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Antenna arrays which are designed to utilize correlation techniques can result in diree-
tivity patterns with very narrow beamwidth. However, analysis of resolution capabilities
of these arrays indicates a marked change in expected performance in the presence of two
or more signal sources. These effects are analyzed for single frequency signal sources and
for randomly varying signal sources. It is shown that optimum results occur when the
nonlinear processing of the antenna voltages is limited to a single multiplication. Under
these conditions the correlation array has a directivity equivalent to that of a linear array
of twice the length.

1. Introduction

Increasing attention has been given in recent years to the merits of correlation techniques
as a means of improving the resolution capabilities of passive antenna systems. The possi-
bility of making a decided saving in the overall size of directional antennas, even though this
saving must be purchased at the cost of inereased complexity of the antenna circuitry, has a
distinet appeal in certain antenna applications. It is the purpose of this paper to outline the
mathematical analysis of the resolution characteristics of such an antenna array and to com-
pare these results with those which could be expected from a familiar linear additive array.

A correlation array will be defined asonein which voltages induced on the elements are mul-
tiplied together and the resulting voltage is averaged over some prescribed time interval to give
a desired output voltage. There are, of course, two fundamental variables in this definition.
In the first place, when there are a number of elements in the array there are a great many
possible combinations of the element voltages. And, secondly, when there are undesired
fluctuations in the output voltage, the time interval which is available for averaging this
voltage can have a primary influence on the resolution capability of the array.

For this discussion of the mathematical analysis of resolution characteristics the first varia-
ble will be avoided by limiting the calculations to specific examples of correlation arrays.
The second variable will enter the analysis and will appear in the final results.

[t will be assumed that the problem at hand is the resolution of two signal sources sepa-
rated by some angular displacement 6. Both single-frequency and band-limited signal sources
will be considered. The signal sources are assumed to have identical power spectral density
over the frequency band of interest. They cannot be resolved by frequency selectivity in the
receiving system, but must be resolved by appropriate operations on the voltages induced in
the elements of the array.

2. Single-Frequency Sources

In order to analyze the correlation array without becoming too deeply involved in the re-
quired calculations, a relatively simple array of four isotropic elements will be first considered.
The pattern of the response of this array as a function of 6 can be shown to be equivalent to
that of a much larger linear additive array. This particular aspect of the capabilities of
correlation arrays has been reported in the literature [Berman and Clay, 1957 ; Jacobson, 1958
Drane, 1959]. These articles have demonstrated that, in response to a single signal source,
a correlation array with properly selected element spacing has a pattern which is exactly
equivalent to that of a much larger linear array. When two signal sources are present, how-
ever, an interaction of voltages produced by the sources oceurs in the multiplication processes
of the correlator, and this equivalence between linear and correlation arrays has to be reanalyzed.
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The signal source (see fig. 1) located in the plane of the array and at an angular displacement
g from the main lobe axis, induces a voltage V; on the i-th antenna element, where

Tv[:A cOoSs (wt‘I_Tl)

d, <in 0 (d; 1s the distance from a reference point in the
Ti = . .
Yo line of the array to the ith element.)
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Ficure 1. A four-element correlation array.

If the bandwidth of the integrating circuit is established to reject the second- and fourth-order
frequencies resulting from the multiplications, the output voltage is

Vout=% At [(’OSCU(Tl—Tg—T3+T4)+COS CO(Tl_T2+T3“‘T4> +COSCO(T1+T2”—T3—‘T¢>].

And if the relative spacing between elements is established with di,=D, d.s=D, and ds=2D

(and letting X=E°§) sin 6):
S . . .
V o =g A [cos X+cos 3X+cosH5X].

But this, except for the constant term, is the voltage pattern for a six-element linear additive
array with a uniform element spacing of 2D.

So in this sense the pattern of the four-element correlation array of overall length 40 and the
voltage pattern of the six-element linear array of overall length 10 are equivalent.

Berman and Clay have discussed this equivalence between correlation and linear arrays.
In general, directivity patterns for a single monochromatic source have the following mathe-
matical equivalence:

Correlation array Linear array
4 elements, length 4D 6 elements, length 10D
6 elements, length 8D 15 elements, length 28D
8 elements, length 16D 32 elements, length 62D

However, in resolving two similar sources these patterns cannot be used directly, but must be:
treated with some care. For example, assume source A(V,=FE cos wst) is located on the main
lobe axis and source B with the same amplitude (Vz=FE cos wst), is displaced through ¢°. The:
output voltage of the six-element linear array would be:

Vour=061 cos wst+2E(cos X+ cos 3.X+4cos 5.X) cos wpt.
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Whether or not the sources are coherent, the voltage output for arbitrary movement of the
sources is simply the sum of the voltage patterns of each source considered individually.

The correlation array, on the other hand, will contain cross product terms resulting from the
multiplication processes whose form will depend on the coherence of the two sources and, in
general, on the number of multiplication processes.

For the example of the four-element correlation array considered here, the output voltages
for two conditions of coherence are:

1. For two coherent sources:

Vm,t=g E*-{—lg E*(cos X-+cos 3X+cos .'SX)—}—é E'(3+11 cos X
-+10 cos 2X+7 cos 3X+6 cos 4X-+3 cos 5N+ 2cos 6.X).

2. For two sources of slightly different frequencies:
3.1 . - .
V ou=g E +§ E4(cos X+cos 3.X+cos 5.X)
1 . . . . . =
+§ E'(4 cos X+4 cos 2X+2 cos 3X+2 cos 44\)—!—% E*(f(cos nX-cos 6t)

where 6t is the frequency difference between source 'A and source B, and f(cos nX-cos &)
represents a number of terms all containing this beat frequency component.

In both of these equations the first two terms correspond to the linear array pattern, while
the remaining terms arise from the nonlinearity of the correlation array. In the case of two
sources with identical frequencies, the cross-product terms are constant with time and time
averaging of the output voltage will not alter the result. When the sources have different
frequencies, however, time averaging can be employed to reduce the beat frequency (cos ét)
part of the cross-product terms; but even in this case the resulting pattern will not be precisely
equivalent to that of the six-element linear array since some of the cross-product terms will
remain constant with time.

Calculation of the resolution characteristics of the correlation array is then more involved
than the similar calculation for the linear additive array.

Assuming a basic spacing D= the four-element correlation array of length 47 will re-

2

solve two sources of slightly different frequencies at approximately 19.5°. This is equiva-

lent to the resolution of a uniform linear array with an aperture of 97), about twice as long.
A slightly more complex example of a correlation array is one discussed by Drane:

The element on the left in figure 2 represents a uniform linear array with aperture a,, while

that on the right is a simple interferometer with aperture a..

RS -

output

FiGUrE 2. A correlation array employing a linear array
and an interferometer.
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gy ; e . : - sin X
The directivity pattern of the uniform linear array is proportional to a0 where

. wfar\ . : y . . . .
NX—"(=)sin6. If a,=a, and there is no spacing between the right end of the linear array
iy pacing g :
and the left element of the interferometer, the directivity pattern of the correlation array is

sin 4.X

Vout o8 —4‘){—

which is the same as that of a uniform linear array of twice the length of the actual array.
However, if two coherent sources are present the output is

sin 4X, , sin 4.X,

n cos X, sin Xp
4:XA 4:XB

sin X, cos XB+ ]
4X4 . 44YB

Vour o + cos (XA+XB)|:
The third term again occurs because of the nonlinearity of the correlator.

Calculation of the resolution capability of this array shows that it is equivalent to a uni-
form linear array one and a half times as long.

These have been only two examples of the effect of cross-product terms in a correlation
array. In each case considered, the effect of these terms would vary, depending on the types
of signal voltages emitted by the sources and by the number of successive multiplicative proc-
esses in the correlator. If the sources were emitting complex signals which could be decomposed
into a number of fixed frequency components (a pulse system with a fixed repetition rate, for
example) then the cross-product terms resulting from the multiplication would become quite
involved.

It should be noted that if the correlator contains only one stage of multiplication, then the
cross-product terms occurring {rom two sources of different frequencies appear only as beat
frequency components. These terms occur as a low-frequency a-c signal appearing with the
desired d-c measuring voltage. In this case the cross-product terms can be minimized by time
averaging the output voltage. However, if more than one stage of multiplication occurs
between the antenna element and the output of the array (as was the case in the example of
the four element correlation array) the cross-product terms will occur as low-frequency a-c¢
terms and also as d-c¢ terms. In this case the equivalence between the correlation arrays and
the linear arrays is not immediately apparent but must be determined by calculation of reso-
lution characteristics for the particular type of signal encountered.

3. Randomly Varying Sources

In those situations in which there is at best only incomplete information about the manner
in which the voltage produced by a signal source will vary with time, it is necessary to consider a
suitable statistical model which will impose bounds on the expected results and will provide an
average description of the voltage variation. The most general such model suitable to this an-
tenna problem is that of a band-limited voltage with a normal distribution. The source can
then be described as one which produces a randomly varying voltage whose Fourier series rep-
resentation becomes:

N
Iv({) :Z ¢y COS (wnt—l_q)n)-

n=1
V(?) 1s distributed normally with mean zero.

¢, has a Rayleigh distribution with ¢ =2W(f,)f, where W(f,) is the power density over a
frequency interval 6/ centered at f,,.

®, has a uniform distribution over (0, 2w).
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wg 1s the'lower edge of the band of width 2Af ¢/s and wi:wo—l—z—;f

The directivity pattern of the correlation array can be stated in terms of the correlation
coefficient of the voltage produced by the signal source. For a four-element correlation array
the expected value of the output voltage is:

Vi) Va() V() Vi(t)

and, since these are normally distributed voltages, this becomes:

@O VOV Vi I +[Vi) Vi llV.) Vi 1+ [Vi) Vi V() Vi ()]
=R (1) R (r39) + R (113) R (720) +- R (1) R (23)

where R(7,;) is the correlation coefficient of the voltages induced on elements i and 7.
If the signal source is band limited, f.+Af, and the signal has a uniform power spectral
). \/, g
density over this pass band, then

sin 2rAfr -
R(r)=R(0) ———— Yo cos 27f,. (autocovariance)
T rAfr :
With proper spacing of the correlation array elements this again can be put in a form resembling
the directivity pattern of a uniform linear array.

Vi) Vo) Va(t) Vi(D)=3R (0)2[A cos X+B cos 3X+C cos 5X]

o

where X'=2xf, Q sin 6 and the coefficients A, B, and (' are combinations of S”‘l)'ﬂAfl terms
mA f1

which approach th(' value 1 as the receiver pass band is decreased.

If there are two such sources separated by an angular displacement 6, the output voltage
of a linear array could be suitably employed to resolve the sources. An instantaneous voltage
observation at various positions as the array is rotated past the sources would generally not
be an adequate procedure due to the assumed randommness of the sources. Some sort of time
averaging procedure (as in an average power measurement) or a procedure requiring a definite
observation interval (the peak voltage occurring in the interval, for example) would be
necessary.

As an example of this use of a linear array, assume that the output of the array will be
squared and resolution obtained by power measurement. As before, assume there are two
sources, source < on the main lobe axis and source B displaced through 6°.  Then before
squaring:

V=6V 1442V 5(cos X+ cos 3.X+cos 5.X)

W= Z ¢, cos (w,t+¢,)+2 Z d, cos (w,t-+¢,)(cos X+ cos 3.X+cos 5.X)

n=1 n=1
After squaring:
V2,=36V2+24V, Vg (cos X+cos 3X+cos 5X)+4V%(cos X+ cos 3.X+cos 5X)?

N N

nut_';G Z E Cn,("m COS (wnf+¢n) COS (wlllt+¢lll)]

n=1 m=1

+24 | 57 >0 ¢, cos (w,t+9,) cos (w,t+¢,)(cos X+4cos 3X+cos 5X):I

n m

+4| >3 >0 dod,, cos (w,t+¢,) cos (w,t+,) (cos X+cos 3.X+cos 54\')2]

n m
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The first and last terms of this expression have x* distributions with mean values equal to the
power from the signals; the middle term has a bivariate normal distribution with mean zero.
So the average value of the squared voltage term will be equal to the power received from the
two sources. The instantaneous value will fluctuate about the average, and time averaging
can be used to minimize the effect of the fluctuation.

An expression for the effect of an averaging device can be obtained [rom general filter
considerations [Middleton, 1960]. 1f A(f) 1s the effective weighing function of a linear measuring
device and z(¢) is the function to be measured, a measurement M,(7) made at time =17 after
z(t) has been introduced at (=0 can be expressed by the convolution

M,(T)= fo Chwyr(T—wdu k() =0, u<0

where (0,7) is the observation interval. M, (7) will vary from observation to observation,
fluctuating about the expected value M,(7T) with a variance o*>=M,(T)*—[M,(T)]*.
In the general situation, z(¢) is at least wide sense stationary, and

AV f VD
A*[I(T)szTj‘T h(w) x(T—w)x(T—v)h(v)du dv

=f TfT h(uw) Y, (u—2)h(v)du dv

where ¢, is the autocovariance coefficient of the function to be measured. For an ideal inte-

grator h(u)=%; 0<u<T. And

M,(T)=x(t)

ATHT_)Z=72, fUT (1 —%) Vo (s)ds

The correlation coefficient of the power function can be obtained in terms of the correlation
coefficient of the voltage. The voltage has a normal distribution; the correlation coeflicient
of the power.

This is, of course, a direct indication of the fluctuation of the output power about the mean
value. For this case of two statistically similar sources, the variance determines, in terms of
confidence intervals, the difference in mean power which the array receives when it is directed
at one of the sources and when it is directed between the sources in order for the sources to be
consistently resolved.

Now, with this description of the resolution process by a linear array it is possible to
investigate the resolution process in a correlation array and to compare the resultant effects.
As in the previous case, it is necessary to determine the mean value of the output voltage and
to determine the correlation coefficient of this voltage in order to establish bounds on the
expected fluctuation of the measurement.

The expected value of the voltage produced at the output of a four-element correlation
array by two independent sources (source A and source B) can be calculated either directly
or by the characteristic function method and can be expressed in terms of the correlation
coefficients of the individual voltages.

With two sources present, the voltage on the ith element becomes:

Vi)=Vai(t+71)+ Va(ttr.).
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and

M(T)=V@t) Vo) Vi) Va(t) ={[Ra(r12) Ra(734) + Ra(713) R (724) + R4 (710) R4 (73)]
R e (112) Ry (130) + R (115) B (720) + B (r10) R (r20) |+ [ R (r30) R (710) + R4 (112) B (730)
+ Ry (r20) R (r13) + Ra (r2) R (r10) + B (r10) R (725) + Roa (15) Rp(20)] }-
(v)* (i0)* .

V(t)2V (t+4+s)?, will be the ccefficient of - -—* in the expansion of the characteristic function

B p)
of V(1) V(t+s).

Cup,s)=exp [tV (t)+wV (t+s)]=exp [—3R(0)(u2+122)— R (s)ur]
where F(s) is the correlation coefficient of the voltage. Then
Y(s)=R(0)>+2R(s)%

If it is assumed that the receiver circuits have a rectangular pass band, /.4 Af, and that the
power spectral density of the signal sources is uniform over this pass band, then

R (0)=average power from the signals

sin 27Afs .
R(s)=R(0) ——— i cos 27f,s.
2rAfs -
Substituting these values into the equations describing the ideal integrator:

MT)=R(0)

ke 0 T o) .
JII(T)Z:% J (‘1_;]7,) (R (0)24-2R (s)?)ds

=[M, (D)) [1+1,J ( 1><\“;:I/M\> cos 27('f(.\')2(/.8‘:|

which, for large values of 27A 17, becomes
) t=] - b

M,(T)*=D, (D) ( "3 AjT)

The variance of this averaged power then is

™

:QWA]T

[M.(D)]'= R(0)%.

2 AjT
The first and second terms of this expression give the expected voltage due to each source
individually. The third term contains the cross product components which occur as a result
of the two stages of multiplication that the element voltages undergo.

The variance of this output voltage could be calculated directly; however, the large
number of terms in the final expression would make this quitv laborious. A good approxima-
tion to this variance can be made by (‘dl(‘llldtlng the variance of the voltage produced by a
single source located on the main lobe axis. The correlation function of this voltage can be
determined readily by the characteristic function method:

Y(s)=9 R(0)*+72 R(O)*R(s)*+24 R(s)™
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If we again assume an ideal integrator and a band limited process, the variance becomes:
t) )

5 147 T
o= S A fT) (M, (T) ]2 (2rAfT) >>1.

This variance is seen to be somewhat more than four times that found for the single multipli-
cation required in the power calculation. And, in general, if more elements are added to the
correlation array, this variance will increase approximately by a factor of four for each pair
of elements added to the array.

This increase in variance indicates an increase in the fluctuation component of the out-
put voltage as the number of multiplicative processes are increased. This results in an in-
crease in the integration time required to reduce this fluctuation to some prescribed level,
and, therefore, makes this time averaging interval an important part of any discussion of the
resolution capabilities of these arrays.

Band-limited random signals

Resolution at the 959, confidence level

Four-element correlation array
length 4D

Aperture of equivalent

Resolution Integration time uniform linear array
19° WrAfT= 56 9.6D
18° orAfT= 303 9.4D
17. 5° 2 AfT=2790 9.2D
. A
y
c 2

4. Summary

An analysis of the expected performance of antenna arrays which utilize correlation
techniques indicates the possibility of a marked saving in antenna size. In the general situa-
tion, the multiplicative processes in the correlator will introduce cross-product terms which
will appear as low-frequency fluctuations in the antenna output voltage. Additionally, these
cross-product terms may contribute to the d-c output voltage. The appearance of the cross-
product terms complicates the calculation of resolution capabilities, and generally necessitates
the definition of a time-averaging interval in any discussion of this resolution. In the ex-
amples considered here, it was evident that the directivity pattern alone did not describe the
performance of a correlation array in resolving two signals. In these examples the relatively
simple correlation arrays had resolution capabilities equivalent to those of uniform linear
arrays of about twice the length.

5. References

Berman, A., and C. 8. Clay, Theory of time averaged product arrays, J. Acoust. Soc. Am.
29, No. 7, p. 805 (July 1957).

Drane, Charles, Phase modulated antennas, Air Force Cambridge Research Center, Tech.
Rep. 59-138 (April 1959).

Jacobson, M. J., Analysis of a multiple receiver correlation system, J. Acoust. Soc. Am. 29,
No. 12, p. 1342 (December 1957); 30, No. 11, p. 1030 (November 1958).

Middleton, David, An introduction to statistical communication theory, Chapter 16
(MeGraw—Hill, New York, N.Y., 1960).

(Paper 65D3-126)

252



	jresv65Dn3p_245
	jresv65Dn3p_246
	jresv65Dn3p_247
	jresv65Dn3p_248
	jresv65Dn3p_249
	jresv65Dn3p_250
	jresv65Dn3p_251
	jresv65Dn3p_252

