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East-West Effect on VLF Mode Transmission

Across the Earth's Magnetic Field'
D. Dobrott and A. Ishimaru *?

(July 5, 1960)

The effect of a constant transverse magnetic field is analyzed for the propagation of VLF
electromagnetic waves about the earth. These waves are considered to be propagating by
modes in a parallel plate waveguide. The lower boundary of the guide is considered to be a
perfect conductor, while the upper boundary is assumed to be a sharply defined, semi-infinite,
homogeneous plasma with a constant magnetic field applied. The source of these waves is
an infinite number of short, horizontal, cophased dipoles, uniformly spaced parallel to the
constant magnetic field vector. Admittance relations are derived for the upper boundary of
the guide by considering the waves to be of grazing incidence. It is found that these admit-
tance parameters depend on the direction of propagation. These admittance parameters are
plotted versus frequency for various heights. Expressions for eigenvalues and the eigen-
functions are found as functions of the admittance. By employing a two dimensional
Green’s function, the amplitudes of the various modes due to the dipole source are evaluated.
It is noted that the propagation constants differ depending on the direction of propagation,
thus offering an explanation of the east-west effect of VLF transmission. A numerical
example is calculated and field strength versus distance values are found to correspond to

some experimental results.

1. Introduction

The mode theory of VLEF radio transmission has
evolved from the study of electromagnetic wave
propagation between the earth and the ionosphere.
Wait [1] ® and others [2, 3] have solved the VLI
electromagnetic problem using mode theory and as-
suming a sharply bounded ionosphere, while neglect-
ing the earth’s magnetic field. Friedman [4, 5] has
made a modal analysis which differ in method from
that of Wait, but arrives at similar conclusions.
Friedman’s analysis utilized an upper boundary of
scalar impedance Z.

All of these solutions have the same propagation
characteristics regardless of the direction of propaga-
tion. However, Crombie [6] has noted evidence that
VLFE propagation differs depending on whether the
propagation is from east to west, or from west to
east. He also indicated that this so-called ‘“‘east-
west effect’” may be partly due to the earth’s mag-
netic field. Recently, Wait [7, 8] and Crombie
[6, 9] have shown analytically that the rate of at-
tenuation for east-west propagation behaves as had
been indicated by the latter author.

This paper attempts to show analytically the east-
west effect on the basis of mode theory and iono-
sphere-freespace boundary admittance. Because of
the presence of the earth’s magnetic field, the admit-
tance of the sharply bounded ionosphere is not a
scalar, but a tensor. KFurther, because of these mag-
netic effects, the tensor depends upon the direction
of propagation.
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The solution of the radiation from a dipole in this
parallel plate waveguide with anisotropic boundary
conditions is, in general, difficult. However, one
may solve an analogous two-dimensional problem.
This simplifies the arithmetic while maintaining the
qualitative structure of the three-dimensional case.

The two-dimensional problem corresponds to the
source of electromagnetic waves being an infinite
number of horizontal, cophased, short dipoles, uni-
formly spaced parallel to the direction to the earth’s
magnetic field. This situation is displayed in figure 1.

In the sections that follow, the radiation from
these sources are examined in detail. A numerical
example i1s shown also.
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Fiaure 1. Cophased sources for TM waves.



2. Dielectric Tensor of Magnetically In-
fluenced Plasma

The permittivity of an ionized gas may be deter-
mined by examining the ion motion under the influ-
ence of electromagnetic waves. Certain restrictions
must be placed on this gas if the evaluation of the
equation of motion is to remain simple.

For the purpose of this analysis, the gas will be
considered to be a homogeneous plasma. That is,
the gas i1s uniform throughout and the number of
positive charges is equal to the number of negative
charges. The plasma exists in a state where colli-
sions are relatively few. Since the positive and neu-
tral particles have more mass than the electrons,
their mobilities are correspondingly smaller and it
shall be considered that their velocity is zero. Fur-
ther, the number of electrons per cubic meter N,
does not vary appreciably with time. Thus the be-
havior of a volume element of gas is the same as that
of an “average’ electron obeying the laws of classical
dynamics. These are the assumptions of the “Mag-
neto-Tonic Theory” [10].

In the special case considered in figure 1, where a
magnetic field is considered perpendicular to the di-
rection of propagation, the ionosphere’s relative di-
electric tensor is given by, [11]
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In expressions 2.2, 2.3 and 2.4 w, is the plasma fre-
quency, »is the collision frequency, w, is the cyclotron
frequency, and o is the frequency of the electro-
magnetic wave propagating in the plasma region.

Using 2.1, one is able to solve for the electromag-
netic fields in the plasma region. The solution of the
fields is required to examine the conditions at the
plasma-freespace interface.

3. Admittance Tensor of Plasma at
Interface

In order to solve for the electromagnetic fields for
the problem described by section 1, one must first
consider the restrictions placed upon the problem
by the particular geometry. Since the sources are
considered to be umfmml\ distributed along the y-
direction axis, there is no y-variation for the fields.
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Further, the nature of these sources produces only
transverse-magnetic waves. Considering these facts
and eq 2.1, Maxwell’s equations in the plasma be-
come,
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Solving eqs 3.1 in terms of the longitudinal electric
field to obtain the following equation

2__ 2
[ ottt | m 0, (3.2)
The solution to this equation is of the form
1B =I5 (383)

where p and v are, in general, complex and the plus
or the minus sign designates a wave traveling in the
negative z-direction or positive z-direction respec-
tively.

Substituting eq 3.3.into 3.2 one obtains the charac-
teristic equation of 3.2

n)

Py 2+L2( t /0. (3.4)

In the free-space region, Maxwell’s equations may
be solved for the transverse-magnetic case in terms
of the longitudinal electric field yielding the following
homogeneous wave equation

[a o+ 2+k2:| E.—0.

The solution for the homogeneous wave equation
depends upon the boundary conditions, and since the
tangential electric field must be zero at a perfect
conductor, the solution is of the form,

(3.5)

+Tz

E.=K, sin qze (3.6)

where ¢ and v are complex.
Equation 3.6 has a corresponding characteristic
equation given by,

— @y k=0 (3.7)



From eqs 3.1 and 3.3 the fields in the plasma region
are related by the following relations
Sor the +z-direction,
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for the — z-direction
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From the two tangential fields £, and ,, an admit-
tance relationship may be dchned as

H,

Y0Y12=_‘E‘ N ¢

(3.9)

From the two expressions of eqs 3.8 and relation 3.9,
one may obtain two expressions for the admittance
of the plasma boundary.
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where Y,_, and Y,_, are the relative admittance

parameters for east-west and west-east propagation,
respectively.

If grazing incidence is considered, upon the plasma-
freespace interface, it is found that y—jk, where the
sign has already been determined by the form of eq
3.6. This corresponds to the far-field situation. If
this condition were not imposed, the admittance
would be a function of the free-space eigenvalue ¢
Thus one obtains the following two expressions f01
the admittance of the plasma boundary,

Jk(&—n"),
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(3.11)

The following restriction must be placed upon p,

Re (p) >0, Im (p) >0. (3.12)

With these restrictions in mind, the final expres-
sions for the admittances in terms of the constituents
of equation 2.1 are
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A numerical solution of these admittance parame-
ters for height versus frequency is shown in figures 2
and 3. The values of collision {frequency and elec-
tron density have been obtained from papers by M.
Nicolet [12] and R. E. Houston [13], respectively.
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Firaure 3.  Imaginary part of admittance (Yy).



4. Figenvalues and Propagation Constant

In order to solve for a general expression for the
eigenvalues in terms of the admittance matrix for all
waves, one must also solve Maxwell’s equations for
the transverse-electric waves. This solution, in terms
of the longitudinal magnetic field , is given as

H,=Y K3¢=7* cos qz. (4.1)
Recalling eq 3.6 and Maxwell’s equations for TM
and TE one can obtain,

1,=—7—°’T!“° Y Ky sin gz (4.2)
and
H,= —J%;q Kye*7? cos qu. (4.3)

Relating these four fields at z=a by the admittance

matrix Y,
H, Y Yo |[E,
:YO .
Hz YZI Y22 Ez

Substituting the solutions 3.6, 4.1, 4.2, and 4.3 into
4.4 and combining terms

<Ym sin qa-—‘% cos qa) (‘Z;—c Y1 sin qa,> K,

(4.4)

(Y 5 sin ga) (cos ga—l—%k sin qa) K;
(4.5)
For 4.5 to be true, the determinant
(Yu sin gla-—]—q]E cos qa) <2§ Y1 sin qa)
=0. (4.6)

(Y3 81n qa) <cos qa—}—%k Yy sin qa)

Evaluating the determinant 4.6, the following general
expression for the eigenvalues is obtained in terms of
admittance parameters,

j Q2Y12+k2Y21

A, tan qa+-cot ga=— o

(4.7)

where Ay: YH Yzz'—' Ylg Ygl.

For the special parallel plate case under considera-
tion, the only admittance parameter needed is Y7,.
Thus eq 4.7 becomes

cot qaz—j%le. (4.8)
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Rewriting relationship 4.8, g=¢,, n=1, 2, 3 .

2
jzq,a=In (1—1 anm)—’rjznw. (4.9)
+T

If the term g,/k Y, is large as is the case for the
“electric’” wall, the following approximation for the
eigenvalue ¢, may be obtained.

e
"a ety (4.10)
For the ‘“zeroth mode” case, that is n=0,
. ]k 1/2
qO—<aY12> 3 (411)

and if n 1s greater than zero, ¢, may be approximated
na in the right-hand side of 4.10 yielding,

_rmy gk
= _l_erl2 el
The propagation constant
Vo= (ga—k*)'"* (4.13)

may be obtained from the results of 4.11 and 4.12.
Restrictions on 4.13 are that

Re ('Yn)>0y Im (’Yn) >0; (414)

when 4.13 is evaluated for n=0, the attenuation
constant, Re(v,)=a, is very small, and for n >2,
the phase constant, Im (y,) =8,, is small represent-
ing evanescent modes.

One can see that if Y;,—>o, as in the case of a
perfect conductor, expression 4.12 reduce to the
familiar result, nr/a. Expressions 4.11 and 4.12
are used, along with the data of Houston and Nicolet,
to plot mode decibel loss versus distance on figure 4

for n=0, 1, 2. The numerical values for the admit-
tance used were
Y z=56.5—41.55. (4.16)

This corresponds to a radian frequency of w=210*
and a height of 90 km.

A synopsis of experimental results by Crombie [6]
indicates that the ratio of electric field strengths

W—E

which is certainly true for the numerical case cal-
culated and graphed on figure 4.



T — S —
W-E 2d MODE
E-W 2d MODE

34
w
o E-W 1st MODE
=
o
w
o
. W-E 1st MODE
Z 24
o
b5
2
-
w
=
< £-W ZERO MODE

14

W-E ZERO MODE
0 T T T T T
0 500 1000 1500 2000 2500 3000
DISTANCE, KILOMETERS
Fraure 4. Attenuation versus distance.

5. Mode Solution—Source Present

With the source of current moment /L eq 3.5
becomes,

2 2
<aﬁ+a%i+k2>Ez:jw#()[L5<w—b)5(2) (5.1)

where 6 (z—b) and 6 (2) are Dirac “‘delta-functions.”
This problem is analogous to the Green’s function
problem if one relates the longitudinal electric field
to the Green’s function as /,=—jwu, /LG, the cor-
responding Green’s function problem may be solved,

(Tt Zoth it G2)

The boundary conditions for the Green’s function
are the same as for the electric field 7,
G’1=0:0

(G’+YG)lz=a:0- (53)

It has been shown in section 4 that the solution
to the homogeneous wave equation for the longi-
tudinal electric field and hence the Green’s function
is of the form

G=>_nd,e "gin ¢,x. (5.4)
0

Thus if 5.2 is true we must be able to expand the
delta-function in terms of eigenvectors, [14, 15]

5(z—b)=3n B, sin gur. (5.5)
0

L)

Multiplying through by sin ¢,z and integrating over
the range of z, an expression for B,

4q, sin ¢,b

B,= (2¢,a—sin 2¢,a)

(5.6)

Making the substitution

4q,
"= 2¢g,a—sin 2¢,a) (87
where 7, i1s often called the normalization factor.
Integrating 5.2 over the source with respect to z
vields
A,—"28I0 ¢:b (5.8)
2Yn

and

S 24
G_;n Yn (2qua'—'SiIl 2gna)

e "lflgin ¢,b sin ¢,2.
(5.9)

Therefore the expression for the electric field is given
by

Y jw#()QIan
Ez*; ¥ (2q,a—sin 2q,a)

e "7l sin ¢,h sin ¢,x.
(5.10)

The other fields may be evaluated for Maxwell’s
equations for the TM case.

The expression for the vertical component of the
electric field with a “normalized” current is given as

sin ¢,b

PO L TR 5
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If the transmitter is in an airplane at a height of
a/4 and the receiver is on the ground, 5.11 becomes,

ORI LY A €Y
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(5.12)

For the first three modes 5.12 is of the form

E,=Ce—v0+4Cre=1124-Che—722 (5.13)
where
sin ¢, 6))

—_——— e Al
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n

The magnitude of the field strength at the receiver
is given by the expression,

|E,|={|Cy|?e==0r+|Cy[*e 2212+ | C,[ e 2222
+2|Cy||Cy]e= @tz cos [(30_61) 2+(O_o—61)]
+2|Cy||Cole= @tz cos [(50_‘62) Z+((jo—52)]

+2|C4||C,|e~ @tz cos [(51—52)5+ (51—(72)] s
(5.15)




where |C,| and C, are the magnitude and argument
of O, respectively.

Equation 5.15 is plotted on figure 5. These
results depend not only on attenuation, but also on
field strength magnitude which in turn depends on
the direction of propagation and the height of the
transmitting antenna. This corresponds qualita-
tively with the far field experimental results men-
tioned by Crombie [6].
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6. Conclusion

The effect on east-west, west-east propagation of
electromagnetic transverse magnetic waves across
the earth’s magnetic field has been analyzed as a
boundary value problem. Certain idealizations were
made to solve this problem. Admittance relation-
ships were derived from field relations existing in a
homogeneous anisotropic plasma, and it was found
that the admittance parameters depended upon the
direction of propagation. These parameters were
plotted versus frequency for various heights. Ex-
pressions for the eigenvalues were derived. The
attenuation over distance was plotted for a special
case. It was found that the ratio of the electric
field for the individual modes of west-east/east-west
propagation was greater than one. This corresponds
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to some experimental data. A two dimensional
Green’s function was derived and a numerical calcu-
lation of the corresponding electric field strength was
plotted versus distance.
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