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A different approach to the Fresnel region fi eld approximation i in t roduced. Instead 
of using t he conventional t run cated power series expansion approximation, thc Ne wto n's 
iteration formula for square root is used. By using such an app roximation for circular 
a pertures with tapered illumination of the form (1- 12)", the Fresnel r egion fields can finally 
be expressed in terms of a new class of function s Woe')', u). The function wg is s hown to 
be related to th e Lomm el's funcLion s of two variables, and the fun ction Wo is then obtained 
from the fun ction TVO- l by a simple recurre nce relationsh ip. Fi eld dist ribu t ions for 
n = O, 1, 2, 3, 4 and at distances}~ D2/A, ~ D2,'A, Y:l D2jA, D2/A, 2D2/A, "" have been com puted 
and prese nted as sets of curves. General and qu antitative properti es of the fi elds are 
clearly demonstrated by t hese curves. It i~ a lso shown that the fi eld of any other nonuni form 
illumination with circular symm etry can be ex pressed in term s of t he fi elds of t he basic 
i ll umination of the form (1 - 12) ". 

I. Introduction 

It is weIl known that t here is a close similarity between diffra ction problems in optics find 
aperture field problems in antenna t heory. In opties, two diffmction problems- the diffract ion 
from a single edge or a sli t and the diffract ion from a circular aperture- have been well treated. 
These two problems were first solved by Fresnel and Lommel, respectively, in terms of the 
now so-called Fresncl illtegnlls and Lommel 's i'unctions of two variables . The corresponding 
problcms in antenna thcory arc t he Fresnel region fields produccd by rectangular ftnd circu1ftI' 
i:LIJ I:Jn llrUtL However, in optics, t ile primary illumination is ftssumed to be uniform over the 
aperture, but in antenlla theory, t he case of nonuniform illumination is of great inLcrest. 

For the ca e or unii'orm illumination , the allillyt ical methods developed in optics can also 
be applied to antenn a problems. For F]'esnell'egion fields o[ rectangula,r apertures, genemli­
zations Lo include nonunii'orm illuminat ion througll expansions in terms of different bftsic 
forms are not too diffieulL, polynomial and trigo llometric sum types of illumination were 
treated by the author [1] .2 On Lil e oLher hand , t il e analysis oi' Fresncll'egion fields of circular 
aperture antennas with nonun ii'orm illumination is cons iderably more diffi cult . However, 
with the use of illumination oi' Lhe form (1 - i'2) n, the Fresnel region field was solved by the 
present author [1] . A short communication about this resul t has been published [2]. The 
complete analysis and numerical results are presented in this papel' . A refined but more 
complicated result for the case of uniform illumination was given by Hansen and Bailin [3]. 
It may be noted that the corresponding far field problems have been t reated by many authors 
with the use of different basic forms [4, 5, 6, 7], including the form (1- i'2) n l4 , 5] used in this 
paper. 

2 . Fresnel Region Approximation 

In the study of field distributions of linearly polarized uniform phase plane aperture 
anLennas [8] the following formula [1] or a slightly different form given by Silver [8] may be 
used as a starting point. 

jlc J e- j kTo 
( Z) E(x'Y' Z)= 47r A F(~,7)) -----:;:;; l+ro clA, 

1 Contribution from Department of Electrical Engineering:, Syracuse Unh'crsity, Syracuse 10, N .Y. 
by Rome Air D evelopmen t Center uncleI' Contract No. AI' 30(602)-928 with Syracuse U ni v. 

2 Fi gures in brackets indicate the literature references at the end or thi s paper. 
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rrhi s work is part of a project spon sored 



where 

E(x,y, z) = the complex magnitude (amplitude and phase) of the electric fi eld intensity at the 
field point (x,y,z) , 

F(~,71) = the illumination at the point (~,71,O) in the apperture A. For uniform phase illumi­
nation, F(~ , 71) can be taken as a real function of ~ and 71 , 

ro= .y'(x-~)2+(Y-71)2+z2= the distance between the field point (x,y ,z) and the source 
point (~ , 71,O) , and 

k= 27r 
A 

with A= the wavelength. 

The coordinate system used for writing formula (1) is given in figure 1. Formula (1) holds 
for any illumination function F(~, 71) and for apertures of any shape. In the present paper, it 
is assumed that the aperture is circular and the illumination is of circular symmetry. 

For a circular aperture of radius a, as given in figure 2, formula (1) can be rewritten as 
follows: 

jk i 2"i a e-jkro (1' ) E (1', e, </» =-4 . F (p,</>' ) -- l +-:;- cose pdpd</>' 
7r 0 0 1'0 10 

(3) 

where 

The evaluation of the above integral is a very difficult one without further approximation. In 
order to facilitate its evaluation, different approximations are generally used. Depending upon 
the approximation used, the result may be classified as the far field approximation, the Fresnel 
region approximation, etc. The most widely used approach to such approximations is to expand 
the distance 1'0, appearing in the exponential , into a power series involving 1', e, and </>. The 
result obtained, by neglecting all terms of order higher than one or of order higher than two, is 
generally considered as the far field approximation or the Fresnel region approximation. As 
far as the remaining 1" S under the integral sign are concerned, much more crude approximations 
are satisfactory. If the field point in consideration is not too close to the aperture and e is not 
too large, then the factor 1/1'0 (1 + (1'/1'0) cos 0) can be approximated to good accuracy by using 
the relation, 

- 1+- cos e ~-. 1 (1' ) 2 1'0 1'0 l' 
(3) 

lx, y, z) 

lr, 9, ." ) 

FIGURE 1. Coordinate system for A plane aperture. FIGURE 2. Coordinate system for A circular aperture. 
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A rather differ ent approach to the Fresnel region approximation is used in the present. 
paper . Instead of using the truncated power series expansion, the well-known Newton's 
iteration formula for findin g square root of a given number is employed. T his formula has 
t he following special property. If an approximation BI , of .J A is known to be correct to n 
slgnificant figures, then the approximation B2 of .fA obtained by using the iteration formula , 

(4) 

will b e correct to 2n significant figures. If this formula is applied to the approximation of 1'0 
in Fresnel region, we have 

, 1 { + (1' sin 8 cos ¢ - p cos ¢' )2+ (1' sin 8 sin ¢ - p sin ¢' )2+ (1' cos 8)2 \' 
1 0~2 r r ) . 

After simplifying, eq (5) b ecomes 

p2 
ro~r-p sin 8 cos (¢-¢')+-2 . 

r 

(5) 

(6) 

This approximation of ro gives a impler form than that given by Silver [8] and also by Hansen 
and Bailin [3]. It should be noted that this par ticular form makes the followin g relatively 
simple analysis possible. 

Using the approximations (3) and (6), formula (2) gives: 

E ( ) 'k e- JkTf 2". £a 1"( ') ik [ psin o cos (<I>-<I>')- -2
P
' ] d d 1 1r 8¢ = J - - I p¢ e r pp¢ . 

, , 27rT 0 • 0 ' 
(7) 

If it is further assum ed that the aper ture iJlumina,tion F(p,¢I ) is of circular symmetry, i .e., 
F(p,¢' ) can be written as F (p); then E(r ,8,¢) will be independen t of 8 and can be denoted by 
E(r,{}). H ence we have 

E(r,8) = j k e~:kria F (p) J o(k sin 8p)e -jk (~) pdp . (8) 

If a normalized variable 

is defined, t hen eq (8) can be written as 

wb ere 

and 

u = ka, sin 8 

ka2 

'Y=-' 
r 

(9) 

(10) 

(11 ) 

(12) 

From eqs lll ) and (12) it is clear that U= 'Y implies r sin 8= a; t herefore U= 'Y means that th e 
field point is at a distance, equal to t he ra,d ius of the aper t ure, from the aperture-axis. 

It is more convenien t for t he following discussions to r ewri te eq (10) as: 

E(r, 8)= e- j kT ('Yej"'~1') i l F W J o(une i ; (1-,2) !;dr 
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3 . Uniform Aperture Illumination 

For the case of uniform illumination, F (S) = l, eq (13) reduces to 

E(l', fJ) = e -jkr ('Y/r~1') il Jo(uS) ej i- (1-,2) . retr 

In the above equation, the integral may be denoted by W~ ('Y ,u), 

(14) 

(15) 

This integral has an imaginary part as well as a real part. It is closely related to the Lommel's 
functions of two variables [9]. The Lommel's functions of two variables can be expressed in 
in tegral forms as: 

(16) 

UI('Y,u) and U 2 ('Y,u) are of order one and order two, respectively. 
By integrating by parts and using the recurrence relations of Bessel functions, it can be 

proved that UI('Y ,u) and U 2 ('Y,u) may be expanded into the following two series : 

(17) 

Generalizations of these functions to higher orders are possible, but these generalizations will 
not be used in the present paper. 

In terms of UI ('Y,u) and U2 ('Y,u) , we bave 

(18) 

Using the above relation for W~ ('Y,u), formula (14) can be written simply as: 

(19) 

This result is essentially the same as the first term in the series solution of Hansen and Bailin [3] . 
It can be seen from their figure 6 that the two results are close to each other within the region 
considered in this paper. 

4 . Nonuniform Aperture Illumination of the Form (1 - S-2 )n 

If the aperture illumination is assumed to be of the form (1- r2) n, the field expression can 
be obtained by substituting F W=( 1-r2)" into eq (13) , that gives 

(20) 
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Now if we define 

(21) 

then 

(22) 

When n = O, eqs (20) and (22) reduce to eqs (14) and (19), respectively. Tn other words 
eqs (20) and (22) include uniform illuminfl,tion as a special case. For n~O, these give the 
field distributions for the special tapered illumination (1- t 2)". The integration of the integral 
(21 ), or the evaluation of the function lV~'('Y,u), can be carried out by noti.ng the following 
simple property: If differentiation of HT~'('Y ,U) wit.h respect to 'Y is carried out, we have 

(23) 

Equation (23) gives the reCUl'l'ence relation, 

W n+ 1 ( ) -~ ~T;rr n ( ) o 'Y ,U - . 0 ' r 0 'Y,U . 
.7 'Y 

(24) 

In terms of lIvg('Y ,u), we have 

(25) 

or 

(26) 

It is possible to derive expressions of 1iTl~('Y,u) in terms of Lommel's functions of orders 
higher than two. But as far as numerical evaluation is concerned, it was found that the 
simplest way is to use eq (26) and the series expansions (17) for U\('Y,u) and U2('Y,u). The 
series expansions of Co n/o'Yn)(U1 ('Y,u)h) and (On/O'Yn) (U2 ('Y,u)/'Y), for n = 0,1,2,3 , and 4, are 
obtained by differentiating the power series of U\('Y,u)/'Y and U2('Y,u)/'Y, term by term, n times 
with resp ect to 'Y. 

5. Results 

In the last section, for the apertme illumination of the form (1- t 2) n, the field expression 
is given by 

(27) 
where 

(28) 

and 
u = ka sin o. (29) 

E(r,O) in eq (27) can always be rewritten in the following form: 

E(r,O) = A ei 27r q, (30) 

where A is the amplitude and 27r-q) is the phase angle in radians. 
Plots of the apertme ilhunination (1-r2)n for n = 0,1,2,3,4, are given in figure 3. The 

field distribution curves, both amplitude A and phase 27r¢, are computed for the following 
cases (see fig. 4) : 
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been computed. 

FIG URE 3. ApeTtuTe ill1i1ninalion distTibutions, uniform and 
tapeTed. 

(i) Field distributions along the circular arcs: 

where D= 2a. The corresponding values for "I are: 

It should be noted that the case r=ro or "1 = 0 is the conventional far field result. 
For the convenience of comparison , the field distribution curves are normalized in the 

following way: Let 

(31) 

th('n the normalized E(r, e) for a fixed r is given by 

E(r,e) _ A j27r(¢-¢o)= A j27r¢n. 

E(r,O) - Ao e ne (32) 

The normalized ampli tude and phase distributions along the arcs are given III figure 5 to 
figure 14. 
(ii) Field distributions along the aperture-axis: 

In this and the following case, the distributions are not normalized but are plotted with 
the factor e- jkr excluded. The two distribution curves, amplitude and phase, in the present 
case are useful in correlating the normalized distributions given in case (i). 
(iii) Field distributions along a line p arallel to the aperture-axis and at a distance equal to 
the radius of the aper ture: 
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Distribution curves for case (ii) and cases (iii) are given in figure 15 to figure 18. From 
these fi eld distribution curves, the following properties are observed. 

(1) For the normalized field distribution curves along circular arcs: 
(a) For each aperture illumination of the form (1-t2)n, the main beam width is essentially 
a constant in the range of r from 7H2D2j}..) up to infinity. (Note: For a fixed direction, the 
parameter u is a constant. ) 
(b) There is no perceptible difference in the normalized amplitude distribu tion curves at 
2D2j}.. (conventional far field limit) and at infinity for the same aperture illumination, except 
near those directions where the infinity case has zero values or nulls. On the other hand, 
there are differences between the phase distribution curves; these curves change from a stepped 
form at infinity to a smoo th continuous form at 2D2j}.. . 
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(c) The "side lobe level" in crea es a Lhe d istanee l' is reduced , but th o ampliLude dis tribution 
curvo as a whole becomes "smoo ther." It is also true that tho pha e distr ibution curve 
beromes smoother too as r is reduced. 
(d ) When the distribu Lion curves of differen t aperture ill uminat ions ar e compared, it is seon 
that tho main lobe beamwidth increases as n is increased. At Lile same Lime , within a fixed 
m easuro of the angle fJ , the number of side lobes is reduced. 
(0) T he side lobe level is definitely red ueod as n is ineren,sed . T he ratio or Lh e normalized 
maximum amplitudes of tho firs t s ide lobes wi th n = 4 and n = O is approximately 1 to 10. 
(r) As n increasos, the difl'erence in tll e normaJizecl ampliLud e distribution curves at differen t 
T beeomes smaller . 

(2) For thr,fiold clistribuLion curves along the aper ture-axis : 
(a ) Along Lho aperture-axis, tho ampli tUde distributions vary closely as 1/ 1' in tho range 
T= %(2D2/}..) to 1' = infinity for all cases s tudied. As for Lhe particular case n = 4, this is true 
evon when l ' is reduced Lo %(2D2/}.. ). 
(b ) Along the aperture-axis, all tho p base distribuLion , excluding the oxpon onLial factor 
e-1kT, aro approx'imately straigh t lines, i .e., the phase varies linearly with r espoct Lo 1/1'. 

(3 ) For the field distribution curves along a line parallcl to the aperture-axis and at a 
distance equal to the radius of the aperture; 
(a ) In the range, 1'= 2D2/ }.. to 1'= infini ty, bo th the ampli tude and ph ase distribu tions h ave 
approximately the same values as those obtained along Lho aperture-axis. 
(b ) At l' = }~ (2D2 /}..), the ratio 0 f the corresponding ampli tudes for th 0 prosen t case and case 
(ii ) is roughly one to four for all cases computed. 

6 . Generalization to Nonuniform Aperture Illuminations of Other Forms 

In tho last section, only a special type of nonuniform ill umination of the form (l -nn 
was given . It is possible to general izo tbe analysis to include nonuniform illuminations of 
othor forms either through expansions by t ho Schmidt orthogonalization proeess [5] or by the 
following simple algebraic procedure. For any circularly symmetric aperture illumination , i t 
is always possible to approximate it by an even polynomial of the variable t. Such poly-
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axis with apeTt1l1'e illumination = (1- 1;2) ". 
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nomials are 01 the follow ing form : 

(33) 

It is clear that such a polynomial can always be transformed i Illo the fo ll owi ng form: 

(34) 

For a given set of a's, the corresponding b's call be uu iquely determi ued by solving a system of 
l in ear simul taneous algebraic equations. In particular, for the case of n= 4, the coeffi cients 
b's obtained in terms of the (L'S are as follows: 

b4= a4 

b3=-a3-4a4 

b2= a2+ 3a3+ 6a4 

b1= - al - 2a2-3a3-4a4 

bo= ao+ al + a2+a3+ a4' 

vYlic ll bo, bl , • •• , b4 a re cl ete rmined as above, Lhe field expression is l hen g iven b~' 

E(r, B) =e- jkT (yejrr;')J'l t b,,(l - .\2)" Jo (u.\)i~ (1-\2) .Id.\ 
o ,,= 0 

III terms of 11'0'(A,u), (36) gives 

Equation (3 7) ca n lhcn be eval uated by ll s ing t he results already obLained in t hi s paper. 
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