Magneto-Ionic Propagation Phenomena in Low- and Very-Low-Radiofrequency Waves Reflected by the Ionosphere¹

J. Ralph Johler

(July 8, 1960)

LF-VLF ionosphere reflection coefficients which illustrate the dependence of the amplitude and phase of the reflected wave upon the direction of propagation relative to the direction of the earth's magnetic field are presented. The calculations are based on a plane, sharply bounded, model ionosphere with plane wave excitation, but employ full use of the magneto-ionic formulas for complex directions of propagation in the ionosphere such that the influence of the earth's magnetic field in the different directions of propagation is demonstrated. A special table of values applicable to VLF is presented.

1. Introduction

The classical magneto-ionic theory implies a dependence of the electromagnetic waves on the direction of propagation relative to the direction of the earth's magnetic field.

The application of the classical magneto-ionic theory to the evaluation of low- and very-low-radiofrequency reflection coefficients for a sharply bounded model ionosphere by using an assumed electron equation of motion, together with Maxwell's equations was investigated in a previous paper [1].² The importance of the orientation of the earth's magnetic field vector, H_m , was discussed in considerable detail, and the effect of various orientations of the vector (relative to the direction of propagation) on the precise value of the reflection coefficient was noted. This paper further pursues the subject of "directional effects" at low- and very-low-radiofrequencies. The forces acting on the electron in the ionosphere excited by an electromagnetic field are described by an electron equation of motion, Johler et al. [1] (1960). A particular term of this equation $\mu_{\theta} e(\overline{V} \times \overline{H}_m)$ called the "Lorentz force," Lorentz [2] (1906) relates the action of the earth's magnetic induction, $\mu_o \overline{H}_m$, or an electron (charge e) traveling at a velocity, \overline{V} , in a medium of permeability μ_o , to the direction of propagation. This dependence upon direction of propagation causes some interesting and predictable phenomena in the low and very low part of the radio spectrum.

The effect of the collision frequency, ν , on the magnitude of abnormal components (i.e., electricmagnetic coupling coefficients, T_{em} , T_{me}) is also investigated. A large angle of incidence, $\phi_i = 80^\circ$, 82° , is considered and the resultant intensities of both normal and abnormal components are noted at various directions of propagation.

2. Theory of the Reflection Coefficient

The essential nature of low- and very-low-radiofrequency waves propagated via the ionosphere can be described in terms of a reflection coefficient. Reflection coefficients or propagation constants (complex index of refraction of the ionosphere) for complex angles of incidence, ϕ_i , figure 1, such as would be required for "mode-type" calculations, Wait [3] (1960), can be readily evaluated from the

FIGURE 1. Coordinate systems.

¹ Contribution from Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo

of Standards, Boulder, Colo. ² Figures in brackets indicate the literature references at the end of this paper.

results of the previous paper, Johler et al. [1] (1960) without analytic modification of the formulas. However, for naive discussion purposes in this paper, a real angle of incidence, ϕ_i , will be employed. It should be noted, however, that the wave normal direction, ψ , relative to the direction of the earth's magnetic field vector, \overline{H}_m , in the ionosphere is nevertheless complex [1]. The direction, θ , relative to the vertical, z direction, figure 1, is also a complex number as a consequence of Snell's law: $\sin \phi_i = \eta$ sin θ . The propagation downward from the ionosphere (i.e., wave traveling from the ionosphere into the negative z, figure 1, region) is defined by four reflection coefficients, T_{ee} , T_{em} , T_{me} , T_{mm} , which relate the reflected radiation to the primary or incident radiation. The reflection coefficient, T_{ee} , refers to the vertical electric polarization of the incident plane wave and a similar vertical electric polarization of the reflected wave. The coefficient, T_{em} , describes the generation of the abnormal component by the incident vertical polarization (vertical electric-magnetic coupling). Similarly, T_{mm} , refers to the incident horizontal electric polarization and the corresponding reflected horizontal electric polarization. Also, the abnormal component generated by horizontal electric polarization (vertical magnetic-electric coupling) is described by the coefficient, T_{me} . The reflection coefficients can therefore be defined (see fig. 1),

$$T_{ee} = \frac{E_{y'\tau}}{E_{y'i}}, \qquad T_{me} = \frac{E_{y'\tau}}{E_{x'i}},$$
$$T_{em} = \frac{E_{x'\tau}}{E_{y'i}}, \qquad T_{mm} = \frac{E_{x'\tau}}{E_{x'i}},$$

where subscripts *i* and *r* refer to incident and reflected waves, respectively. Expressions for these coefficients were developed in the previous paper [1]. In addition to the geometric parameters, figure 1, the reflection coefficient is completely defined by the magnetic intensity $H_m = |\overline{H}_m|$ gauss, the electron density $N(\text{el/cm}^3)$, and the collision frequency $\nu(\text{c/s})$.

3. Discussion

A comparison of the reflection coefficients of the model ionosphere, $|T_{ee}|$, $|T_{em}|$ and phase, arg T_{ee} , arg T_{em} , figure 2, and amplitude, $|T_{mm}|$, $|T_{me}|$ and phase, arg T_{mm} , arg T_{me} , figure 3, for north-east propagation, magnetic azimuth, $\phi_a=45^{\circ}$, with the corresponding reflection coefficients for south-west propagation, magnetic azimuth, $\phi_a=225^{\circ}$, is illustrated. It is quite evident that a nonreciprocity exists in the propagation (i.e., the expected value of field intensity would not be the same if transmitter and receiver were interchanged), since neither normal nor abnormal components are precisely the same in both directions except at zero frequency. Indeed, the discrepancy is appreciable not only at LF(<300 kc/s) but also at VLF(<30 kc/s).

The effect of the magnetic azimuth, ϕ_a , (reckoned

FIGURE 2. Comparison of north-east propagation with southwest propagation (vertical polarization) illustrating nonreciprocity with the aid of the model ionosphere reflection coefficients, amplitude, $|\mathbf{T}|$, and phase, arg T.

 $N=870, \nu=4 (10^6), \phi_i=75.08^\circ, H_m=0.5, I=60^\circ, \phi_a=45^\circ, 225^\circ.$

FIGURE 3. Comparison of north-east propagation with southwest propagation (horizontal polarization) illustrating nonreciprocity with the aid of the model ionosphere reflection coefficients, amplitude, $|\mathbf{T}|$, and phase, arg T.

 $N=870, \nu=4 \ (10^6), \phi_j=75.08^\circ, H_m=0.5, I=60^\circ, \phi_a=45^\circ, 225^\circ.$

as clockwise angular measurement from magnetic north, fig. 1) is illustrated at a "temperate" magnetic latitude, $I=45^{\circ}$, figures 4, 5. Both amplitude, |T|, and phase, arg T, are presented, $\phi_a=0-360^{\circ}$, at frequencies 10 and 100 kc/s. Note that the component, T_{ee} , is symmetrical about the eastward, $\phi_a=90^{\circ}$, and the westward, $\phi_a=270^{\circ}$, propagation. Note also that the direction of maximum intensity, $\phi_a=90^{\circ}$ (eastward propagation) is considerably greater than the corresponding reverse direction, $\phi_a=270^{\circ}$ (westward propagation).

Propagation via the ionosphere at the magnetic equator, I=0, tables ³ 1, 5, 9, 13, 17, exhibit small

 $^{^3}$ The integer to the right of each table entry, if present, indicates the power of the factor ten (10) by which the entry is to be multiplied. Thus, 6.4307-1=0.64307.

FIGURE 4. Model ionosphere reflection coefficients, amplitude, |T|, and phase, arg T, illustrating a dependence of the reflected field upon the direction of propagation relative to the direction of the earth's magnetic field vector.

N=1.2 (10³), $\nu=10^6$, $\phi_j=80.397^\circ$, $H_m=0.5$, $I=45^\circ$, f=10 kc/s.

FIGURE 5. Model ionosphere reflection coefficients, amplitude, |T|, and phase, arg T, illustrating a dependence of the reflected field upon the direction of propagation relative to the direction of the earth's magnetic field vector.

N=1.2 (10³), $\nu=10^6$, $\phi_i=80.397^\circ$, $H_m=0.5$, $I=45^\circ$, f=100 kc/s.

and substantially constant abnormal components $(|T_{em}| \text{ and } |T_{me}| \text{ are between 0.01 and 0.04})$ in all directions, ϕ_a , for a large limiting value of the angle of incidence, $\phi_i = 82^\circ$, and a large collision frequency, $\nu = 2 \ (10^7)$. It is interesting to note that the components differ in phase by π radians; i.e., arg T_{em} —arg $T_{me} = \pm \pi p$, where p is an odd integer, p=1, 3, 5 . . . The abnormal components, T_{em} and T_{me} , appear to interchange values abruptly at $\phi_a = 90^\circ$ and $\phi_a = 270^\circ$ at the magnetic equator. The abruptness of this interchange of values decreases as the magnetic inclination, I, increases. It is of interest to note, tables 9, 13, for example, that north-south propagation, $\phi_a = 180^\circ$, and south-north propagation $\phi_a = 0$, do not exhibit a precise reciprocity at the magnetic equator, I=0. Note (tables 9, 13):

Thus, at the "magnetic equator", I=0, the only nonreciprocity in the propagation along the magnetic meridian is as might be expected, a phase shift of π in the abnormal components as each abnormal component vanishes at precisely eastward or westward propagation.

Propagation from the model ionosphere at the magnetic north pole, $I=90^{\circ}$, tables 4, 8, 12, 16, as might be expected, is independent of the magnetic azimuth, ϕ_a . A value, $\phi_a=0$, was computed at all frequencies, f=10-22 kc/s and a value, $\phi_a=240^{\circ}$ at f=10 kc/s served as a check on the computation. The behavior of the propagation in the vicinity of the magnetic north pole, $I=84.270^{\circ}$ is illustrated, tables 3, 7, 11, 15.

Propagation from the model ionosphere in "temperate" magnetic latitudes, $I=45^{\circ}$, tables 2, 6, 10, 14, figures 4, 5, exhibit abnormal components, T_{em} , T_{me} , which in general differ not only along the magnetic meridian, but also at the various values of magnetic azimuth, ϕ_a (0 to 360°). Although the normal components, T_{ee} , T_{mm} , in the north-south, $\phi_a=180^{\circ}$, and the south-north, $\phi_a=0$, direction (i.e., along a magnetic meridian) are identical, the propagation does not exhibit a precise reciprocity since the abnormal components, T_{em} , T_{me} , are not identical in these directions. However, reciprocity for propagation along a magnetic meridian can be considered to be an approximately valid concept if the collision frequency, ν , and angle of incidence, ϕ_i , are sufficiently great such that the abnormal components, T_{em} , T_{me} , become quite small. Indeed, the large values of the angle of incidence, $\phi_i=82^\circ$, employed in the calculations for the tables tended, in conjunction with the high collision frequency, $\nu=2$ (10⁷), to reduce greatly the abnormal components.

The intensity of the abnormal component propagated from the ionosphere excited by a vertically polarized transmitter, $|T_{em}|$, has special interest at LF, f=100 kc/s, figure 5. The eastward propagation, $\phi_a \sim 90^{\circ}$, from a vertically polarized transmitter provides a dominant vertically polarized field, $|T_{ee}|$, at the receiver; whereas, westward propagation, $\phi_a \sim 270^{\circ}$, from a vertically polarized transmitter can under certain conditions (see fig. 5 specifications) provide a dominant horizontally polarized field, $|T_{em}|$ (abnormal component) at the receiver. In practice, it is necessary to consider the influence of the displacement and conduction currents in the ground which can indeed discriminate between horizontal and vertical polarization in such a manner as to obscure the ionosphere phenomena described.

4. Conclusions

The propagation of low- and very-low-radio-

frequency waves reflected by the ionosphere is indeed dependent upon the "Lorentz force" on the electron, and hence is dependent upon the direction of propagation relative to the direction of the earth's magnetic field vector in the region of the ionosphere in which the reflection occurs. The intensity of the abnormal components is dependent upon the values of the various parameters (such as $N, \nu, H_m, \phi_a, I, \phi_i$) and in particular, the collision frequency, ν , and the angle of incidence (distance) ϕ_i are especially important in the determination of the precise value of the abnormal components. Precise reciprocity in the LF and VLF propagation (interchange of transmitter and receiver) can occur only at the magnetic north or south pole, $I = \pm 90^{\circ}$. Otherwise, the propagation is dependent upon the direction, ϕ_a , and in general the intensities become greatest in an eastward direction, $\phi_a \sim 90^\circ$. Furthermore, it is conceivable at low frequencies, if the influence on the ground can be neglected or separated from this consideration, that the horizontally polarized component excited by a vertically polarized transmitter can approach in magnitude and even exceed the vertically polarized component in the case of westward propagation, whereas it would appear that the corresponding eastward propagation would exhibit a dominant vertical polarization.

$N = 10^3$ $v = 2(10^7)$	$\phi_i = 82^{\circ}$	$H_{m} = 0.5$	I = 0
--------------------------	-----------------------	---------------	-------

Table 1.

f, k	c φ _a , degree	s T _{ee}		arg T _{ee}	ϕ_a , degre	es T _{em}	1	arg T _{em}	d	∮ _a , degree	s T _{er}	n	arg T _{em}	
10	0, 180	6.4307	- 1	3.3383	0	2.9182	- 2	7.8223	- 1	180	2.9182	- 2	3.9238	
12		6.5235	- 1	3.2969		3.1976	- 2	7.5758	- 1		3,1976	- 2	3.8992	
14		6.5863	- 1	3.2632		3.4477	- 2	7.3621	- 1		3.4477	- 2	3.8778	
16		6.6287	- 1	3.2346		3.6746	- 2	7.1727	- 1		3.6746	- 2	3.8589	
18		6.6568	- 1	3.2098		3.8826	- 2	7.0021	- 1		3.8826	- 2	3.8418	
20		6.6745	- 1	3.1879		4.0750	- 2	6.8464	- 1		4.0750	- 2	3.8262	
22		6.6843	- 1	3.1682		4.2540	- 2	6.7028	- 1		4.2540	- 2	3.8119	
10	60 120	7.1140	- 1	3,3275	60	1.5209	- 2	7.7040	- 1	2.10	1 2072	- 2	3,9089	
12	00, 120	7.2128	- 1	3.2863	00	1.6655	- 2	7.5346	- 1	240	1.5171	- 2	3.8837	
14		7.2785	- î	3.2526		1.7945	- 2	7.3100	- 1		1.6328	- 2	3.8619	
16		7.3217	- 1	3.2240		1.9111	- 2	7.1121	- 1		1.7374	- 2	3.8427	
18		7.3492	- 1	3.1991		2.0176	- 2	6.9350	- 1		1.8329	- 2	3.8255	
20		7.3653	- 1	3.1770		2.1159	- 2	6.7743	- 1		1.9210	- 2	3.8099	
22		7.3729	- 1	3.1572		2.2072	- 2	6.6272	- 1		2.0029	- 2	3.7955	
10	240, 300	5.7167	- 1	3.3304	120	1 5 2 2 2	2	2 0 2 1 1		300	1 0070	2	7 6730	- 1
12	240, 500	5.7951	- 1	3.2965	120	1.5209	- 2	3.9211		500	1.3872	- 2	7.4211	- 1
14		5.8472	- 1	3.2616		1.7045	- 2	2 0726			1.6328	- 2	7.2033	- 1
16		5.8816	- 1	3.2321		1,9111	- 2	3.8528			1.7374	- 2	7.0112	- 1
18		5.9034	- 1	3.2066		2.0176	- 2	3.8351			1.8329	- 2	6.8391	- 1
20		5.9161	- 1	3.1840		2.1159	- 2	3.8190			1.9210	- 2	6.6828	- 1
22		5.9220	- 1	3.1638		2.2072	- 2	3.8043			2.0029	- 2	6.5396	- 1

Table 2. N = 10^3 ν = 2(10^7) $\phi_i = 82^\circ$ $H_m = 0.5$ I = 45°

f, ka	c φ _a , degrees	, T _{ee}		$\operatorname{arg} \operatorname{T}_{\operatorname{ee}} \phi$	a' degree	s T _{em}		arg T _{em}	ϕ_a , degrees	T _{em}		arg T em
10 12 14 16 18 20 22	0, 180	6.4706 6.5630 6.6256 6.6679 6.6959 6.7136 6.7234	$ \begin{array}{cccc} - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ \end{array} $	3.3361 3.2953 3.2620 3.2339 3.2095 3.1879 3.1685	0	2 • 2933 2 • 2771 2 • 2720 2 • 2764 2 • 2888 2 • 3079 2 • 3324	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	2.4742 2.3673 2.2697 2.1802 2.0977 2.0216 1.9511	180	4.9217 5.1006 5.2563 5.3945 5.5189 5.6322 5.7363	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.4406 3.4343 3.4285 3.4232 3.4181 3.4132 3.4085
10 12 14 16 18 20 22	60,120	6.9474 7.0449 7.1102 7.1538 7.1821 7.1993 7.2082	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3.3295 3.2890 3.2558 3.2277 3.2033 3.1816 3.1622	60	2.4697 2.4266 2.3900 2.3597 2.3352 2.3161 2.3017	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	2.6841 2.6032 2.5284 2.4584 2.3925 2.3300 2.2705	240	4.3756 4.5073 4.6210 4.7212 4.8108 4.8919 4.9659	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.3903 3.3830 3.3765 3.3705 3.3648 3.3594 3.3594 3.3542
10 12 14 16 18 20 22	240,300	5.9784 6.0618 6.1178 6.1552 6.1796 6.1944 6.2021	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3.3379 3.2962 3.2623 3.2337 3.2088 3.1869 3.1672	120	3.7306 3.7759 3.8104 3.8375 3.8590 3.8762 3.8900	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.2457 3.2299 3.2163 3.2042 3.1933 3.1832 3.1739	300	2.8422 2.8186 2.7927 2.7661 2.7394 2.7130 2.6870	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.0368 3.0038 2.9744 2.9478 2.9231 2.9001 2.8783

					$N = 10^{3}$	v = 2(10)	7) φ _i	= 82° H _m	= 0.5 I = 84.	. 27 ⁰		
f, 1	$c \phi_a$, degrees	a T _{ee}		arg T _{ee}	¢ _a , degree	es T _{em}	I	arg T _{em}	ϕ_a , degrees	T _{em}	1	arg T _{em}
10	0,180	6.5072	- 1	3.3342	0	4.2815	- 2	3.0972	180	4.6885	- 2	3.1864
12		6.5995	- 1	3.2940		4.2670	- 2	3.0695		4.7133	- 2	3.1669
14		6.6619	- 1	3.2611		4.2459	- 2	3.0451		4.7274	- 2	3.1501
16		6.7041	- 1	3.2334		4.2210	- 2	3.0232		4.7345	- 2	3.1353
18		6.7321	- 1	3.2093		4.1940	- 2	3.0033		4.7368	- 2	3.1219
20		6.7497	- 1	3.1880		4.1657	- 2	2.9848		4.7355	- 2	3.1097
22		6.7596	- 1	3.1689		4.1368	- 2	2.9676		4.7317	- 2	3.0984
10	60 120	6.5743	- 1	3.3336	60	4.3267	- 2	3.1040	240	4.6400	- 2	3.1808
12	00,120	6.6674	~ î	3.2934		4.3149	- 2	3.0768		4.6617	- 2	3.1610
14		6.7304	- 1	3.2606		4.2961	- 2	3.0529		4.6732	- 2	3.1440
16		6.7730	- 1	3.2329		4.2731	- 2	3.0314		4.6780	- 2	3.1289
18		6.8013	- 1	3.2088		4.2478	- 2	3.0119		4.6782	- 2	3.1153
20		6.8190	- 1	3.1876		4.2209	- 2	2.9938		4.6752	- 2	3.1028
22		6.8289	- 1	3.1685		4.1933	- 2	2.9770		4.6698	- 2	3.0913
10	240 300	6.4399	- 1	3-3347	120	4.5278	- 2	3.1501	300	4.4339	- 2	3.1378
12	240, 500	6.5311	- 1	3.2944	120	4.5351	- 2	3.1273		4.4354	- 2	3.1142
14		6.5929	- 1	3.2615		4.5334	- 2	3.1074		4.4287	- 2	3.0936
16		6.6346	- 1	3.2337		4.5259	- 2	3.0898		4.4170	- 2	3.0753
18		6.6623	- 1	3.2097		4.5146	- 2	3.0738		4.4019	- 2	3.0587
20		6.6798	- 1	3.1884		4.5008	- 2	3.0592		4.3848	- 2	3.0435
22		6.6895	- 1	3.1692		4.4851	- 2	3.0456		4.3663	- 2	3.0294

Table 3.

				Table 4.			
	N	$v = 10^3 v =$	2(10 ⁷)	$\phi_i = 82^{\circ}$	$H_{m} = 0.5$ I =	90 [°]	
f, kc	ϕ_{a}	T _{ee}		arg T _{ee}	T _{em}	1	arg T _{em}
10 12 14 16 18	All Values	6.5080 6.6002 6.6626 6.7048 6.7328	- 1 - 1 - 1 - 1 - 1	3.3342 3.2939 3.2611 3.2334 3.2093	4.5011 4.5054 4.5011 4.4913 4.4780	- 2 - 2 - 2 - 2 - 2 - 2	3.1438 3.1206 3.1004 3.0824 3.0661
20		6.7504 6.7603	- 1 - 1	3.1880 3.1689	4•4623 4•4450	- 2	3.0512 3.0373

Table 5. N = 10^3 v = $2(10^7)$ $\phi_i = 82^\circ$ $H_m = 0.5$ I = 0

f,kc	φ, degree	s T _m		arg T _{mm}	φ _a , deg	rees T _m	e	arg T me	ϕ_a , degrees	T _{me}		arg T _m	ne
10 12 14 16 18 20 22	0, 180	8 • 8429 8 • 7395 8 • 6452 8 • 5579 8 • 4764 8 • 3997 8 • 3271	-1 -1 -1 -1 -1 -1 -1 -1	3.0158 3.0034 2.9919 2.9812 2.9711 2.9616 2.9525	0	2.9182 3.1976 3.4477 3.6746 3.8826 4.0750 4.2540	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.9238 3.8992 3.8778 3.8589 3.8418 3.8262 3.8119	180	2.9182 3.1976 3.4477 3.6746 3.8826 4.0750 4.2540	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7.8223 7.5758 7.3621 7.1727 7.0021 6.8464 6.7028	- 1 - 1 - 1 - 1 - 1 - 1 - 1
10 12 14 16 18 20 22	60, 120	8 • 8384 8 • 7348 8 • 6405 8 • 5536 8 • 4727 8 • 3969 8 • 3252	- 1 - 1 - 1 - 1 - 1 - 1 - 1	3.0174 3.0054 2.9944 2.9841 2.9745 2.9653 2.9566	60	1.5209 1.6655 1.7945 1.9111 2.0176 2.1159 2.2072	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.9211 3.8950 3.8726 3.8528 3.8351 3.8190 3.8043	240	1.3872 1.5171 1.6328 1.7374 1.8329 1.9210 2.0029	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7.6731 7.4211 7.2033 7.0112 6.8391 6.6829 6.5395	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
10 12 14 16 18 20 22	240, 300	8 • 8384 8 • 7349 8 • 6406 8 • 5537 8 • 4728 8 • 3970 8 • 3254	-1 -1 -1 -1 -1 -1 -1	3.0174 3.0054 2.9944 2.9841 2.9745 2.9654 2.9567	120	1.5209 1.6656 1.7945 1.9111 2.0176 2.1159 2.2072	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7.7949 7.5346 7.3100 7.1121 6.9350 6.7743 6.6272	- 1 300 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 • 3872 1 • 5171 1 • 6328 1 • 7374 1 • 8329 1 • 9210 2 • 0029	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.9089 3.8837 3.8619 3.8427 3.8255 3.8099 3.7956	

Table 6.

N = 10^3 v = $2(10^7)$ $\phi_i = 82^\circ$ H_m = 0.5 I = 45°

f, ke	$c \phi_a, degree$	s T _{mr}		arg T _{mm}	ϕ_a , de	grees T _n	nel	arg T _{me}	ϕ_{a} , degrees	T _{me}		arg T _{me}
10	0 180	8.8103	- 1	3.0119	0	4.9217	- 2	3.4406	180	2.2933	- 2	2.4742
12	0, 100	8.7037	- ī	2.9992	0	5.1006	- 2	3.4343		2.2771	- 2	2.3673
14		8.6064	- 1	2.9874		5.2563	- 2	3.4285		2.2720	- 2	2.2697
16		8.5165	- 1	2.9764		5.3945	- 2	3.4232		2.2764	- 2	2.1802
18		8.4325	- 1	2.9661		5.5189	- 2	3.4181		2.2888	- 2	2.0977
20		8.3534	- 1	2.9563		5.6322	- 2	3.4132		2.3079	- 2	2.0216
22		8.2786	- 1	2.9470		5.7363	- 2	3.4085		2.3324	- 2	1.9511
					()		2	2 2/57	240	2.8422	- 2	3.0368
10	60, 120	8.8089	- 1	3.0131	60	3 • 7 3 0 5	- 2	3 2200	210	2.8186	- 2	3.0038
12		8.7028	- 1	3.0006		3.1159	- 2	2 2162		2.7927	- 2	2.9744
14		8.6061	- 1	2.9891		3.8104	- 2	3 2042		2.7661	- 2	2.9478
16		8.5169	- 1	2.9784		3.8510	- 2	3 1033		2.7394	- 2	2.9231
18		8.4338	- 1	2.9683		3.0390	- 2	3.1932		2.7130	- 2	2.9001
20		8.3557	- 1	2.9496		3.8900	- 2	3.1739		2.6870	- 2	2.8783
22		0.2017	1	2.0470		5.0700	2					
10	240 300	8.8071	- 1	3.0123	120	2.4697	- 2	2.6841	300	4.3756	- 2	3.3903
12	240, 500	8.6998	- Î	2.9997		2.4267	- 2	2.6032		4.5073	- 2	3.3830
14		8.6019	- 1	2.9882		2.3900	- 2	2.5284		4.6210	- 2	3.3765
16		8.5115	- 1	2.9774		2.3597	- 2	2.4584		4.7212	- 2	3.3705
18		8.4272	- 1	2.9672		2.3352	- 2	2.3925		4.8108	- 2	3.3648
20		8.3480	- 1	2.9577		2.3161	- 2	2.3300		4.8919	- 2	3.3594
22		8.2732	- 1	2.9486		2.3017	- 2	2.2705		4.9659	- 2	3.3542

				N = 10	יע	= 2(10')	$\phi_i = 82^{\circ}$	$H_{m} = 0.5$	$I = 84.27^{\circ}$			
f, kc	ϕ_{a} , degree	s T _{mr}	m	arg T _{mm}	ϕ_a , de	grees T _r	me	arg T _{me}	ϕ_{a} , degrees	T _{me}		arg T _{me}
10	0, 180	8.7806	- 1	3.0082	0	4.6885	- 2	3.1864	180	4.2815	- 2	3.0972
12		8.6710	- 1	2.9952		4.7133	- 2	3.1669		4.2670	- 2	3.0695
14		8.5711	- 1	2.9831		4.7274	- 2	3.1501		4.2459	- 2	3.0451
16		8.4786	- 1	2.9718		4.7345	- 2	3.1353		4.2210	- 2	3.0232
18		8.3923	- 1	2.9612		4.7368	- 2	3.1219		4.1940	- 2	3.0033
20		8.3110	- 1	2.9512		4.7355	- 2	3.1097		4.1657	- 2	2.9848
22		8.2342	- 1	2.9417		4.7317	- 2	3.0984		4.1368	- 2	2.9676
10	60 120	8.7808	- 1	3.0084	60	4.5278	- 2	3.1501	240	4.4339	- 2	3.1378
12	00, 120	8.6714	- î	2.9953	00	4.5351	- 2	3.1273		4.4354	- 2	3.1142
14		8.5716	- 1	2.9833		4.5334	- 2	3.1074		4.4287	- 2	3.0936
16		8.4793	- 1	2.9720		4.5259	- 2	3.0898		4.4169	- 2	3.0753
18		8.3931	- 1	2.9614		4.5146	- 2	3.0738		4.4019	- 2	3.0587
20		8.3120	- 1	2.9514		4.5008	- 2	3.0592		4.3848	- 2	3.0435
22		8.2353	- 1	2.9419		4.4851	- 2	3.0456		4.3663	- 2	3.0294
10	240. 300	8.7803	- 1	3.0081	120	4.3267	- 2	3.1040	300	4.6400	- 2	3.1808
12	,	8.6706	- 1	2.9951	1-0	4.3149	- 2	3.0768		4.6617	- 2	3.1610
14		8.5705	- 1	2.9830		4.2961	- 2	3.0529		4.6732	- 2	3.1440
16		8.4778	- 1	2.9717		4.2731	- 2	3.0314		4.6780	- 2	3.1289
18		8.3913	- 1	2.9611		4.2478	- 2	3.0119		4.6782	- 2	3.1153
20		8.3100	- 1	2.9511		4.2209	- 2	2.9938		4.6752	- 2	3.1028
22		8.2330	- 1	2.9416		4.1933	- 2	2.9770		4.6698	- 2	3.0913

Table 7.

Table	8.	
-------	----	--

60

N = 10^3 v = $2(10^7)$ $\phi_i = 82^\circ$ H_m = 0.5 I = 90°

f, kc	φ_	T		arg T	T		arg T _m
	d	11	1111 .	111111	111	.e	
10	A11	8.7800	- 1	3.0082	4.5011	- 2	3.1438
12	Values	8.6704	- 1	2.9951	4.5054	- 2	3.1206
14		8.5704	- 1	2.9830	4.5011	- 2	3.1004
16		8.4779	- 1	2.9717	4.4913	- 2	3.0824
18		8.3915	~ 1	2.9611	4.4779	- 2	3.0661
20		8.3102	- 1	2.9511	4.4623	- 2	3.0512
22		8.2333	- 1	2.9416	4.4450	- 2	3.0373

	r	able 9.		
$N = 3(10^3)$	$v = 2(10^7)$	$\phi_i = 82^{\circ}$	$H_{m} = 0.5$	I = 0

							1	m						
f, k	α φ _a , degre	es T _{ee}		arg T _{ee}	¢ _a , deg	rees T _{el}		$arg T_{em}$	¢ _a ,	degrees	T _{em}		arg T _{em}	
10		5.5106	- 1	3.6472	0	1.5969	- 2	9.2038	- 1	180	1.5969	- 2	4.0620	
10	0,180	5.6006	- 1	3.5862	0	1.7759	- 2	8.9780	- 1	1.00	1.7759	- 2	4.0394	
12		5 05 00	1	3 5394		1.0301	- 2	8.7854	- 1		1.9391	- 2	4.0201	
14		2.8209	- 1	2 4004		2.0897	- 2	8.6170	- î		2.0897	- 2	4.0033	
16		5.9744	- 1	2 4667		2.2298	- 2	8.4669	- 1		2.2298	- 2	3.9883	
18		6.0769	- 1	2 4204		2.3610	- 2	8.3312	- 1		2.3610	- 2	3.9747	
20		6.1629	- 1	2 4 2 6 6		2.5010	2	8.2070	- 1		2.4847	- 2	3.9623	
22		6.2360	- 1	3.4140		2 • 484 /	- 2	0.2070	- 1					
10	(0.120	6.0983	- 1	3.6292	60	8.3103	- 3	9.2518	- 1	240	7.6588	- 3	4.0495	
12	60,120	6.3099	- î	3.5702	00	9.2483	- 3	9.0152	- 1		8.5058	- 3	4.0267	
14		6.4783	- 1	3.5238		1.0103	- 2	8.8127	- 1		9.2769	- 3	4.0072	
16		6.6151	- 1	3.4857		1.0891	- 2	8.6353	- 1		9.9870	- 3	3.9902	
18		6.7280	- 1	3.4536		1.1624	- 2	8.4767	- 1		1.0647	- 2	3.9749	
20		6.8225	- î	3.4260		1.2310	- 2	8.3332	- 1		1.1264	- 2	3.9611	
22		6.9024	- 1	3.4019		1.2955	- 2	8.2017	- 1		1.1844	- 2	3.9485	
					120	0 0 1 0 0	2	4 0669		300	7.6589	- 3	9.0791	
10	240,300	4.9235	- 1	3.6629	120	8.3103	- 3	4.0000		300	8.5058	- 3	8.8513	-
12		5.0865	- 1	3.5988		9.2483	- 3	4.0220			9.2769	- 3	8.6566	-
14		5.2173	- 1	3.5486		1.0103	- 2	4.0229			9.9870	- 3	8.4860	- 1
16		5.3243	- 1	3.5077		1.0891	- 2	4.0051			1.0647	- 2	8.3335	-
18		5.4129	- 1	3.4735		1.1624	- 2	- 9893			1.1264	- 2	8.1954	-
20		5.4873	- 1	3.4442		1.2310	- 2	3.9749			1.1844	- 2	8.0689	-
22		5.5503	- 1	3.4187		1.2955	- 2	3.9618			1.1044	2	0.0007	

Table 10. N = 3(10³) ν = 2(10⁷) $\phi_i = 82^\circ$ $H_m = 0.5$ I = 45°

f, ko	ϕ_a , degree	es T _{ee}		arg T _{ee}	ϕ_a , degr	ees T _{en}		arg T _{em}	ϕ_a , degrees	T _{em}		arg T _{em}
10	0. 180	5.5512	- 1	3.6405	0	2.4175	- 2	2.9446	180	3.9510	- 2	3.4778
12	•, 1-•	5.7404	- 1	3.5804		2.4077	- 2	2.8824		4.1017	- 2	3.4702
14		5.8917	- 1	3.5333		2.3944	- 2	2.8254		4.2318	- 2	3.4641
16		6.0151	- 1	3.4948		2.3799	- 2	2.7725		4.3467	- 2	3.4590
18		6.1174	- 1	3.4626		2.3653	- 2	2.7227		4.4500	- 2	3.4547
20		6.2033	- 1	3.4349		2.3515	- 2	2.6756		4.5441	- 2	3.4508
22		6.2761	- 1	3.4107		2.3387	- 2	2.6306		4.6306	- 2	3.4474
1.0	(0.120	5,9594	- 1	3-6285	60	2.6130	- 2	3.0448	240	3.6347	- 2	3.4348
12	60, 120	6.1643	- 1	3.5699	00	2.6096	- 2	2.9953	210	3.7537	- 2	3.4256
14		6.3277	- 1	3.5237		2.5998	- 2	2.9506		3.8552	- 2	3.4183
16		6.4605	- î	3.4860		2.5864	- 2	2.9096		3.9439	- 2	3.4122
18		6.5704	- 1	3.4543		2.5709	- 2	2.8713		4.0230	- 2	3.4070
20		6.6624	- 1	3.4269		2.5545	- 2	2.8352		4.0945	- 2	3.4024
22		6.7403	- 1	3.4030		2.5377	- 2	2.8011		4.1599	- 2	3.3983
	240 200						2	2 2/2/	200			
10	240, 300	5.1430	- 1	3.6513	120	3.3619	- 2	3.3404	300	2.8191	- 2	3.2099
12		5.3147	- 1	3.5892		3 • 4 3 4 7	- 2	2.3234		2.8434	- 2	3.1823
14		5 4523	- 1	3.5406		3 . 4 9 2 6	- 2	2 2071		2.0519	- 2	3.1285
16		5.5647	- 1	5.5010		3 5 7 0 0	- 2	3 29/1		2.0059	- 2	2 1102
18		5.6578	- 1	3.4678		3.5799	- 2	2 2770		2.0095	- 2	2 1010
20		5.1360	- 1	3.4394		3.0138	- 2	2.2(10		2.8700	- 2	3.1010
22		5.8023	- 1	3.4146		3.6433	2	202020		2.8681	- 2	3.0849

				$N = 3(10^3)$	ν	$= 2(10^7)$	$\phi_i = 82^{\circ}$	$H_{m} = 0.5$	$I = 84.27^{\circ}$			
f, k	$c \phi_a$, degre	es T _{ee}		arg T ee o	, degi	rees T _{er}		arg T _{em}	ϕ_a , degrees	T _{em}	I	arg T _{err}
10	0, 180	5.5886	- 1	3.6345	0	4.1384	- 2	3.2478	180	4.3604	- 2	3.2998
12		5.7779	- 1	3.5752		4.1891	- 2	3.2233	• • •	4.4359	- 2	3.2802
14		5.9292	- 1	3.5287		4.2240	- 2	3.2022		4.4934	- 2	3.2636
16		6.0525	- 1	3.4908		4.2482	- 2	3.1837		4.5386	- 2	3.2493
18		6.1546	- 1	3.4589		4.2648	- 2	3.1671		4.5747	- 2	3.2367
20		6.2404	- 1	3.4316		4.2759	- 2	3.1520		4.6041	- 2	3.2253
22		6.3131	- 1	3.4077		4.2829	- 2	3.1382		4.6283	- 2	3.2150
10	60. 120	5.6453	- 1	3.6329	60	4.1690	- 2	3,2522	240	4.3284	- 2	3.2958
12		5.8369	- 1	3.5739		4.2218	- 2	3.2280	240	4.4015	- 2	3.2759
14		5.9899	- 1	3.5275		4.2586	- 2	3.2072		4.4569	- 2	3.2592
16		6.1146	- 1	3.4897		4.2845	- 2	3.1890		4.5002	- 2	3.2447
18		6.2179	- 1	3.4580		4.3027	- 2	3.1726		4.5346	- 2	3.2318
20		6.3045	- 1	3.4307		4.3152	- 2	3.1578		4.5624	- 2	3.2203
22		6.3781	- 1	3.4069		4.3234	- 2	3.1442		4.5851	- 2	3.2098
10	240. 300	5.5319	- 1	3.6360	120	4.2793	- 2	3.2787	3.0.6	4.2168	- 2	3.2703
12		5.7189	- 1	3.5765	120	4.3444	- 2	3.2570	300	4.2773	- 2	3.2481
14		5.8684	- 1	3.5298		4.3924	- 2	3.2386		4.3212	- 2	3.2292
16		5.9903	- 1	3.4918		4.4286	- 2	3.2226		4.3538	- 2	3.2127
18		6.0913	- 1	3.4598		4.4563	- 2	3.2083		4.3783	- 2	3.1980
20		6.1761	- 1	3.4324		4.4778	- 2	3.1954		4.3967	- 2	3.1847
22		6.2480	- 1	3.4085		4.4944	- 2	3.1837		4.4106	- 2	3.1726

Table 12.

		N = 3(10)) ³)	$v = 2(10^7)$	$\phi_i = 82^{\circ}$	$H_{m} = 0$.5 I:	= 90 [°]
f, kc	ф _а	T _e e	,	arg T _{ee}		T _e	ml	arg T em)
10	A11	5.5893	- 1	3.6344		4.2676	- 2	3.2745
12	Values	5.7787	- 1	3.5751		4.3307	- 2	3.2525
14		5.9299	- 1	3.5286		4.3768	- 2	3.2338
16		6.0532	- 1	3.4907		4.4113	- 2	3.2175
18		6.1554	-]	3.4589		4.4375	- 2	3.2030
20		6.2411	- 1	3.4315		4.4575	- 2	3.1900
22		6.3138	- 1	3.4076		4.4728	- 2	3.1780

Table 11.

62

Table 13.

 $N = 3(10^3)$ $\nu = 2(10^7)$ $\phi_i = 82^\circ$ $H_m = 0.5$ I = 0

f, kc	ϕ_{a} , degree	s T _{mn}	n	arg T _{mm}	ϕ_a , degi	ees T _{me}		arg T _{me}	ϕ_a , degrees	T _{me}		arg T _r	ne
10	0.180	9.3138	- 1	3.0697	0	1.5969	- 2	4.0620	180	1.5969	- 2	9.2038	- 1
12	, -	9.2513	- 1	3.0627	0	1.7759	- 2	4.0394		1.7759	- 2	8.9780	- 1
14		9,1942	- 1	3.0563		1.9391	- 2	4.0201		1.9391	- 2	8.7854	- 1
16		9.1415	- 1	3.0502		2.0897	- 2	4.0033		2.0897	- 2	8.6170	- 1
18		9.0023	- 1	3.0446		2.2208	- 2	3.9883		2.2298	- 2	8.4669	- 1
20		9-0460	- 1	3.0392		2.3610	- 2	3.9747		2.3610	- 2	8.3312	- 1
22		9.0023	- 1	3.0341		2.4847	- 2	3.9623		2.4847	- 2	8.2070	- 1
	60 120				(-				240	7 (500		0 0701	
10	00, 120	9.3121	- 1	3.0700	60	8.3103	- 3	4.0668		/ • 6 5 8 8	- 3	9.0791	- 1
12		9.2493	- 1	3.0631		9.2482	- 3	4.0431		8.5058	- 3	8.8513	- 1
14		9.1919	- 1	3.0568		1.0103	- 2	4.0229		9.2769	- 3	8.6566	- 1
16		9.1388	- 1	3.0509		1.0891	- 2	4.0051		9.9870	- 3	8.4859	- 1
18		9.0892	- 1	3.0453		1.1624	- 2	3.9893		1.0647	- 2	8.3334	- 1
20		9.0427	- 1	3.0401		1.2310	- 2	3.9749		1.1264	- 2	8.1953	- 1
22		8.9986	- 1	3.0351		1.2955	- 2	3.9618		1•1844	- 2	8.0689	- 1
1.0	240, 300	0 2121	- 1	3 0700		8.3103	- 3	0.2519	_ 1 300	7.6589	- 3	4.0495	
10		9.5121	- 1	3 0 6 3 1	120	0 2492	- 3	9 0151	- 1	8.5058	- 3	4.0267	
12		9.2493	- 1	2 0569		9.2405	- 3	9 9127	- 1	9.2769	- 3	4.0073	
14		7 1 7 1 8	- 1	3 0500		1.0891	- 2	8.6352	- 1	9.9870	- 3	3.9902	
16		9.1388	- 1	3.0509		1.1626	- 2	0.0352	1	1.0647	- 2	3.9749	
18		9.0892	- 1	3.0453		1.1024	- 2	0 4 / 0 /	- 1	1.1264	- 2	3.9611	
20		9.0427	- 1	3.0401		1.2310	- 2	0.0007	- 1	1.1944	- 2	3 04 95	
22		8.9986	- 1	3.0351		1.2955	- 2	8.2017	- 1	1.044	- 2	9.7400	

Table 14.

N = 3(10³) ν = 2(10⁷) ϕ_i = 82^o H_m = 0.5 I = 45^o

f, k	$c \phi_a$, degree	s T _{mn}	_	arg T _{mm}	ϕ_a , degr	ees T _{me}	1	arg T _{me}	ϕ_{a} , degrees	T _{me}		arg T _{me}
10 12 14 16 18 20 22	0, 180	9.2963 9.2318 9.1729 9.1184 9.0676 9.0198 8.9745	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3.0674 3.0602 3.0536 3.0474 3.0415 3.0360 3.0307	0	3.9510 4.1017 4.2318 4.3467 4.4500 4.5441 4.6306	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.4778 3.4702 3.4641 3.4590 3.4547 3.4508 3.4474	180	2.4175 2.4077 2.3944 2.3799 2.3653 2.3515 2.3387	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	2.9446 2.8824 2.8254 2.7725 2.7227 2.6756 2.6306
10 12 14 16 18 20 22	60, 120	9.2952 9.2305 9.1715 9.1169 9.0661 9.0182 8.9730	- 1 - 1 - 1 - 1 - 1 - 1 - 1	3.0677 3.0606 3.0540 3.0479 3.0422 3.0367 3.0315	60	3 • 3619 3 • 4347 3 • 4926 3 • 5401 3 • 5799 3 • 6138 3 • 6433	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.3404 3.3234 3.3092 3.2971 3.2865 3.2770 3.2685	240	2 • 8191 2 • 8434 2 • 8579 2 • 8659 2 • 8695 2 • 8700 2 • 8681	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.2099 3.1823 3.1585 3.1374 3.1183 3.1010 3.0849
10 12 14 16 18 20 22	240, 300	9.2957 9.2309 9.1718 9.1171 9.0660 9.0179 8.9724	-1 -1 -1 -1 -1 -1	3.0674 3.0603 3.0536 3.0475 3.0417 3.0362 3.0309	120	2.6130 2.6096 2.5998 2.5864 2.5709 2.5545 2.5377	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.0448 2.9953 2.9506 2.9096 2.8713 2.8352 2.8011	300	3.6347 3.7537 3.8552 3.9439 4.0230 4.0245 4.1599	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.4348 3.4256 3.4183 3.4122 3.4070 3.4024 3.3983

565004 - 60 - 5

						Т	able 15.					
				N = 3(10)) ³) v	= 2(10 ⁷)	$\phi_i = 82$	$H_m = 0.$	5 I = 84.27 [°]			
f, kc	ϕ_a , degree	s T _{mm}	1	arg T _{mm}	ϕ_a , degr	ees T _{me}	1	arg T _{me}	ϕ_a , degrees	T _{me}		arg T me
10	0.180	9.2802	- 1	3.0653	0	4.3604	- 2	3.2998		4.1384	- 2	3.2478
12		9.2138	- 1	3.0579		4.4359	- 2	3.2802	180	4.1891	- 2	3.2233
14		9.1533	- 1	3.0511		4.4934	- 2	3.2636		4.2240	- 2	3.2022
16		9.0972	- 1	3.0447		4.5386	- 2	3.2493		4.2482	- 2	3.1837
18		9.0449	- 1	3.0387		4.5747	- 2	3.2367		4.2648	- 2	3.1671
20		8.9958	- 1	3.0330		4.6041	- 2	3.2253		4.2759	- 2	3.1520
22		8.9492	- 1	3.0276		4.6282	- 2	3.2150		4.2829	- 2	3.1382
10	60 120	0.2801	- 1	3.0653	60	4.2793	- 2	3-2787		4.2169	- 2	2 2702
12	00, 120	9.2138	~ 1	3.0579	00	4.3444	- 2	3.2570	240	4.2773	- 2	3 2/01
14		9.1532	- 1	3-0511		4.3924	- 2	3.2386	1 10	4.2710	- 2	3,2202
16		9.0972	- 1	3.0447		4.4286	- 2	3.2226		4.3538	- 2	3.2127
18		9.0449	- 1	3.0388		4.4563	- 2	3.2083		4.3783	- 2	3,1980
20		9.0059	- 1	3.0331		4.4779	- 2	3 1054		4.3047	- 2	3 1947
22		8.9493	- 1	3.0277		4.4944	- 2	3.1837		4.4106	- 2	3.1726
	240 200				- 2.0	4 1600	2	3 3533		1.000	2	2 2050
10	240, 300	9.2803	- 1	3.0652	120	4 • 1090	- 2	2.2222	2.00	4.3284	- 2	3.2958
12		9.2139	- 1	3.0578		4.2596	- 2	3 2072	3 0 0	4 • 4015	- 2	3 2502
14		9.1533	- 1	3.0510		4.2845	- 2	3.1890		4.5002	- 2	3 2447
16		9.0972	- 1	3.0446		4 2047	- 2	2 1724		4.5002	- 2	2 2210
18		9.0449	- 1	3.0386		4.5027	- 2	2 15 70		4 . 5 . 3 4 5	- 2	2.2318
2.0		8.9957	- 1	3.0329		4.5152	- 2	3.15/8		4.5624	- 2	5.2203
2.2		0 0/01	1	2 0 2 7 5		11 - 5 / 5 /	- /	1 - 144/		4.5851	- /	4 - 2008

б	
4	

		rable 16.		
$N = 3(10^3)$	$v = 2(10^7)$	$\phi_{i} = 82^{\circ}$	$H_{m} = 0.5$	í = 90 ⁰

f, kc	φ _a	T _{mm}	.1	arg T _{mm}	T _m	-	arg T _{me}
10 A 12 V 14 16 18 20	All Values	9.2799 9.2135 9.1529 9.0968 9.0445 8.9953 8.9687		3.0652 3.0578 3.0570 3.0446 3.0386 3.0329 3.0275	4.2676 4.3307 4.3768 4.4113 4.4375 4.4575 4.4575	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3.2745 3.2525 3.2338 3.2175 3.2030 3.1900 3.1780

Table 17

$$N = 10^3$$
 $\phi_i = 82^\circ$ $H_m = 0.5$ $I = 0$ $\phi_a = 0$

f, kc	ν	Tee	1	arg T _{ee}	Ten	1	$\operatorname{arg} \operatorname{T}_{em}$	
10	0	9.9841	- 1	5.9879	5.6404	- 2	1.4088	
10	106	3.4326	- 1	4.8070	8.0119	- 2	9.3737	- 1
10	4(10 ⁶)	4.7778	- 1	3.8325	5 • 7508	- 2	9.1968	- 1
10	$2(10^{7})$	6.4307	- 1	3.3383	2.9182	- 2	7.8223	- 1
10	108	6.5471	- 1	3.0070	1.2215	- 2	5.5561	- ?
f, kc	ν	T _{mm}	1	arg T _{mm}	T _{me}	1	arg T _{me}	
1.0	0,	9.9841	- 1	3.1129	5.6404	- 2	4.5504	
10	100	9.7612	- 1	3.1006	8.0119	- 2	4.0790	
10	4(10 ⁶)	9.4888	- 1	3.0802	5.7508	- 2	4.0613	
10	2(107)	8.8429	- 1	3.0158	2.9182	- 2	3.9238	
10	108	7 5707		0.044-				

Summary of tables

Table	Polar- ization	N	ν	ϕ_i	H_m	I	ϕ_a	f
$\frac{1}{2}$	е	el/cm^{3} 10 ³	$2(10^{7})$	Degrees 82	Gauss 0.5	Degrees 0 45	Degrees 0-300	kc/s 10–22
$ \begin{array}{c} 3 \\ 4 \\ 5 \end{array} $	m					84.27 90 0	$\binom{(a)}{0-300}$	
6 7 8 9 10	е	$3(10^3)$				$45 \\ 84.27 \\ 90 \\ 0 \\ 45$	(a) 0-300	
$11 \\ 12 \\ 13 \\ 14 \\ 15$	m					$84.27 \\ 90 \\ 0 \\ 45 \\ 84.27$	(a) 0-300	
$\begin{array}{c} 16\\ 17\end{array}$	e,m	10 ³	0-108			90 0	(a) 0	

^a Independent of ϕ_a .

5. References

- J. R. Johler and L. C. Walters, On the theory of reflection of low- and very-low-radiofrequency waves from the ionosphere, J. Research NBS 64D, 269 (May 1960).
 H. A. Lorentz, The theory of electrons (G. E. Stechert and Co., New York, N.Y., 1906).
 J. R. Wait, Terrestrial propagation of very low frequency radio waves, a theoretical investigation, J. Research NBS 64D, 153 (1960); see also J. R. Wait and K. Spies, Influence of earth curvature and the terrestrial magnetic field on VLF propagation, J. Geophys. Research (Aug. 1960).

(Paper 65 D1-103)