The estimates are, however, unbiased for any error distribution
whatever the weights used.”

But it should be noted that with fixed DF stations the normal equations derived from (3.2)
to estimate the variances are liable to be very ill conditioned, and may even be singular. If the
simplifying assumption about parallel displacements were strictly correct, then the values of
6y, 0, and 0; would be the same for all tasks, so that the right hand sides of all equations of the
form (3.2) would be strictly proportional, and one could never hope to estimate more than the
given linear function of ¢f, o3, and ¢3.  One might hope in practice to be saved by the error in
the approximation; since 6, may be effectively constant for all reasonably possible observa-
tions on a given target, but not constant over all targets. But this will only be so if the targets
are well distributed about the DF stations.

It is fairly easy to see that this difficulty is fundamental to the problem, and is not simply a
defect in the present approach. For if the 6; were strictly constant, one could for example
assume that o;=0,=0, and the signed distance of the point of intersection of the first two po-
sition lines from the third will have a certain probability distribution (normalif the bearing errors
are normal) with mean zero and variance given by (3.2). This variance is constant as long as
the true values of ¢f, o2, and o3 are constant. So data of this type can never disprove the
hypothesis that ¢;=0,=0.

In the analogous one-dimensional problem, if instruments 1 and 2 give independent obser-
vations x; and x, of an unknown scalar quantity £, and z; has mean ¢ and variance of, then
E(r,—u5)?=0i+03. With an arbitrarily large number of pairs of observations one can therefore
get an arbitrarily accurate estimate of of+ o3, but cannot estimate of or o3 separately. Butifa
third independent instrument is available, then one can estimate oi-to3 by (r1—x)?% of
+ a3 by (2,—u3)% and o3+a3 by (2,—wx3)%. Hence of is estimated by the mean value of 3 (x;,—u,)?
4L (0 —xs)?— 2 (2a—13)?%, 1.e., 2} —112s— 2125+ 2025, as pointed out by Pearson [1902].

If one adds a fourth position line to the 2-dimensional problem, then one can obtain four
expressions analogous to (3.2) by taking each set of three lines in turn. It turns out that these
four expressions do not suffice to estimate the four variances o%, o2, o2, and o?; because the deter-
minant of the left hand side of the four equations vanishes identically. But Professor Daniels
has pointed out in a private communication that one can get more expressions by considering
the mean values of the products of u-statistics for different triangles. Thus if

) Uggg=7y SN (0,—03) -+ py sin (03—6,) +ps sin (6,—6s),
and
l Ugay= Py SN (B,—04) + Py sin (0,—0,) +py sin (6,—62),
then
E(uyo3ty04) = 0,2 sin (0,—63) sin (0,—04) + o3 sin (0;—86;) sin (65—6,).
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6,-6,

Ficure 1. A possible set of 4 position lines.

Attention must be paid to signs. It is convenient to regard each position line as a directed
line, pointing in the direction # from some apex at an arbitrarily large distance from the scene
of action. One can then define the corresponding displacement p as positive for points whose
bearing from the apex is greater than 6 (by an arbitrarily small amount) and negative on the
other side of the position line. This will ensure that the signs of the terms on the right hand
sides of the expressions analogous to (3.1) come out as expected. But it will still be necessary
to study the configuration of lines to see which u-statistics are positive and which are negative.
In the situation illustrated in figure 1, %3 and wugy, are positive, and w93 and u;,4 are negative.

Given fixes with n >3 position lines per fix, one can obtain U=n(n-1)(n-2)/6 u-statistics
from each fix, and U(U~+1)/2 derived statistics by considering the squares and products of
the u-statisties.

If n=4, this gives 4 u-statistics and 10 derived statistics.

If n=5, we have 10 u-statistics and 55 derived statistics.

This approach is therefore not very practical in its present form for n>5. But the case
n=4 is important, as it is the smallest n for which unique variance estimates can be obtained

from a set of fixes, each with essentially the same values of 6;, though not all on the same tar-
get.  We therefore explore this case in more detail in the next section.

4. Daniels’ Approach With n—4

With 4 position lines one can form 4 triangles, and obtain 4 basic quantities 1,3, U524, Usss,
and Uy, which have the following expressions
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U953 == P1S23 1 PoSs1 1 P3Siz

U924 = P1Sas T+ PoSut + PaSiz (4.1)
Ui34= P1S34 + D381+ DaS1s i
Ugzs= P2S3471 P3Sao T PaSas,

where s;; denotes sin (6,—6,).
From these one can derive a vector y of 10 derived observations, such

that
y=Aq, (4.2)

where
Y= Uz, Yo="11z23U104, Y3= Ui93W134y Y4=U123U234,
Ys="Uloa, Yo="U124U134, Y7="124Un3s, (4.3)
Ys=Uis4, Yo="Ui34Un3s, ’

2
Y10== Us34,

G=pi, G=DD2, B=D1Ps, (4= P1Ps,

([5:27%, Qs =P2P3, Q71— D2D4, (4 4)
qs=D3, Qo= DsPs, ’
G0="Dpi;
and A is

833 — 2813803 2812593 0 813 —2815813 0 sty 0 0 7]

23824 (—t2—13) 812804 S12823  S13814 —81814 —Spsiz 0 8% 0

SosS3a —S1sSss (Bi—t3)  S;aSas O S13814 813 — 812814 S12813 0

0 S23834 — 823504 833 —813834 (bi162)  —Sis823  —S12824 812823 0

88  —28,8 0 2815804 834 0 —2812814 0 0 83 N

Sp4S34 —SuS3e  —SuS  (L+1:)0 LA —81384 0 — 812814 812813 (4.5)

0 824834 — 83, S23824 814834 S14824 (ti—t3) 0 — 812824 812823

s30 0 — 2814834 281383 0 0 0 §14 — 2813814 St

0 834 — 824834 S$23834 0 — 814834 13834 814824 (—ty—15)813823

| 0 0 0 0 834 — 2894834 2823534 834 — 2853804 833

where f;=8;5834, fa==513524 and f3=28,,5,3.

Then
E(y)=H(o, &, o3, o), (4.6)
where / is the matrix formed from the 1st, 5th, 8th, and 10th colunms of A, since the p; are

independent and have zero means when referred to the true target position as origin.

But in order to determine rational, as opposed to arbitrary, least squares estimates for the
unknown parameters o3, o3, o3, and o3, it is necessary to consider the covariance matrix of Y
We rely on the fact that the p; are independent and have zero means, and find that

ciy=cov(Yy;) =Eyy,— (Ey.) (Ey;) :2Gikd1kr ky )]

where
r1=201, r;=0dio;, r'3=ai03, r's—0i03,

peee 22 L o 2
rs=20%, 6= 0303, T2= 0301,
(4.8)
v ey cd oo s
78“2U3y 7'9*—0'30'4,

7‘10:20'3.

(The coeflicients 2 in 7y, 75, 75, and 7y, should be replaced by 24« if the error distributions have
a fourth cumulant x, different from zero.)
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The covariance matrix C=(c;;) of the derived observations is therefore obtained from
(4.7), or equivalently by defining a new matrix

13: (fij);
where f;=a.r}?,
so that C=F I,
Now the standard least squares results can be expressed in matrix notation as follows:
If ¥:§[Z+ €, where ;Y is a vector of observations, }5 is a known matrix, g8 is a vector of unknown

parameters, and e is a random vector whose components are uncorrelated and have means

zero and a common variance o2, then the least squares estimates B of 8 are given by choosing
B to minimize

@=(XB-Y)(XB-Y), (4.9)

Assuming that the errors are normally distributed, the likelihood is proportional to
exp (—@/2¢%, and in any case

B= (X'X)'1X'Y, (4.10)
and the covariance matrix for the estimates B is given by (X’ X)~'s’. (4.11)

If now y=GY, we have y=GXg+Ge¢, and therefore the covariance of y; and y; is given by

Zgikgjk“ %,

Hence we can identify G with the matrix F, putting ¢°=1, and we know that, if = (o,
a3, a3, ai)’,

y=Ha+¥e

and
Q—{(FY(Hg—y) )" [E(Ha—y))
=Hg—y) 'E-VF- (Ha—y)
= Hg—y)"FF)~'(Hs—y)
= (Hp—y)’C'(HE—y)- (4.12)
Further

g= (EE/E )y
~ @ e HCYy, (1)
and the covariance matrix of 3 is given by
H'CH)~. (4.14)
These results are due to Aitken [1935].
5. Application of the Formulas of Section 4

To apply these formulas to a situation in which one has N fixes, i.e., sets of four position
lines, each with a constant variance and a constant value of 6,, one proceeds as follows.
) Js

268



One first sorts out one’s sign convention, as indicated at the end of section 3. This will
produce signed values of w93, %;94, U134, and uszq for each of the N fixes. From these one computes
derived observations v, . . ., ¥y for each fix from (4.3). Averaging over all fixes, one obtains
a vector

z:<7jl; Yoy -+ - ).

We next compute the matrix A from (4.5).

By using the guessed values for the unknown variances oi, o3, oi, and of, one can derive
values of 74, 73, . . ., 74, from (4.8), and hence compute the elements ¢;; of the matrix C
from (4.7). -

This matrix must be inverted to produce C*.

~

We must also consider the matrix H whose columns are the 1st, 5th, Sth, and 10th columns

of A, and our estimates of of, o3, 3, and of are the 4 elements of the matrix
(H’C'H)'H'Cy. (5.1)

If our guessed values of the of, used to define r, were correct, the covariance matrix for
these estimates would be
1
w
One could try iterating this procedure, using the estimated variances to produce a new
vector r, and hence a new (~‘,, and hence revised estimated variances, and so on.
I am doubtful of the wisdom of this, though it might be interesting to try it on an artificial
sampling experiment. If one wants a reasonable estimate of the accuracy of the estimates one
must compute a revised g to usein (5.2). But I can see little merit and some danger in revising

FI{CH)~ (5.2)

the weights to produce revised estimates: Note that the iterated estimates are not unbiased.
This procedure may on occasion produce negative estimated variances. Steps must be
taken at least to ensure that negative (or even very small positive) variances are not used in
the definition of r. Theoretically the least squares problem should be set up as a quadratic
rograming problem when such negative estimates are produced by the standard method.
=] t=) J
But this is too large an issue to face at this stage.

6. A Direct Approach

In this section we derive some equations concerning the apparent error in the position

lines, assuming that the target is at the least squares estimate for its position.

)

Suppose that the 7™ position line is

x sin 6;,—1y cos 0,=p,,

with the origin at the (unknown) true target position. Suppose further that we have some
rough estimate 3 for 3.
We write
o?=s2(21+9;), and 1/si=w;.

Now the sum of squares function, whose minimum value defines the least squares
estimate, 1s

Q=>"w;(x sin 6;,—y cos 6;,—p,)’=a z*+2hxy+by*+29x+2fy+c,
I

where
a=2_w; sin® §;, b=2Jw; cos’ ,, c=2 w;pj,
i} J J

f=2>wp; cos 0;,, g=—2 w;p;sin §;, h=—2> w; sin 6; cos 0,. (6.1
j Fj
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Note that a, b, and A are known constants, while f, g, and ¢ depend on the random
variables p;.
It 1s convenient to rotate axes, so that in the new coordinates (X, V),

Q=AX*+BY?*4+2GX+2FY +C.
This involves finding an angle o such that

¢;="0,1a, (6.2)
and the jth position line is
X sin ¢;—Y cos ¢;=p,,
Le.,
X sin (0,~+a)—Y COS (0]+a) =y
so that
r=2X cos a+Y sin a,

y=—2X sin a-+Y cos a.

And since az*+2hzy—+ by’ +2gx+2fy+c=AX?*+2HXY + BY?+2GX+2FY +C, where H=0,
we have
A=a cos® a—2h cos a sin a+b sin? a,
0=a cos asin a+h(cos®> a—sin? o) —b cos a sin «,
B=a sin? a-+2h cos a sin a+b cos? o,

G=g cos a—f sin «, L
F'=gsin a+f cos a,
=
This implies that
tan 2a=2h/(b—a). (6.4)

This defines a set of values of « differing by multiples of 90°. It does not matter which
is taken.

The values of 4, B, C, F, and G can be obtained either from (6.1) and (6.3), or alter-
natively from the formulas

A=2w; sin® ¢;, B=2 w; cos® ¢;, C=2>w,pj,
b 5 i

F=> w;p, cos ¢;, G=—2> w;p,sin ¢;, H=—2> w;sin ¢; cos ¢,= (6.5}
where ¢; is obtaijrled by substituting f01]' a from (6.4) in (6.2).j
The transformed coordinates of the least squares estimate are then
Xi=—G/A and Y ,=—F/B. (6.6)

Now let d; denote the signed displacement of the k& position line from the least squares
estimate. This quantity can be observed in practice. Then

F -
Gt sin g3 €05 b= 3 D100 N, (6.7)
where
12 <2
il (SHA ¢k+9°th”“>, 6.8)
Nix=Ngs=— (Wywy) /? (sm ¢'1ASIH £ f e d)l i ¢k> (1 7#k). (6.9)
Note that
kﬁ No=n— >y, sin? ¢p/A— > Jw;, cos? ¢p/B=n—2. (6.10)
=1
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Further

L . sin? ¢,, cos? ¢k> " w; sin® ¢; sin? ¢y Ww; SIN ¢; COS ¢; SIN ¢, COS ¢,
2 MN=1—2w ( +w, 't +2 AR

_|_w,- cos’ 2,2 (,:();s2 d)_k}:l"'wk (SIU ¢k+ 0s? ¢k>

So
é N =M. (6.11)
i=1

Further, if k51,

sin ¢; sin ¢k+cos b; COS ¢k> <sin ¢; sin ¢,
B A

n n "NQ Y
Z Nirhiz= 2N+ (’wsz)l/z Z W; A 008 ¢4 CO8 d)“l)
i=1 i=1 /

5

=2\ + (ww,) <sm ¢kfm ¢I+COS ¢’°1;OS ¢l> from (6.5) =Ny.

So (6.11) can be generalized to read

‘21 Nikh i1 =Nz (6.12)
=
From (6.7) we deduce that
n n

=l§1 ]Z=‘{ (Waw) V2NN e Py P (6.13)

Now
Epi=di=(1+6)/w;, Epp;=0 (1#7),

So

Ewk(l§=iZZ‘i N2 (148,) = M+z 5%,  from (6.11). (6.14)
It follows that
E Lﬁ:l wk(lzzg‘_,:’1 )\kk—{—?;; 8; ,Zi‘{ )\%k:n—~2+§ll diNis, from (6.10) and (6.11).  (6.15)
If 6,=46 for all 7, we have the well-known formula

E > wdi=(n—2)(1+49), (6.16)

(which can easily be deduced from first principles).
It is also of interest to consider the covariance of w,di and w,d}.

We have

cov (widi, widp) =2 WAL 2(1-+6,)*/w}
i=1

+2 Z >0 waw AN ghahg (14-8,) (14-6,) fw,w, by analogy with (4.7)

=1 j#i

: Z Z Nkl ah g (146,) (14-65). (6.17)

=1 j=1

It is of particular interest to consider the covariance matrix when all §,=0, since this
corresponds to the originally estimated covariance matrix.
Using (6.12) we find this reduces to

cov (’wkdk, ’wldz):2)\%‘l. (6.18)
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If n=3, it can be shown that A\;/A;=A2/A2=N\3/Ass, etc. For example, to prove that
Aihss —M, =0, one substitutes for the \;; from (6.8) and (6.9) and multiplies out. The terms
in 1/A4% and 1/B?% cancel, so the expression can be written as a quadratic function of w;,w, and
w; (using the definitions of A and B) divided by AB, and I/ proves to be a factor of the
numerator.

This is an algebraic proof of something we already know on statistical grounds: that with
only 3 bearings the random variables wid?, w,di and wsd3 are totally correlated, and it is
impossible to estimate more than one linear function of the unknown variances.

7. Application of the Formulas of Section 6

To apply the formulas of section 6 to a situation in which one has N fixes, i.e., sets of n
position lines, each with a constant variance and a constant value of 6;, one proceeds as follows.

One starts with some assumed variances s? for the position lines, and one uses those to
compute a least squares point estimate for the target for each ﬁ\' One then computes w,d?,
Le., dj/sj, being the weighted square of the displacement of the j™ position line from each ﬁ\

One then averages over all N fixes, obtaining 7 quantities w,@, . . ., w,d>.

One must also compute \;; for =1, . . ., n, and A}, for 7, j=1, . . ., n. These quantities
are the same for all fixes.

Note that N\;; is defined by (6.8) and \;; by (6.9) if 757.

It may be more convenient to use the formula

i (w;sin?¢;)(w, sin? d),) 2(w, sin ¢; cos ¢;) (w, sm¢,(os¢]) (w; cos? ¢,) (w; cos? ¢]) (=), @.1)

A? AB B?

Then, from (6.14), we solve the equations
n_ A e
Zéi)\%k:wkd,%ﬁ)\kk, (kzl, oo ,71). (7‘2)
i=1

and the resulting values of 8, define the estimated variances, since
0’1'2%81‘2(1—}‘31‘)‘ )

To find the estimated covariance matrix for these estimates 6;, we form the matrix H
such that -
(hip) =N,

and the matrix (~‘ such that
(eij)=2N;# (from (6.18)). (7.3)

The estimated covariance matrix is then given by (5.2), if the §; prove to be small, and
. 4
this reduces to — C~L.
N <

If one wants to combine these data with other data, then the contribution of these data to
the sum of squares to be minimized is then N, where @ is given by (4.12) with 87(61, AR
3,) and y —(wldl 5o o a g @A

8. Proposed Computational Program

Some computational experience with both the schemes proposed here would be very
valuable.

In the first instance, it would be of interest to inspect the covariance matrix (4.14) for
estimates obtained by Daniels’ approach, i.e., with H defined following (4.6) and (' defined
by (4.7), for various values of 8, and ;% %
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It would also be of interest to inspect the corresponding matrices for the direct approach,
e, with (h;) =) and (¢;;)=(2\;?). In this case (4.14) reduces to 4 C~'. The (77)™ element
of this covariance matrix for the 4 must be course of multiplied by s,?s,fto represent the covari-
ance matrix for the variances. It will then be directly comparable with the other.

One may hope to throw considerable further light on these procedures by an artificial
sampling experiment. One must first choose values of 6;, ¢ and (for the direct approach)
s These will define values of @, b, and A from (6.1), and hence of A, B and « from (6.3) and
(6.4). Omne can then compute the \;;. from (6.9).

One then takes sets of values of p; as pseudo-random normal deviates with means zero
and variances ¢, and use these to generate synthetic u-statistics from (4.1), and values of d;
from (6.7). One can then compare the estimated variances obtained by the two approaches
(a) after one iteration, and (b) after using the results of each iteration as starting values for
the next (i.e., to compute the r; for Daniels’ approach and the w; for the direct approach)
and continuing until the variances that go in come out.

One can also consider the effects on the two approaches of using poor starting approxi-
mations to the variances.

It seems likely on general grounds that Daniels’” approach should give better results, since
it uses more information. But if the direct approach is at all satisfactory with n=4, one may
hope that it will be still better with larger values of n.
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