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Antenn a arl":1.VR wh ich are desig npd to uLilihe correlat ion t cchn iq ll cR ca n rcs ul t in direc­
t ivity patterns w i t h very n'""I"OIl' beall1l1" id th. H owever, anal ys iR of resol ution capabil i ties 
of t hese arrays indicates a marked change in f'xpected performance in the p"ese nce o f t ll"O 

or more signal sources. These effects arc a nalyzed for si ngle frequency signal so urce,; and 
for ntJldomly varying signal sources . It is shown that optimum res uHR occu r II"hen til(' 
nonlin ear processing o f t he antenna \'0Itage8 is limi tc'd to a single lllui t iplicatio n. Under 
these condit io ns th e correla t ion array has a direct i v it y eq lli valent to that of 11 lincar arra.\· 
of t \\';ce tile length, 

1. Introduction 

In creas in g atte ntion hfts bee II given ill recent ~-ears to lhe merits of correlation techniqu es 
as It means 0 I' im provi ng t he resolu tio n capltbiliLies of pass ive an tenn a syste ms. The possi.­
bilit.,· or Ilhtkin g a decided SIWill g in the overall size of clireet ionnJ antenn as, eve n though this 
sHving must be purchased Itt the cost of increased complexity or the antenna circuitry, has a 
d istin ct appeal ill cer tain Iwte nll a Itpplicatiol1s. It is the purpo e of th is paper to outline the 
math ematical analysis of t he resolu tion chamcLeristics of such an antennlt array and Lo COIll­
pllre t hese results with those which could be expected from a I'mni liar lin ettl' additive nrm}'. 

A correhttion Itrray will be defi ned as one in whi ch volLages i nducecl on t he elements Inc mul­
tiplied togethe r <mel th e resultill g volLnge is ave rngecl over some prescribed Lime intel"vnllo give 
a des ireel output vol tage. There are , of cou rse, two fundulllCntal variables in lhis definition . 
In the fi rst place, when the re a rc it nUlnber of clements in the ana.\· there arc a g rea t lll itny 

poss ible CO lllbin,ttions or lhe elemen t voltages . And , secondly, when Lilere ,ue und esired 
fluetutlLion s in the output voltage, Lbe time inLerv,tl whi ch is aVltilable 1'01' Ilvel'aging this 
volblge can hllve 1\, p rinlltry influ ence on t he resolution capabil ity of th e alTa~' . 

For th is disc ussion of the m,ltllematiclllltnalys is of resoluLion c1mracleristics the first varia­
ble will be avo ided by limi t ing th e calculn,tion s to specifi c examples of correlation al'mys. 
Th e second variable will enter the an,tly"is and will appeal' in the fInal ]'esults. 

It will be assumed th,tt Llle problem at hand is Lhe resolution of two sig nal source sepa­
rllted b.,' SO llI e Iwguhlr displacemen t 8. Both single- frequency and band-limited signal sources 
will be con sidered . The signnl sources arc assumed to have identi cal power spectral cl e n s iL~' 
over th e Jrequen c.,· band of interest. They CltnllOt be resolved by frequen c~' selectivity in lh e 
receiving system, but must b e resolved by nppropriate operations on the voltages induced in 
t be elements of th e array. 

2. Single-Frequency Sources 

In order to analyze the conelat ion array without beco ming too deeply involved in the re­
q uired calculations, a relatively simple array of four isotropic elemen ts will be first considered. 
The pattern of the response of this array as a function of 8 can be shown to be equivalent to 
that of a much larger linear additive array. This parti cular aspect of the capabilities of 
correlation arrays has been reported in the li terature [Berman and Clay, 1957 ; Jacobson , 1958 ; 
Drane , 1959] . These articles have demonstrated t hat , in response to a single signal source, 
It correlation array with properly sclected element spacing has a pattern which is exactly 
equivalen t to that of a much larger linear array. When two signal sources are present, how­
ever, an interaction of vol tages p],oduced by the sources occurs in the mul tiplication processes 
·of the conelator, and this equivalence between linear and correlation arrays has to be real1al~'zed . 

I Co ntribuLion from D epart. ment of Electrical Engineering, University of California, Berkeley 4, Calif. 
2 ~L'hi s research was supported i!l part by the Office of Naval Research under Contract NOIll'- 222(74) . 
3 Paper presented a t thc OOllference on Tran.'mission Pro blems Related to High·Frequency Direction Finding, at UOLA, June 2l- 24, 1960. 
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The signal source (see fig. 1) located in the plane of the array and at an angular displacemen 
e from the main lobe axis, induces a voltage V i on the i-th antennfL elemen t, where 

eli . 
T i = - Sin e 

c 
(el i is the distance from a reference point in the 

lill e of the array to the i th element.) 

8 

output 

Fw URE 1. A fow'- elcment correlation alTay. 

If the bandwidth of the integrating circui t is established to reject the second- fLnd four th-order 
frequen cies resulting from the multiplications, the output voltfLgc is 

And if the r elative spacing between eJements is established with d1 2=D , cl:a= D, and el34= 2D 

(and letting X = wD sin e) : 
c 

Vout=~ A 4 [cos X + cos 3X + cos 5X] . 

But this, excep t for the constant term, is the voltage pattern for a six-element linear addi tive 
array with a uniform element spacing of 2D. 

So in this sense the pattern of the four-element correlation an ny of overall length 4D and the· 
voltage pattern of the six-elemen t linear flrray of overall length lOD are equivalent. 

Berman and Clay have discussed this equivalence between correlation and linear arrays. 
In general , directivity patterns f01' a single monochromatic source have the following mathe-· 
matical equivalence: 

Correlation array 
4 elements, length 4D 
6 elements, length 8D 
8 elemen ts, length l6D 

Linear array 
6 elements, length lOD 

15 elements, length 28D 
32 elements, length 62D 

However , in resolving two sim.ilfLr sources these patterns cannot be used direc tly , but must be 
treated with some care. For example, assume source A(VA = E cos wAt ) is located on the main 
lobe axis and source B with the same ampli tude (VB = E cos WBt) , is displaced through eO. Th 
<>u tput voltfLge of the six-element linear array would be: 

V ou t= 6E cos wAt + 2E(cos X + cos 3X+ cos 5X) cos WBt . 
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WheLher or not the sources are coherent, the voltage ouLput for arbitrary movell'.ent of the 
'so urces is simply the Sllm of the voltage patterns of each source considered individually. 

The cOlTelation array, on the other hand, will co ntain cross product terms resulting from the 
multiplication processes whose form will depend on the coherence of the two SO llrces and, in 
-general, on the number of m.ultiplication processes. 

For the example of the four-element correla tion array considered here, the output voltages 
I' or two condi tions of coherence are' 

1. For two coherent so urces: 

'Vout=~E4+~E4(COS X + cos 3X+ cos 5A)+~E4(3+ 11 cos X 

+ ]0 cos 2X+ 7 ('os 3X+ 6 cos 4X+ 3 ('os 5X+ 2cos 6X). 

'2 . For t wo sources of slightly different frequencies: 

3 1 
Vout=g E 4+ - E 4(COS X + cos 3X+ cos 5A) 

+~ E4(4 cos X + 4 cos 2X+ 2 cos 3X+ 2 cos 4X)+~ E4(j(('OS nX·cos at) 

where at is the frequency difference between so urce 'A and so urce B , and 1(cos nX·cos at) 
represents a number of Lel'ms all co ntaining this beat frequency compo nent. 

In both of these equ ations the fil'st two terms cOlTespond to the lin eal' al'l'R,y pattern, while 
t he remaining terms arise from the nonlinearity of the correlR,tion alTR,Y. In tbe case of two 
. 0UI·ces with id entical frequencies, tbe Cl'oss-product terms R,re constant wi th time and time 
.averaging of the output voltR,ge will not alter the result. W'hen the so urces have ciifferent 
Jrequ encie , however, tim e averaging can be employed to reduce the beat frequency (cos at) 
part of tbe cross-product terms; bu t even in this case t be resulting pattern will no t be precisely 
.equivalent to t hat of the six-element lin ear alTay since so me of the cros -produ ct terms will 
l'emain constant \vith t im e. 

Calculation of the r esolu tion cbR,ractel'istics or the con ehttion array is th en more in volved 
t han t he similar calculation for the lin eal' R,clclitive array. 

Assuming R, basic spacing D=~ t be four-elemen t correlation anay of length 4D will1'e­

olve two sources of sligh tly different fr equencies at approxim ately 19.5°. Tilis is equiva­
lent to the resolution of a uniform linear array with an aperture of 9D, abou t twice as long. 

A sligh tly more complex example of a con elation array is one discu sed by Dran e: 
Th e elemen t on the left in figure 2 r epresen ts a uniform lin eal' array with aper t ure aI, while 
t hat on the right is a simple interferom eter with aperture a2• 

r------- ----'" 

FIGURE 2. A correlation w'my employing a linew' array 
and an inteljerometer. 
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· sin X 
The directivity pattern of the uniform linear array is proportIOnal to ------x- where 

X=~(~) sin e. If a1=az and there is no spacing between the right end of the linear array 

and the left element of the interferometer, the directivity pattern of the correlation array is 

V sin 4X 
outex:~ 

which is the same as that of a uniform lineal' array of twice the length of tbe actual array. 
However, if two coherent sources are presen t the output is 

V sin 4XA +sin 4XB+ eX + v )[sin X A cos XB+cos X A sin XBJ . 
out ex: 4XA 4XB cos A AB, 4XA 4XB 

The th ird term again occurs because of the nonlinearity of the correIa tor. 
Calculation of the resolution capability of this array shows that it is equivalent to a uni­

form lin ear array one and a half t imes as long. 
These have been only two examples of the effect of cross-product terms in a cOlTelation 

array. In each case considered, the effect of these terms would vary, depending on the types 
of signal voltages emitted by the sources and by the number of successive multiplicative proc­
esses in the correlator. If the sources were emitting complex signals which could be decomposed 
into a number of fixed frequency components (a pulse system with a fixed repetition rate, for 
example) then the cross-product terms resulting from the multiplication would become quite 
involved. 

It should be noted that if the correIa tor contains only one stage of multiplication , then the 
cross-product terms occurring from two sources of different frequencies appear only as beat 
frequency components. These terms occur as a low-frequency a-c signal appearing with the 
desired d-c measuring voltage. In this case the cross-product terms can be minimized by time 
averaging the output vol tage. However, if more than one stage of multiplication occurs 
between the antenna element and the output of the array (as was the case in the example of 
the foul' element correlation array) the cross-product terms will OCCUl' as low-frequency a-c 
terms and also as d-c terms. In this case the equivalence between the correlation arrays and 
tbe lineal' arrays is not immediately apparent but must be determined by calculation of reso­
lution characteristics for the particular type of signal encountered. 

3. Randomly Varying Sources 

In those situations in which there is at best only incomplete information about, the manner 
in which the voltage produced by a signal source will vary with time, it is necessary to consider a 
suitable statistical model which will impose bounds on the expected results and will provide an 
average description of the voltage variation. The most general s uch model suitable to this an ­
tenna problem is that of a band-limited voltage with a normal distribution . The source can 
then be described as one which produces a randomly varying voltage whose Fourier series rep­
resen tation becomes: 

N 

V et) =.2: Cn cos (wnt+ <Pn) . 
n= l 

V et) is distributed normally with lncan zero. 

Cn has a Rayleigh distribution with c;= 2WU,,)oj, where W(fn) is the power density over a 
frequency in terval oj centered at j n. 

<Pn has a uniform distribution over (0, 2'11-), 
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Wo i -th(lower edge of the band of width 2!:J.j cis and Wj=wo+ 2;i . 

The directivity pattern of the correlation array can bc stated in terms of the correlation 
coefficient of the voltage produced by the signal source. For a four-element correlation array 
the expected value of the output voltage is: 

and, since these are normally distributed voltages, tbis becomes: 

where R( T i') is the correlation coefficient of the voltages induced on elements i and j. 
If the signal source is band limited, j c ± !:J.j, and the signal has a uniform power spcctral 

density over this pass band, then 

(autocoval'iancc) 

,Vith proper spacing of the correlation array elements this again can be put in a form resetnbling 
the directivity pattern of a uniform linea,!' array. 

VI (t)VZ(t)V3(t)V j (t)= 3R (OF[A cos X + B cos 3X+ C cos 5Xl 

I v 1 D . d 1 ffi · A B J C -b·· f sin 27r!:J. jT t w lere L~ = 27r- c C sm 8 an t 1e coe lClCnts , ,all (l are co m InatlOns 0 27r!:J. jT e1'1ns 

which approach the value 1 as the receiver pass band is decreased. 
If there are two such sources separated by an ang ular displacement 8, tbe output voltage 

of a lineal' array could be suitably employed to resolve the so urces. An instant aneous voltage 
observation at various positions as the alTay is rotated past the sources would generally no t 
be an adequate procedure due to the assumed randomness of the sources. So me sort of time 
averaging procedure (as in an average power measuremen t) or a procedure requiring a definite 
observation interval (the peak voltage occurring in the interval, for example) would be 
necessary. 

As an example of this use of a linear array, assum e that the outpu t or t he array will be 
squared and resolution obtained by power measurem en t . As before, assume there are two 
sources, source A on the main lobe axis and som ce B displaced through 8°. Then before 
squanng: 

N N 
Vout=6 ~ en cos (W"t+ 4>,,) + 2 ~ dn cos (Wn t+ ¢n) (cos X +cos 3X+cos 5X) 

n=1 ,,= 1 

After squaring: 

V~u,=36V~+24VA VB (cos X + cos 3X+ eos 5X )+ 4VHcos X +cos 3X+eos 5X) 2 

V~ut=36 [~ tl enCrn cos (wnt+ 4>n) cos (Wrnt+ ¢m) ] 

+24 [~ ~ c"drn cos (wnt+ ¢,,) cos (wrnt+ 4>rn) (cos X + cos 3X + cos 5X)] 
n m 
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The first and last terms of this expression have X2 distributions with mean values equal to the 
power from the signals; the middle term has a bivariate normal distribu tion with mean zero . 
.so the average value of the squared voltage term will be equal to the power received from the 
two sources . The instantaneous value will fluctuate about the average, and time averaging 
can b e used to minimize the effect of the fluctuation. 

An expression for the effect of an averaging device can be obtained from general filter 
considera tions [Middleton, 1960] . If h (t) is the effecti ve weighing funcLion of a linear measuring 
device and x(t) is the function to be measured, a m eas urement M x(T) made at time t= T after 
.x(l) has been introduced at t= O can be expressed by the convolution 

Mx(T) = iT h(u)x(T - u)du h (u) = O, u < o 

where (O,T) is the observation interval. Mx(T) will vary from observation to observation, 
fluctuating about the expected value l'v1x(T) with a variance (T 2= i1dx(T)2 _ [Mx(T)J2. 

In the general situation, x(t) is at least wide sense stationary, and 

M x(T ) = iT h(u)x(T -u)du 

MiT)2= i7'i7' h(u)x(T -u)x(T -v)h(v)du dv 

= i7'i1' h(u)if;x(u-v) h(v) clu clv 

where 1/1" is the autocovariance coefficient of the function to be measured. For an ideal inte­

grator h(u)=~, O< u < T . And 

M x(T) =x(t) 

Mx(T)2=~ 17
' (I-f) 1/Ix(s)ds 

The correlation coefficient of the power function can be obtained in terms of the correlation 
·coefficient of the voltage. The voltage has a normal distribution ; the correlation coefficient 
-of the power. 

This is, of course, a direct indication of the fluctuation of the output power about the mean 
\Talue. For this case of two statistically similar sources, the variance determines, in terms of 
confidence intervals, the difference in mean power which the array receives when it is directed 
.at one of the sources and when it is directed between the sources in order for the sources to be 
~onsistently resolved. 

Now, with this description of the resolution process by a linear array it is possible to 
investigate the resolution process in a correlation array and to compare the resultant effects. 
As in the previous case, it is necessary to determine the mean value of tb e output voltage and 
to determine the correlation coefficient of this voltage in order to establish bounds on the 
·expected fluctuation of the measurement. 

The expected value of the voltage produced at the output of a four-element correlation 
alTay by two independent sources (source A and source B) can be calculated either directly 
or by the characteristic function method and can be expressed in terms of the correlation 
coefficients of the individual voltages. 

With two sources present, the voltage on the ith element becomes: 
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I 
r 

---- -- - -

fi nd 

M x(T) = { 'J (t) 1 '2(i) 1 '3 (t)l ', (t) = { [/( , (71 2) Ro4 (734) + RA (713) Ro4 (724) + Hr' (71 4) R A (7n) ] 

+ [RBh2)RB(734) + H/3(713) R13 (Tz4) + R B(71 4) RB(7n) ] + [Ro4 h4) RBh z) + R.4. (71 2) Rn(734) 

+ Ro4 (724) R/3(713) + Ro4 (723) R I3h4) + Ro4 (71 4) Rn (7n) + R" (713)RB ( 7:!.)]}. 

V(t)2V( t +S)2, will be the cceffic ien t of (i; F (i~) 2 in the expansion or t hecharacteristicfunction 

o [ V(t),v(t +s) . 

('(U,V ,s) = exp liu r'(i) + iv 1 '(t+ s) ] = exp [- t R (O) (u2+ r2) - R (s)uv] 

\\'here R (s) is tlw correla t ion coefficient of the voltage. Then 

If i t is flssuIl'.eci tll,l.l tll e receiver circui ts hH ve it rec l,wgular pass ba.nci , .rc± ~f, a nd thfit th e 
power spec tral densit y or lb e signa'! so urces is uniform over thi s pass band , lh en 

R (O) = average power from the s ignttls 

sin 27r~fs . 
R (s) = R (O) 27rt::.f s cos 27rfos. 

Substituting th ese v,l lu es in to the equ<. lions describing the id e,ll inlegmlor : 

\\'hi ch , for large v<l lues of 27rt::.fl', becoIl'es 

The variance of this avem ged power then is 

The first an d second terms or t his expression give the expected voltage due to each source 
individually . The third term contain s t he cross product components which occur as a result 
of th e two stages of multipli cat ion that the elem ent vol tages undergo . 

The varian ce of this ou tp ut vol tage could be calculated directly ; however , the large 
number of terms in the final expression would make th is q ui te laborious. A good approxima­
tion to this varian ce Cfin be m ade by cfilculating the vfiriance of the voltage produced by a 
single source loca ted on the m ain lobe axis. The correlation function of this voltage can be 
determined read ily by th e cbaracteeistic fun ction method : 

if;(s) = 9 R (O)4+72 R(O)2R(s)2+ 24 R(S)4. 
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If we again assum e an ideal integrator and a band limited process, the variance becomes: 

This variance is seen to be somewhat more than four times that found for the single multipli­
cation required in the power calculation. And, in general , if more elen'lents are added to the 
co rrelation array, this variance will increase approximately by a factor of four for each pail' 
of clem cn ts added to t he array. 

This increase in variance indicates an increase in the fluctua tion component of the out­
put voltage as the number or multiplicative processes are increased. This results in an in­
crease in the intcgration tim e required to rcduce this fluctuation to some prescribed level, 
and , therefore, makes this time averaging interval an important part of any discussion of the 
resolu tion capabilities of t hese arrays. 

Band-limited random signals 

Resolution at the 95% confidence level 

Four-element correlation array 
length 4D 

Resolution Integration time 

19° 27rt:..jT= 56 
18° 27rt:..jT= 303 
17 .5° 27rt:../T= 2790 

D=~ 
2 

4. Summary 

Aperture of equivalent 
uniform linear array 

9.6D 
9. 4D 
9.2D 

An analysis of the expected performance of antenna arrays which utilize correla tion 
techniques indicates the possibility of a marked saving in antenna size. In the general situa­
tion, the multiplicative processes in the correlator will introduce cross-product terms which 
will appeal' as low-frequency fluctuations in the antenna output voltage. Additionally, these 
CI'oss-product terms may contribute to the d-c output voltage. The appearance of the C1'OSS­

product terms complicates the calculation of resolu tion capabilities, and generally necessitates 
the definition of a time-averaging interval in any discussion of this resolution. In the ex­
amples considered here, it was evident that the directivity pattern alone did not describe the 
performance of a correlation array in resolving two signals. In these examples the relatively 
simple correla tion arrays had resolution capabilit ies equivalent to those of uniform linear 
arrays of abou t twice the length. 
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