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An attempt is made in this paper to present a concise derivation of the mode theory

of VLF propagation.

Taking note of the fact that the important modes for long-distance

propagation are near grazing, suitable approximate forms of the wave functions are intro-

duced at the outset, rather than at the end, of the analysis.
for the influence of earth curvature in a relatively concise manner.
Finally, numerical results for the attenuation

earth’s magnetic field is also discussed.

It is thus possible to account
The influence of the

and the phase velocity of the dominant mode are presented.

1. Introduction

Despite the extensive work [1-5]2 on the wave-
guide mode theory of VLF propagation, certain
aspects of the subject are not yet resolved. The
difficulty appears in finding suitable approximations
to the spherical wave functions in the rigorous solu-
tion. It is the purpose of this paper to discuss
this problem in some detail. For a background of
the subject the reader is referred to a recent com-
prehensive paper on the general subject [6]. Here
the solutions will be obtained from a somewhat
different point of view.

2. The Groundwave Field

We will start by assuming that the source is a
vertical electric dipole located on the surface of a
smooth spherical earth of radius a, conductivity o and
dielectric constant e. Spherical coordinates (r,0,4)
are chosen with the dipole located at r=a and 6=0.
For harmonic time dependence the radial electric
field component is written in the form

e—ika(i
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apart from a constant factor.® In the case of an
airless earth, in which the ionosphere is neglected, it
is well known that Vi, may be written in the form
[7,8]
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! Contribution from Central Radio Propagation Laboratory, National Bureau
of Standards, Boulder, Colo.

2 Figures in brackets indicate the literature references on page 46.

3 Equation (1) is normalized such that Vg approaches 2 for ka—>  and A—0.
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The coefficients ¢, are solutions of the equation
wi (1) —qui (1) =0, (3)

where w,(f) is an Airy integral and the prime in-
dicates a derivative with respect to t. In terms of
Hankel functions of order one third,

w, (¢)=exp (—2mi/3) (—t[3)2 HHB[(2/3) (—1)*").
(4)

The above formula for V; is usually called the
residue series representation for the groundwave
field. 1t is often used as the basis for field strength
calculations on a spherical smooth earth on the
assumption that the ionosphere may be neglected
or separately accounted for. It 1s valid when
ka>>1 and r—a<<a. It is also required that the
values of [t for the important modes are not large
compared with unity. Such approximations as these
are certainly valid for VLE waves.

For the purposes of the subsequent analysis Vj is
written as a contour integral in the manner

ir/4 3 e, (t—y) =
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The contour encloses the poles at t=t, in a clockwise
sense. The equivalence of eq (2) and (5) is easily
verified on noting that

wi' (ts) —qwi (ts) = (ts— g wi(ts)
since
wi' () =twn (1),
and
wi(ts) = qui(ts).



3. The Sky Waves

We will now enclose the earth by a concentric
reflecting shell located at r=a-h as indicated in
figure 1. The electrical properties of this layer will
not be specified at the moment, but it is assumed
that an upgoing wave will be converted to a down-
going wave. Thus after one reflection

e~ i.rl,wl (t __y)
is converted to
A(t) e "y (t—y),

where
wy(t) =exp(2wi/3) (—xt/3) 2 H{}[(2/3) (—1)*], (6)

and A(¢) is unknown function of #. The boundary
condition at 7=a-h is written in the form

dw(t—y) -
WD quit—y) |, = @
where
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and wi=<?> A;. The quantity A, involves the

properties of the layer beyond r=a-h; for the
moment it is not given explicitly. Formally A;=Z/n,
where Z is the radial surface impedance at r=a-h.
Most generally A; (or Z) is a function of ¢ but usually
it may be taken as a constant [6]. On identifying
w(t—y) with w,(t—y)+ A@)w,(t—y), it readily fol-
lows from eq (7) that

w1 (t—yo) + quwi (t—10)7]. ()

At)=— wh(t—1y0) + qus(E—1y0)

The downcoming wave characterized by the
function w,(t—y) is now reflected at the ground and
thus it generates a new upgoing wave of the form

A B)w (t—y)e

The boundary condition at 7=a may be written

[224 04 qui—) | _~o. ©)

Then on identifying w(f—y) with the sum of the
downcoming and the upgoing wave it follows that

2 () — qun ()
Bo=-[BO=mOT g
® wi(t) — qwy (1) (10)
The process may be repeated any number of times.
The resultant field can thus be written as a sum
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Ficure 1. A sketch of the model emploved in this paper.

The surface of the ground and the lower edge of the reflecting layer are con-
centric spherical surfaces.
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where

V=3V, (12)
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and
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for 7 even, while
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for j odd. Formally these are geometrical progres-
sions so they can be summed. On interchanging the
order of integration and summation, this leads to the
integral representation

___pim/4 e _”t[wl(f——ZD+[1(t)w2(t—y)]
e /O 56 () — g () A(0) B(o)] &
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(15)

Now the contour is to enclose the complex poles which
oceur at ¢=¢, where ¢, is a solution of
1—A@)B@{)= (16)

The residue series representation for the total field
is thus given by
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As in the residue series formula for the groundwave
field, eq (17) is valid for ke >">1 and h<<a.

The 1nterpretat10n of the preceding results is now
discussed and certain simplifications made to facili-
tate computation. If (—¢)>>1, it follows that

[l —gqua(®)
B“)—"[ww)—qwm
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On making the substitution (—t)”Z:(l%l C and

_ Ea\'3 .
noting that z'g:<?> A, it follows that

- 4 (ka\
B(t)ggTi eir/2e’3(2 )e, (19)

If C'isidentified as the cosine of an angle of incidence,

(C—A)/(C+A) can be recognized as a Fresnel
reflection coefficient. Similarly, if (y,—¢) > ">1
A(f)_(”—i_ ~11r/2 3( )(CI) (20)
ka\1/3

where 7) C"=(y—1)"% " may be identified

as the cosine of the angle of incidence at the iono-
sphere. It is also noted that

:<02+27h>1/2

The factor (C"—A,)/(C"+A)) is, of course, a Fresnel
reflection coefficient referred to the bottom of the
layer at r=a-+h.

The modal eq (16) which determines the coeffi-
cients ¢, may thus be written in the approximate form

(21)

ReR; exp (—il)=1=¢ 2 (22)
where
C— C'—A,
R 0+A and R m:
and
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if g <<% then R;= (,+ 1 A and T~2khC which cor-

responds to the modal equation for the flat-earth
case [5].
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4. Evaluation of the Residues

For numerical work it is desirable to express the

function
o)
I:a A(t)B(t)] .

explicitly in terms of Airy functions.
First, it is noted that
0 wy(t)—qus(t)

ot wy(t)—qw,(t)_|.=¢,

[w] () — qui ()]

(23)

where use has been made of the relations

(1) wy' (¢) =tw(t) and

(2) wy(t)wy(t) —wi(t)w,(t) =—27 which are valid for
any value of £. Similarly,

2 wi(E—Yo)+ qwi (t—1)
ot wy(t—1yo)+ qiwo(t—10)
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=I.wé(tn_yo)+inz(tn—yo]Q (24)
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Therefore, the complete residue series may be written
V= (rx)!/2¢—137/4

e~ [y (t,— 1) + A ()W (t,—)]
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Numerical evaluation of the series is straightforward
if tables of the Airy functions of complex argument
are used. In the situation where

1/3
(_tn>1/2:<k7a> C>1 )

the Airy functions may be replaced by the first term
of their asymptotic expansions. Under this approxi-
mation and after considerable algebraic reduction, it
is possible to write, for y=0,

pikabC2/2 [

=des s Oria R AR STIC e
n=012 ... a [{ R
of of ‘a0
00" R,R,
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where

0—A ey o
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and
=220y~ (21)

If the height of the source dipole is z,=7;—a and the
observer i1s z=r—a, the F, in the above expression
should be replaced by

where

2 1/
2f.(ei=R " exp [ikf <C’?L+2;2> 2d2]
0
2 1/2
+ R, exp I:——@kf <OH—~2—§> / a’z]
0
___B = exp {@ka I:(C,Z 22 3/2_03]}

LR exp éqka [(nz 2z 3/2_03]}. (2%)

If 22/a<<C,2 it 1s permissible to use
2f (2) =R V2 exp (ikC,2)+R,'7? exp (—ik(C,z2)

and if R,~1 corresponding to a perfectly conducting
ground,

Sn(2) = cos kC,z.

The value of (', to employ in the residue series is
related, of course, to ¢, by

1/3 12
c, (ka) (—t ),

Under the condition that (—t¢,)"2>>">1, the root-
determining equation becomes

Hih e e BOtn——gcrin (29)
where V is defined by
(2kh+T) On_g@
Noting that

Gl o] o

~ 2k if 2h/a< O

(C.P—Cll=1I..  (30)

~ 2k (2ak) ' if 2hjaz>C2,

it is seen that the second term within the square
bracket on the right-hand side is small if %% is reason-
ably large and if the losses are small.
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5. Discussion of Various Approximations

As a check on the algebra it may be noted that
under the flat-earth approximation (i.e., 2h/a<<C,?),
the residue series formula may be written

e T R G M Mg ACVACHS
(32)
where
o
p=af, and S,=(1—C)"*~1—C,?/2. For practical

purposes, 6,~1/2 and §,~1 for n=1, 2, 3 .
Equation (32) agrees with an earlier analysm [5 6]

For a first approximation it is probably permissible
to neglect the curvature altogether. To improve on
this it is important to retain curvature dependent
terms in a consistent manner. For example, at VLF,
the restriction O2>2h/a is not as stringent as

C> (2fka)3.

Thus eq (27) for V is probably not any better (if as
good) as eq (32). To effect a real improvement one
should retain the Airy functions of argument ¢,
without approximation, but allow the Airy functions
of argument #,—1, to be replaced by the first terms
of their asymptotic expansions. This is justified
since ¥, is reasonably large compared to unity in the

VLF range. With this approach the root-deter-
mining equation may be written
RiRgFge—i(2kh+V)C:6—21rin:1 (33)
where
wy (t) —qw, (1)
= wi (1) —qwr (t> (34)

e o[ 55

If the ground is assumed to be perfectly conducting
R,=1 and ¢=0. Then, on writing

 J—

the mode equation reduces to

(08 %kaﬁ—i arg F,, (35)

where now

2mn—r—2iB0" +[(C")*—
v wZ (t)

Fe=ui) © p[“

For long-distance propagation in the VLF range,
only the mode corresponding to n=1 is of importance.

z)ﬂ (36)
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Furthermore, since ' is small, for a first approxi-
mation
’
'?1)2(t)~ im/6.
A
wy(¢)

also, B is essentially a constant and is approximately

equal to 1/A;. Thus
3/2 1/2
o () 4202
O’ - (37
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This formula should be a fairly good approximation
if |7 is somewhat less than 2h/a. For example, if
B=0, corresponding to R;=—1, and if h/a=107?
the above may be written

0041248
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For h/\ in the region from 2.5 to 5, |C?| is never
greater than 5>107%.

Using perturbation methods, higher order approxi-
mations for the solution of eq (35) may be obtained.
Details of such computations will not be deseribed

here.
6. Certain Extensions of the Theory

The preceding analysis has referred specifically to
a vertical electric dipole. If the source is a vertical
magnetic dipole the results derived above are still
applicable if the reflection coefficients 22, and £2; are
replaced by their counterparts % and R} for hori-
zontal polarization. The only other change is that ¢
is now defined by
1/2
1k

)

Since [g] >1, under all practical conditions,

exp [—i <12r+% (—t)3’2>],

which is to be used instead of F,. The modes ex-
cited by a magnetic dipole are of a TE (transverse
electric) type whereas for an electric dipole they are
of a TM (transverse magnetic) type.

1/3 1
Ay

1
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where :
1€qw

h
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7. Application to Specific Ionospheric
Models

In the case of a homogeneous isotropic ionosphere
with a sharp lower boundary, the Fresnel reflection
coefficient for small ¢ may be written

RF%,%g—e—?ﬂcu (39)
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> In terms of the plasma frequency w,
1

where g

and the collision frequency »
B (1—tw,/w) (—iw,/w) B

where w,=w¢?/v under the condition that w<v.
Unfortunately, the presence of the earth’s mag-

netic fields renders the ionosphere anisotropic. The

reflection coefficient is thus a matrix of the form [1]

L )

where the coefficients (R, (R, ([, and (R, indi-
cate the complex ratio of a specified electric field in
the wave after reflection to a specified electric field
in the wave before reflection. The first subscript
denotes whether the electric field in the incident
wave is parallel (;) or perpendicular () to the plane
of incidence and the second subscript refers in the
same way to the reflected wave. It is understood,
of course, that [R;] is a function of €, the cosine of
the angle of incidence at the ionosphere. Following
an earlier analysis [6], the generalization of eq (33),
to include the influence of anisotropy, may be
expressed in the form

Wy Ry
Ry 1Ry

[1_H]l)llll)gp’ge—i(‘zkthV)CJ
><[1_Lll)l]{gp‘ge~i(‘.’kh+1')cl

— | RL1R R F R Fhe~ 2HntVIC— ), (40)
where R, R. F, F& and V have been defined.
Strictly speaking, equation (40) is only valid when
there is perfect azimuthal symmetry about the source
dipole.

It may be noted that if the conversion coefficients
Ry and | Ry vanish, the modal equation splits into
two parts which are

1_”R“RgFge—i(‘zkthV)c:O (41)

and

1— R RMFlhe=i@ntVIe—(), (42)

These two uncoupled equations give the solutions for
the TM and TE modes, respectively. In the more
general case the modes are coupled. However, for
low-order modes and particularly for the dominant
mode (n=1), the coupling is extremely small and a
good first-order approximation is obtained on the
assumption that coupling may be neglected. Fur-
thermore, the TE mode is only of academic or
secondary interest since it is not excited to any ex-
tent by a vertical antenna. Thus the constants of
the first-order mode may be obtained from eq (37)
with an appropriate value of g.



For propagation in the magnetic meridian or for
propagation in polar regions the QL (quasi-longitu-
dinal) approximation [9] to describe conditions within
the ionosphere is valid. The refractive index u, in
this case, is given by [1]

w=1—1(w/w) exp (fids), (43)
where
w;, longitudinal component of gyrofrequency
tan ¢pp=—= —
v collision frequency

and o,=wf (»*+w?) V2 Thus for highly oblique
incidence (i.e., ('is small) it may be shown that [6]

R —e 5 (44)

where

- MoMe 00 ar C'e
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where g and u, denote the two values of x, and
Co=(1—1/ue®)?% and C,=(1—1/u2)%.

The QL approximation mentioned above is only
valid when [10]

-2

4o’w} w

where w;, and w;, are the longitudinal and transverse
components of the (angular) gyrofrequency. As
mentioned above, this condition is satisfied for
propagation in the magnetic meridian and/or for a
steeply dipping field. Clearly, this conditien is
violated when the transverse component of the
earth’s magnetic field is large such as for propagation
around the magnetic equator. The case of a purely
horizontal and transverse field has been considered
by Barber and Crombie [11]. Using their results,
which are applicable to a sharply bounded ionosphere,
it may be readily shown that [6]

R —e %, R1=0 (45)
where now
_ (14iL)*—y?
6—(1+?:L)l/2(7:L_L2_72)1/2'—7:‘)/ (46)
and
L:i%:% §llld 'y=%u.

For east-to-west propagation, vy is positive, while
for west-to-east propagation, v is negative. In the
present situation it is convenient to define an angle
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¢ such that
y=-L|tan ¢,| for east-to-west propagation
=—L|tan ¢;| for west-to-east propagation.

For propagation at any angle with respect to the
earth’s magnetic field and for an arbitrary angle of
dip 7, it is necessary to seek more general solutions.
First, one must solve a quartic equation for the
refractive indices (ordinary and extraordinary com-
ponents). Then on matching tangential field com-
ponents at the air-ionosphere boundary, an explicit
expression for the reflection coefficient may be ob-
tamned [12]. Using this quite general approach
Johler and Walters [13] have obtained extensive
numerical results for the coefficients R, (R1, 1R,
and ;R for various (real) angles of incidence and
range of values for the electron density, NNV, collision
frequency », dip-angle I and the azimuthal direction
of the wave ¢, (measured clockwise from the north).
Formally, the expressions for these reflection and
conversion coefficients may be substituted in eq (13)
which, in principle, can be solved for the modes in
the general case. For VLF and at highly oblique
angles of incidence (e.g., 82°), the quantity |/, X
1 R)| is of the order of 1072 or 10~* and thus coupling
between the TE and TM modes is negligible. At
least this is true for the range of values of the iono-
spheric parameters considered here. Thus the un-
coupled modal equation may again be used for an
adequate first approximation after having determined
the appropriate value of g.

8. Presentation of Results

Using the above approaches numerical results
have been obtained for the complex values of C for
the dominant mode.* From this quantity, it is a
simple matter to compute the corresponding value of
S which describes the propagation in the horizontal
direction. For example, the attenuation per unit
distance is proportional to the quantity—/ Im S
and the phase velocity relative to ¢ is 1/Re S. In
the present paper, these are the quantities of prime
interest since they are adequate to describe the
propagation characteristics of VLEF radio waves at
large distances from the source (i.e., >2,000 km).
At shorter distances higher order modes should be
considered.  Their influence has been discussed
elsewhere [5].

In figure 2 the attenuation coefficient, for the
dominant mode (n=1), is plotted as a function of
H(=h/\) for a curved earth where h/a=0.01. The
apper- and right-hand scales in this figure and in
many which follow, are a frequency scale and at-
tenuation scale in decibels per 1,000 km of path
length applicable to a height of 70 km. The quasi-
longitudimal approximation is employed and ¢, is
either 60° or 0°; the latter, of course, corresponds to
no magnetic field. The constant B on the curves is

4 For sake of brevity, the subsecript 1, to indicate the first mode, is dropped in
what follows.



defined by

15, 1 w Wi
B==: where =—=—>———, 47
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or alternately
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Fraure 2.  Attenuation coefficient,—H Im S, as a function of
H (=h/\) for the dominant mode.

The upper and the right-hand scales are for k=70 km.

The four B values on the curves (0.02, 0.05, 0.1, and
0.2) correspond to w, values of 13, 5.4, 2.7, and
1.3X10°, respectively. For a given value of B, it is
seen that the attentuation depends on ¢,. For large
values of B (i.e., poorly conducting ionosphere) the
influence of the terrestrial magnetic field 1s to lower
the attenuation whereas the converse is true at
smaller values of B. Since B is in the range 0.05 to
0.01 typically for daytime conditions, the influence
of the magnetic field is small under the quasi-
longitudinal approximation.

The relative phase velocity of the dominant mode
is shown in figures 3a and 3b for ¢,=0 and 60°,
respectively. The (upper) frequency scale is for a
height of 70 km. From these it appears that the
influence of the magnetic field is quite small. Tt is
rather interesting to note that for a frequency of
14 ke/s the phase velocity is very near, ¢, the velocity
of light.® It should be remembered, of course, that
the phase velocity is referred to the surface of the
ground in this particular analysis.

Since one is interested in relatively small deviations
of 1/Re (S) from unity, considerable care is needed in
approximating the wavefunctions involved. The
results shown in figures 3a and 3b for a curved earth

# Recent experimental data appear to confirm this point (M. L. Tibbals,
private communication).

are not expected to be accurate to more than a few
parts in 10%.
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Freures 3a and b.  The relative phase velocity, 1/Re S as’a
Sfunction of H for the dominant mode.

The upper-frequency scale is for /=70 km.
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The calculation of the mode characteristics for a
magnetic field of arbitrary direction is, of course,
quite involved. However, approximate results can
be obtained if coupling between TE and TM type
modes is neglected [6]. Actually, in the case of a
purely transverse field, the coupling is zero anyway.

In the following the influence of an arbitary mag-
netic field is demonstrated by calculating the ratio,
P, of the attenuation with a magnetic field to the
attenuation without the magnetic field. Various
values of the dip-angle 7, and the azimuthal
direction of propagation, ¢,, are chosen. The ratio,
@, of the phase-velocity deviations with and without
a magnetic field is also considered. Specifically, these
ratios are

__ Attenuation with magnetic field Im S
"~ Attenuation without magnetic field  [Im Sz,

(48)

and

Phase velocity deviation with magnetic field
hase velocity deviation without magnetic field

(49)
1
[iees]
_LRe§ | where J ~

1
I:RC S—_J]H=o

To obtain numerical values of P and ¢, computed
data from J. R. Johler [14] were requested for the
reflection coefficient |/}, for a real angle of incidence
of 82° and at frequencies of 10, 12, 14, 16, 20, and
22 ke/s. The appropriate value of g was then
calculated from

0=p

2a .
2a+h

iBj=—e%, (50)
where O'=cos 82°. The electron density values for
the sharply bounded model were 10° and 3X10°
electrons/cm?, respectively. The collision frequency
was taken to be 2X107 and the strength of the
earth’s magnetic field was 0.5 gauss. The angle
¢, which defined the direction of propagation
measured clockwise from north assumed the values
0°, 60°, 120°, 180°, 240°, and 300°. As a check on
the method, values of B were calculated directly
from eq (40) which is applicable to ¢,=90° and 180°
for 7=0.

The results for the attenuation ratios are shown
in figures 4a and 4b for a dip-angle 7 of 0°, in figures
5a and 5b for an [ of 45°, and in figures 6a and 6b for
an [ of 84.3°.

These results would indicate that nonreciprocity
is most evident in propagation around the geomag-
netic equator. North-to-south or south-to-north
propagation appears to be almost reciprocal. It is
also evident that for this range of electron densities,
the nonreciprocity for attenuation is more marked
for the smaller densities. It is also apparent from
these results that the nonreciprocal effects are
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240 300 360

Frcures 4a and b. The ratio of the attenuation rates with
and without a (lransverse) terrestrial magnetic field.
¢4 is the direction of propagation with respect to geomagnetic north.

.3

N=3(10)*

(b)

0 60 120 180 240 300 36C

Ficures 5a and b.  The ratio of the attenuation rates with and
without a terrestrial magnetic field for a dip angle of 45°.



diminished as the magnetic field approaches the
vertical. Qualitatively the curves are very similar
and there is a strong suggestion that nonreciprocity
is proportional to the component of the earth’s
magnetic field which is horizontal and transverse
to the direction of propagation.

N=3(10)° =

N=(10)® v=2x107
1=84.3°

n=1|"

0 kee. == T T =
f=10 ke
0.9 -
(b)
0.8 ‘ -
0 60 120 180 240 300 360
$

Freures 6a and b.  The ratio of the aitenuation rates with and
without a terrestrial magnetic field for a dip angle of 84.3°.
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Fraures 7a and b.  The ratio of the phase-velocily deviations
with and without a (transverse) terrestrial magnetic field.
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Frcures 8a and b.  The ratio of the phase-velocity deviations
with and without a terrestrial magnetic field for a dip angle

of 45°.
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Frcures 9a and b.  The ratio of the phase-velocity deviations
with and without a terrestiial magnetic field for a dip angle
of 84.3°.,

The corresponding curves for the ratio @ of the
phase velocity deviations are shown in figures 7a and
7b for /=0, in figures 8a and 8b for 7=45° and in
figures 9a and 9b for /=84.3°. Ttis ratherinteresting
to see that these are not symmetrical about the
north-south geomagnetic axis. It is also evident
that the monreciprocity in the phase velocity
becomes greater at the lower frequencies. It 1s
noticed that @ is never more than 4-percent greater
than unity. This corresponds to a change of phase
velocity of only a few parts in 10°.



9. Concluding Remarks

In this paper no direct reference has been made to
experimental data. In another paper [15] the
experimental data on attenuation rates at VLE in
daytime [16] were compared with calculations using
formulas from the present paper. The agreement
between theory and experiment was quite good and
the nature of the nonreciprocity between east-west
and west-east propagation was satisfactorily ac-
counted for. Unfortunately, the experimental data
on phase velocity is quite sparse. It would be
interesting to compare the computed results given
in this paper with absolute measurements of phase
velocities at various frequencies over a given path.

The author thanks Kenneth Spies for carrying out
the calculations and Mrs. Kileen Brackett for her
assistance in preparing the manusecript.
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10.2. List of Symbols

(r,6,¢) =spherical coordinates of observer,
a=radius of the earth,
h=height of reflecting layer,
k=2=/wavelength,
6 is central angle,
z=(ka/2)15 6,
y=(2/ka)'” (r—a),
1g=(ka/2)1B A,

_( Tegw )1/2[ Tew ] /2
" \o+tew o+7ew ’
wi () is Airy function of first type defined by eq (4),
w,(t) is Airy function of second type defined by eq

£

¢t is argument of Airy function,

A= Z|nq,

710212011‘,

7 is surface impedance of ionospheric reflecting
layer at r=a-h,

1q;= (ka/2)153 A,

yo=(2/ka)!” kh,

w(t) is some linear combination of w;(f) and w,(t),

A(t) is defined by eq (8); it is related to the iono-
spheric reflection coefficient,

B(t) is deﬁned by eq (18);itis related to the ground-
reflection coeﬂiment,

C=(2/ka)1*(—1)1/2; Cmay be geometrically in-
terpreted as the cosine of the angle of in-
cidence at the ground,

C’=(C2+2h/a)1”2; C" may be geometrically inter-
preted as the cosine of the angle of inci-
dence at the ionosphere,

R, and R; are reflection coefficients at the ground and the
ionosphere, respectively,

1=2% (0730,

V' is a dimensionless quantity proportional to the
vertical electrie field,
V;is defined by eq (13); it may be interpreted
loosely as the j'th order skywave,
t, is the n’th root of eq (16); it determines the
attenuation and phase of the n’th mode,
p=af; it is the great circle distance between
source and observer,
5, is defined by eq (32); it is a coefficient in the
mode sum,
F, is defined by eq (34); it is a wave correction to
the ground-reflection coefficient,
wr=awy?/,
wy is the (angular) plasma frequency,
v is the collision frequency,
B is defined by eq (39); it characterizes the iono-
spheric reflection coefficient ||,
1) 1R L
1R 1R
reflection from an anisotropic layer,

w is defined by eq (43) ; it is a double-valued index
of refraction for the ionosphere subject to
the QL approximation,

o and u, are the two components of u,
or, is the longitudinal component of the gyrofre-

[R]= :|; thisis a matrix which deseribes

quency,
wr is the transverse component of the gyrofre-
quency,
B=L/H=2",
wh
H=h/x
L—ﬁ-—w(’ﬂ—l—wl‘?) 1/2
T, wg

¢r=tan"(wr/»),
P and () are defined by eqs (48) and (49),
I=dip angle of the earth’s magnetic field,
¢, is the azimuthal direction of propagation of the
wave; ¢,=0 corresponds to propagation
from south-to-north, ¢,=90° corresponds
to propagation from west-to-east, ete.
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