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Formulas are developed for t he diffracted fi eld a round a perfectly condu d ing cylinder 
with a dielectr ic sleeve of a rbi trary t hickness . These formu las r eprese nt t he ficld du e to a 
unit electric line so urce p aralle l to t he cylinder (eit her inside or o u tside t he dielec t ric sleeve) 
as a sp ectrum of radia l eigenfun ctio ns. It is shown that in each case t he fi eld in t he regio n 
co ntaining t he source can be expressed as t he sum of two terms, t he first of which is a spectre,l 
represen tation of t he fi eld \I·he n t he outer as weU as t he inne r surface of t he die lect ri c is a 
perfectly conducting bounda ry. The second t e rm of t he su m, whi ch a loll e invo lves t he 
proper t ies of t he dielectr ic, is a n integral t hat converges rapidly at high frequ encies. Us ing 
t hese genera l results, pert urbat ion calculations a rc carried ou t fo r t hree lim it ing examp les 
of plane wave scattering: (1 ) Thin d ie lect ric ; (2) low-refract ive index; (3) very s ma ll sUt"­
face curvature. In t he latter approximat ion t he eorresponcle nce w ith op t ical resu lts is 
shown . 

1. Introduction 

The scattering o[ plane eleetrom fLg netic waves by cylinch·ical obstacles has received detailed 
theoretical trefLtment only in the lwo special cases for which the scalar wave function, 'Jr, 
satisfies either th e Dirichlet or the Neumann boundfLry condition at the cylinch·ical surface. 
In electromagnetic tel".ms these problems cOlTespond respectively to the scattering by a per­
fectly conducting cylinder or fL WfLve whose electri c or magneLic vector is parallel to the cylinder 
axis. For a cylindricnl obstacle whose sur race is not perfectl~T conducting a more complicated 
boundary condition or the type 'Jr + ao ,,'Ir = O is required (sometimes cfLlled an impedance 
boundary condiLion). In such ca es the theory has not been so extensively elaborated. 3 

This paper is ('once r-ned with some of the theoretical features or the scattering problem 
associfLted with a cylindrical obstacle of this more general kind. In particulfLr we shall exnmine 
the sCfLttered wave produ('ed by fL dielectric cylinder or circular cross section hfLving a per rectly 
conducting coaxial core. One fLspect oJ this problem hfLS been investigated experimentally by 
Tang [l J 4 for an incident wave with elec tric vector polarized parallel to Lhe cylinder , and in 
the same paper the Fourier expansion or the WfLve function has b een u ed [or numerical calcu­
l ations. It seems, however, thaL no geneml discussion or the characteris tics of the wave 
solution hfLS been given; it is this task which will now occupy am attention. 

2 . Derivation of the Greenl s Function 

The cylinder which we shall ('onsider (fig. 1) is composed of a perfecLly conducLing core 
of radius a sUlTounded by a dielectric IfLyer of inner radius a and outer radius b. In the sub­
sequel1 t analysis the relative dielectric constan t of the layer will be taken to be a real scalfLl' 
greater than one, E,= 4Eo> 1. ThfLt is to say, the refractive index of the dielec tric is it. Teal 
number greater than that which characterizes the surrounding medium (air or vacuum). For 
a lossy or anisotropic dielectric the theory is unaffected except by the substi tution throu ghout 
of a complex or tensor dielectric constant for E. Of comse, the detailed calculation of field 
quantities will be much more compl icfLted in such cases. 

J[ the composite cylinder described above is excited by a h armonic line current parallel 
to its fLxis (electric line source, exp[ -iwtJ), the task of finding the resultfLnt electric field at 

1 Oontribu t ion from the Division of E ngi neering, Brown U niverSity, Provid ence, B. .I. 
2 T he research reported ill t his paper has been supported in part by t he Office of I aval R esearch and the David W . T aylor Model Bas in 

under contract N om 562(24) and ill part by the Electronics Research Directorate of t he A ir Force Cambridge R esearch Center under contract 
A F 1:')- (604) 4561. 

3 Certai n aspects of such problems have been considered by J . R . 'IYait, Electromagnet ic radiation from cy lind rical s tructures, Chapter 
16 (P erga mon P ress, London, 1959) . 

, Figu res in brackets indicate t he litera ture references at the end of th is paper. 
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FIG U RE 1. The composite cyl­
inder and cooTd1'nate system. 

every point outside the perfect conductor resolves itself in to the determination of the Green's 
functions which satisfy appropriate partial differential equations and boundary conditions. 
For the moment we shall limit our considerations to the case in which the line source is outside 
the dielectric. Denoting coplanar position vectors relative to an origin on the cylinder axis 
by r' and r for source and observation points, respectively, we require solutions in the xy-plane 
for the scalar wave equations 

1 
(v2+ lcij)Go(r ,r' ) = -r 0(1'-1")0(0- 0'); 1',1" '2 b 

(v2+ lc2)G1(r,r') = 0; a:; 1':; b, 1"'2 b 

subject to the following boundary conditions at T= a and r= b: 

Go(b,r') = G1 (b,r' ) ; 

oTGo(b,r' )= OrGI (b ,r' ). 

(2.1 a) 

(2.1 b) 

(2.2a) 

(2.2b) 

(2.2c) 

Here the wave number, lc=w/v, is related to the dielectric constant and the refractive index, 
n , of the dielcctric according to 

(2.3) 

The mathematical problem defined by eqs (2.1) and (2 .2) may be solved in a v ariety of 
ways. We shall employ a technique developed and discussed by Titchmarsh [2] and Marcll­
vitz [3] for separablc equations. The procedure consists in constructing so-called characteristic 
functions which satisfy the related system of ordinary differential equations 

[.riCr ~)+rlc2-~Jj (1' 1" )... )= - 0 (1'- 1" ) dl' ell' °r° " , (2.4a) 

(2.4b) 

Lt:2+)... ] g (0,0' ,)... )= -0 (0-0' ) . (2.4c) 

These equations are found from (2.1 ) by separating the polar variables (1', 0) with)... taking th e 
role of separation constant. In addition to (2.4) the functionsjo andjl are required to satisfy 
boundary conditions corresponding to (2.2), while the angular function g is made unique by 
certain convergence conditions to be specified. Once the characteristic functions have been 
explicitly determined from (2.4) and the boundary condi.tions, the Green 's functions required 
by (2 .1 ) are obtained by an integration in the complex A-plane. For it can be verified that if 
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C is a circular contour of infinite radius in this plane, then 

2~ ~ c dAj (1',1" ,A) = 1'0 (1'-1"), 

-21 . J; dAg (O,O'A) = 0 (0- 0' ). 
1I"t :fc 

(2.5a) 

(2.5b) 

With the help of (2.4) and (2.5) direct substitution in (2.1) will show that the required Green's 
fun ction is 

G(r,r' ) =2~ ( dAj (1',1", A) g (O,O' ,A), 
1I"t J r (2.6) 

where r is a contour which encloses the singularities of one of the fun ctionsj or g, the sense of 
the contour being given either by (2.5a) or (2.5b ) as th e case may be. 

In carrying out the procedure outlined above, we shall begin by considering the charac­
teristic fun ction whi ch satisfies (2.4c) . It has the form 

(2.7) 

where V2= A and 0>,0< are respectively the larger and the smaller of the two variables 0 and 0'. 
The positive exponen tial solu tion h as been chosen to ensure the regularity of g for all values of 
A on the prin cipal sheet of the two-sheeted A surface. On this sheet 1m v>O, and since 

(2.8) 

the region of regularity correspo nd s to the upper half of the v-plane . TJIO constant A in (2 .7 ) 
is determin ed by the fact that dg/dO has unit discon tinuity at 0= 0' for a delta function source. 
We thus find from (2.4c) that the cbaracteristic function is 

(2 .9) 

It is easy to verify Lil at (2.9) saLisfLes (2.5b). Sin ce the only s in gul arity of g(O, 0', A) is a 
branch poin tat A= O, t he clockwi se contoUl' C may be deformed to an in tcgral around the branch 
cu t which is convenien tly taken along the positive real axis of the A-plan e. If tbe deformed 
contour is now m apped onto the real axis of the v-plane by the transformation A= V2, the 
resulting in tegral is see n to be a representation of the o-fun ction . Thus 

The charac teristic Green's fun ctions which satisfy (2.4a) and (2.4b ) arc constru cted in tL 

similar fashion but from linear combinations of Bessel functions of order v= .JT. At large d is­
tances from the source, 1'»7", they must represent outgoing waves. Furthermore, the in terior 
function must vanish at the conductin g surface r= a, and the exterior function must behave 
like a "standing wave" in the region 1" > 1'2 b. In terms of Hankel functions of t he first and 
second kinds the most general expressions which exhibit these characteristics arc 

jo(1',1" ,A) = Bo[II;I) (kob )H ;2) (lcoTd - DH;2) (kob)H ;1) (koTd lH;1) (kor» ; 1',1" 2 h, (2.10) 

jl (1', 1" ,A) = B 1[H ;1) (ka) H ;2) (lerd - H ;2) (ka)H;I) (krd lH ;1) (leal» ; a~ 1'~ b, 1" 2 b. (2. 11 ) 

Two of the three integration constants appearing in (2. 10) and (2 .11 ) are determined by the 
pair of linear algebraic equations which express the con tinuity of the radial function and its 

first derivativ e at T= b. The r emaining constant is fixed by the jump in l' ~~jO(T,l" ,A) at 1' = 1". 
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Making use of the Wronskian relation 

and introducing the notation 

and 

a=ka, f3 = kb , f3o = kob; 

5Gv(kr) =H~I) (a)H~2) (kr) - H~2) (a)H~I ) (kr) , 

G~(kr) =H~I) (a)H~2) ' (kr) - H ;2) (a)H~!)' (kr); 

we find that the characteristic function for an exterior source at r' is 

I _ 7ri [ (2) _ H~2) ({30) zn2) (I ) ] (I ) 
fo(r,r ,A)- 4 H v (kord H ;!)({3o) X~l) Hv (kord H v (kor» , 

Gv(kr)H;I) (kor' ) 
H ;I) ({30) G v ((3) X ;I) ' r ~ b. 

A direct calculation shows that, these functions satisfy (2.5a) . 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

r?: b; (2.16) 

(2.17) 

It remains to determine G(r,r' ) from (2.6). First we note that the only singularities of 
fo andjl in the A-plane are simple poles at the set of complex values, Ail for which 

That these functions have no branch point is easy to verify. With the relations, 

we learn that 

It follows that jo and jl are both single-valued over the entire A-plane. In accordance with 
(2 .6), we now form the in tegral 

G(r r') =_1 r idA f(r r' A) e iv[O- O' [ (2.19) 
, 27riJ r 2v " , 

where the contour r is chosen to enclose the singularities of j in a positive sense. Since the 
product function has a branch point at A= O, r must be indented around the branch cut, which 
we shall take along the r eal axis as sho'wn in figure 2. In the v-plane the resulting contour 
maps to 'Y. By virtue of (2.8) and the asymptotic behavior of the Hankel functions, the contri­
bution to (2.19) from the semicircular segment of 'Y may be made arbitrarily small if the radius 
of the arc is made large enough. In this way we see that both a discrete and a continuous 
representation of G are possible, 

(2.20) 

' It would be more explicit to write C, (a, kr ) , but since subsequen t operations on Cv affect it ouly as a function or kr, it is perhaps ciearer to 
use the abbreviated notation. 
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FIGUR E 2 . The comple:!; v and A plcmes . 
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3. The Discrete Spectrum 

The discrete r epresen tation of the Green's function is obtained by evaluating t he residues 
of j(r,r', 'I\ ) from (2 .16) and (2. 17). A more symmetrical form r esults if one makes usc of the 
relation 

(3.1) 

which , at V = Vj> becomes simply 

(3.2) 

where the subscript indicates theib root of (2. 18) . With th is change the residue sums corre­
sponding to (2.19) form discrete spectral r epresentations of the total fi eld du e to an extcri orline 
source at 1" ~ b. They are 

G ( ' ) . " 1 H il) (kor) H il) (kor') iv ·IO-o'l · > b 
o r,r = ~ Ly-' o,XP) H fl) ((30) H il) ((30) e, ,1'_ , (3.3a) 

(3.3b ) 

It is now clear from considerations of symmetry that if the line source is inside the dielectric, 
a:::;'r' :::;' b, th El n 

(3.4a) 

(3.4b) 

It is noteworthy that th e representations (3.3a) and (3.4b), with source and observation points 
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in the same region, are unaffected by an in terchange of the variables l' and 1". If rand 1" are 
in different regions, however, their interchange turns (3.3b) into (3.4a) and vice versa. 

The radial eigenfunction expansions derived above have certain characteristic features 
which should be mentioned. For fixed l' and 1" each term of the series represents (in the 
terminology of Franz) a "creeping wave" propagating in the O-direction with cxponentially 
damped amplitude. Since 0 covers the interval (-00, 00), the total field at any point is the 
sum of the contributions at 0±2m7l' for all integral values of m. At high frequ encies, however, 
the imaginary part of v is a large positive number so that all terms other than the one for which 
m = O are exponentially small. Asymptotically, (3.3) and (3.4) represent the total field in the 
range 0<1 0-o' I<27l'. It is to be expected, moreover, that the set of V j are ordered with in_ 
creasingly large imaginary parts so that if 10-0' 1 ~O , only the first term of each residue expan­
sion will contribu te significantly to the field at high enough frequencies. However, the problem 
of finding even the first root of (2.18) would seem to be a formidable one. 

4. The Continuous Spectrum 

An alternative representation of the Green's function as an integral over a continuous 
spectrum is obtained from (2.19), using (2.16) and (2.17). Since g(O, 0', A) has a branch point 
singularity at A= O, the contour integral becomes 

G(r ,r ' ) = 4~ 0/ d~ ei, IO-O' 1 ](1',1" ,A), (4.1) 

where the indicated path is around a branch cu t along the real axis of the A-plane. With the 
help of (3.1) and the change of variable, A= V2, we find from (4.1) that 

GoCr ,r' ) =~ f _"'", dv[H~l) ({30)H~2 ) (!cord - H~2) ({3o)H~l) (!cord 1 I-IJ;;l~~~~) ei , I8-0 ' 

+~ f O> ~ H~l)(!co1'dH~l)(!co1'» i, IO-O' I . 

27l' _'" X~l) H~l) ({30)H~1) ({3o) e , 1',1":;::: b. (4.2) 

Similarly the field inside the dielectric is 

(4.3) 

In this form the Green's function of (4.2) has some interesting features. The first term 
satisfies all the conditions associated with the field of an electric line source in the vicinity of 
a perfectly conducting cylinder of radius b wh en the medium is characterized by the propaga­
tion number ko• One way to see this is to close the in tegration con tour in the upper half of the 
v-plane. The residue sum that results is 

(4.4) 

where 

(4.5) 

From the Wronskian, (2.12), one finds that 

(4.6) 
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o that (4.4) can be rearranged in the form 

(4.7) 

(4.8) 

These are the results for a conducting cylinder which have been derived in other ways by T . 
Wu [4] and by the au thor [5] . 

We see then tha t the field of a composite cylinder has as one par t the creeping waves of 
a conducting cylinder. Only the second integral of (4.2) depends upon the parameters of the 
dielectric (thickness and refraction index) and this dependence resides in the factor X~l). 
Indeed as a--7b, X~l) grows without limi t and the integral vanishes, leaving tbe Green 's function 
for a conducting cylinder of radius b. On the other hand, as k --7ko the limi ting value of the 
second in tegral of (4.2) is 

and on substitu ting we find that the Green 's function redu ces to that for a conducting cylinder 
of radiu s a. These limi ting forms will be used la ter for perturbation calculations. 

When the line source is inside the dielectric sleeve, the derivation of the Green's function 
proceeds in a similar WfLy. vVe begin with characterisLic f unctions for the radial equfLtions 
h fLving the form 

(4.9) 

(4.10) 

Both f unctions saLisfy LIle boun dary condi tion at r<= a, and ho represents an outgoing cylin­
drical WfLve as 1'>--700. The constfLnts CfLll be evaluated fiS before, and after a cer tain amount 
of m a.nipulatioll, we find that 

" _ 1 (lv(ler') J1~ I ) (leoT). 
ho(T,? ,f-. ) - X ;l) Cv((3)H~l)(/3o) , (4. 11 ) 

h (1' r' ,,) = _ 71"i Gv(lcrd [H (l) ((3) I-1(2) (ieI' ) _ El (2) ((3) El (l) (ieI' )] + _1_ Gv(krd Gv(ler» . (4 1 '» 
1 " 4 Cv(/3) vv > vv > X ;l) Cv(/3)Cv(/3) . • 

T he exterior function ho(T,T', ,, ) of (4 .11 ) corresponds exactly tOjl of (2.17) after fLn interchange 
of th e variables l' and 1", so the relfLted Green 's function corresponds to (4.3). 'iiVhen both 
source and observa tion points are inside the dielectric, the convolution of hl (r,r'," ) with (2.9) 
around the branch cu t of g(8,8' ,f-. ) leads to the following integral represen tation of the Green's 
function: 

0 1 (r ,r ' ) = -~ f _oooo c! j1 Co:~~) [H~l) ((3)H~2) (ler» - H~2) ((3)H~l) (kr» leivIO-O'1 
, 

+~f OO ~ Cv(lerdCv(kr» i vIO- O' I. 
271" _ooX~l) Cv(f3)Cv(/3) e 

(4.13) 

The fu·st term of this Green's function va.nishes at r<= a and r>= b, a nd one can easily verify 
that it corresponds exactly to the field of an electric line source inside a dielectric filled coaxial 
transmission line with perfectly conducting walls. The second term represen ts the modification 
of that field du e to radiation in to the exterior medium. 
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The residue sum associated with (4.11) has already been given in (3.4). To complete the 
discussion we shall write down the symmetrical representations for a coaxial line, analogous to 
(4 .7) and (4.8). They follow from the convolution of the first term of (4.12) with g(O,O',"A ) 
around the simple poles located at the points of the "A-plane for which 

It is found that 

G ( ') =_2 '" CS (kr) Cs (k1") i'sI8-8'1 
Co r ,r {3 -'-;-' O,Cs ({3) c; ((3) e (4.14) 

= _ _ 1_ f ro dv CV (k1') C',(kr') ei,18-8'1 
27r{3 - ro C, ({3) c, ((3) , 

(4.15) 

where we have made use of the Wronskian relations, 

(4.16) 

5. Plane-Wave Excitation 

In order to render more manageable the integrals appearing in (4.2) it is convenient at 
this stage to turn one's attention to speciftl cases. Since the general class of problems asso­
ciated with the scattering of a plane wave is of considerable interest, we shall first consider the 
question of reducing the field to that of an incident plane wave of uni t amplitude. This may 
be done by considering the first term of (4.2), which we shall call Gb, 

(5.1) 

The Hankel functions, H,(p), grow as exp(v In 2;) when V-i>+ co, so the individual terms of this 

integral diverge and cannot be treated separately. However the divergences may be removed 
by first putting (5.1) in the form, 

G ( ') - i r ro d [ E7 (2) (k ) H;2) ((3o) H (l) (k )] E -T (l ) (k) (8 0') 
b r,r - 4 J o v :Lv 01'< - FI;l) ({30) , 01'< :L, or> cos v - , (5.2) 

and then making the substitution, 

With these changes it is found that 

Gb(r,r')= t [ ro dvJ,(kord H ;l) (kor» cos v(O-O' ) -~J:ro dv I'b~~io) H ;l)(koTd H ;l)(kor» cos v(O- O' ). 

(5.3) 
Each of these integrals is absolutely convergent. 

To establish a correspondence between (5.3) and the required plane wave solution, we 
follow Wu's procedure and sum the creeping waves for the first term. Then by interchanging 
the order of summation and integration (or by invoking the Poisson summation formula ) it 
can be shown that 

i ro r ro i 
"2 m~ro J 0 dvJ, (ko1'd H ;i) (ko1'» cos v(O-O' + 2m7r)=4 H ri1) (ko lr>- r<l) , (5 .4) 

26 



where the function on the right is just the free spaee Green's hmction representing a unit line 
so urce. If we now let T>---'-' OO and make use of the asymptotic form, 

both sides of (5.4) can be normalized to an incident plane wave of unit amplitude by multi­
plying with the factor -4i(2)-1!2(koT» exp -i(koT>- 7r/4). Making these changes in (5.3) and 
setting 8' = 0 gives the total field , 1{;b(r ), when a plane wave from the right is scattered by a con­
ducting cylinder of radius b. This field is 

(5.5) 

The procedure that led to (5.4) will also show that 

2 f: f '" dvJ,(koT) e -i'i cos v(8+ 2m7r) = e-ikor cos 9. 
'1n=-co 0 

(5.6) 

When (4.2) has been normalized in accordance with (5.5), the total field outside a dielectric 
clad cylinder illuminated by a plane wave from the right becomes 

(5.7) 

The last term is the modification of the scattered field introduced by the dielectric. It can also 
be put into the form, 

(5.8) 

which converges for all values of 8. 

6. The Surface Distribution 

In this section the distribution of if; on the dielectric surface will be examined in a number of 
special cases. This choice of field point does not affect the methods of approximation that will 
be used, but does simplify the ge neral expression for if; to a certain extent. For on the circle 
r= b the first term of (5. 7) vanish es, so th at the integral to be considered is simply 

(6.1 ) 

In terms of the index of refraction, n = k/ko, and the quantity, o= (3 - a, the conditions under 
which approximations to (6.1 ) will be investigated are (a ) 0/(3«1; (b) /n - 1/« 1; and 
(c) koa»l. 

6 .1. Thin Dielectric: 0/(3 « 1 

Since all the dielectric effects are cont'1ined in the function, 

(6 .2) 

we require the expansion of l /X, when a~ b . It is clearly advantageous to tr eat Xv as a function 
of the variable a (i. e., the llmer radius a) since that parameter appears only in C,. Moreover, 
H;l) ((30) has no zeros for real v, so th e fITst term of (6.2) predominates for smaU o. \Ve may 
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ther efore put l /X. "",F., where 

(6.3) 

Since lim F.(a)=O, the Taylor expansion of (6.3) h as the form 
a--?/3 

(6.4) 

With (6.3) and (6.4) it is a straightforward matter to develop the required series explicitly. 
I'Ve need certain relations of the Wronskian type [6], and up to terms of order 04 tbe result of 
the calculation turns out to be 6 

It is clear that the first group of terms represents the fun ction - In[l -(O/{J)], so that 

_ l_ = ln ~.+!~. (f.l2_V2)+! 04 (2f.l2-3v2) + 0 (o~). 
X ;ll a 3 (33 ,., 6 {J4 ,., {J' 

On substituting (6.6) in (6.1) a series of integrals is obtained, the first of which is 

(6.6) 

The calculation of C:\f b(b ) from (5.5) shows that except for the constant, In (b/a), the last result 
is just the current distribution on the surface of a perfectly conducting cylinder of radius b. 
Therefore, to a first approximation for thin dielectric sleeves of any refractive index and 
radius, the electric field distribution on the dielectric surface is proportional to the magnetic 
field distribution on a conducting cylinder of the same size when illuminated by a plane wave. 
The first term involving the refractive index is 0(0/(3)3 and is proportional to n 2• 

6.2 . Low-Refradivelndex: In- l l« l 

In order to expand the surface distribution, 

2 J'" dv i.(O-n 
f (b)=7ri _", X ;llI-!;ll ((3o)e , 

in the neighborhood of ko, let us consider thc function , 

Its Taylor expansion may be written in the f01'111 

where (n-1 )ko= lc - lco. Using (6.2) and the Wronskian (2.12), we find at once that 

6 The s uccessive derivatives of F .(a), evaluated at a=/3, are 

I 1 
F. (/3)=-1J 

F~/(f3)=.1c 
{P 

II/ 2 
F. (fi )= -jji (I+/3' -v') 

F~'" (/3)=~ (3+i/3'-Gp') 
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(6.7) 

(6.8) 

(6.9) 



Thus the fust term in the expansion of (6.1) is just f a(b), the total field at r=b when the plane 
wave is scattered by a conducting cylinder of radius a in the medium ko. 

The second term is found by evaluating 

(6.10) 

where Ok signifies the differential operator % k. Treating Cv as a function of two dependent 
variables a, (3, and replacing C; by opCv, we have 

o X(l) = O. [R opCv(a, (3)J. 
k v k I-' Cv(a, (3) 

It follows, with the help of (6.9), that 

I 7r2 H~l) ((30) 
Gv(ko) = 16 [H;1l(ao) F [bCvopCV+{3CvOk0/3Cv-{30pCvOkCvh~ kO (6.11) 

Since ok= ao",+ bo/3, the final bracket of (6 .11) becomes, after a little rearrangement, 

(6 .12) 

If we now make use of Bessel's differential equation for Cv , the last parenthesis of (6. 12) 
is seen to be 

(6. 13) 

Moreover, the bracketed expression in the fi.:rst tcrm of (6. 12) can be r epresented by the 
Wronskian determinant 

(6 .14) 

In the usual way [7] one can sho w Lhat 

which implies that {3liV i independent of {3. To find the value of the constant we let {3 = a. 

Then Cv = O, and 
lim {3W=-a(OaCvO/3Cv) f3~ a. 
/3-)oc 

In the limit the derivatives are ordinary Wronskians like (2. 12), and it follows that 

The l'esult of substituting (6.13) and (6.15) into (6.12) is 

] _ ]6 1("-C)2 1 (2 2)C2 
- - 7r2/c -lC {3Uf3 ,. -lC (3 -v v' 

(6. 15) 

With this result, eq (6.8) , (6 .9), and (6. 11) can be combined into an explicit expression for the 
fU'st term of the expansion of Gv(k ) ncar k = ko. Substitution in (6.1) yields the following 
perturbed distribu tion at r= b when n "", l: 

.I,(b) ~ .!, (b)- (n- ] ) { ~J' oo H~ L) ((30) e i v(O - ~) d +~J ' oo [ (3oC;(ao,(3o)J 2 [1(1) (R) i v ( e - ~) d 
'I' ~ 'I' ''' . • [£7(1) ( )]2 V 8' £7(1) ( ) v 1-'0 e v 

7r~ -00 ~v a J ~ _00 ~v ao 

+~J 00 (RZ_ 2) [ (lv(ao, (3o) J 2 £7(1) (R) i v(e-~) d } . 
8 · 1-'0 v 1-{ (1 ) () ~ v 1-'0 e v 
~ - co - 1/ ao 

(6. 16) 
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If one is interested in the perturbation introduced by the dielectric at points outside the 
sleeve, it is only necessary to put H~l) (kor) for H~l ) ({30) wherever that function appears explicitly 
in (6.16). Whether the field point is on the surface or outside the sleeve, however, it is readily 
verifiable that all the integrals converge and that the bracket vanishes when b=a, leaving 
only the field of the conducting cylinder. In general, it seems that none of the correction 
terms in (6. 16) can be neglected . 

6 .3 . Very-High Frequencies: koa» 1 

The last method of approximation to be dealt with is useful when both inner and outer 
cylinders are large compared to the wavelength in either medium. By combining the longer 
wavelength with the shorter radius these conditions are satisfied by the single relation, ao» 1. 
When this requirement is met, no further restrictions need be imposed , a priori, on either the 
thickness of the dielectric sleeve or on its refractive index. Since we shall consider only the 
contribution to (6. 1) from that part of the integral for which Ivl +3IvI1/ 3<ao, it is possible to 
use the Debye approximation for all Hankel functions. To this order of accuracy we may 
expect that the integration will yield the optical rays , but no diffraction effects. 

For a typical Hankel function the appropriate asymptotic form is 

(6.1 7) 

where TJo is the real angle 
(6.18) 

and 
(6.19) 

The corresponding approximation for the derivative with respect to the argument, (30, is 

H~l) I ((30) ~i sin TJoHP) ((30) . 

With (6.17) and (6.20) it follows that 

H~l ) f ((30) . . 
(30 H~1 ) ((30) ~~(3o sm TJ o· 

In a similar way, by defining the angles 

and the function 

F(v) = (3f(TJ) -afW, 

one can show that 

If (6.21) and (6.24) arc now co mbined according to (6.2), we find that 

where p and T signify the ratios, 

1 1 i p 1- e2iF ( ,) 
- ~ ~- , 
X , (30 sin TJo 1 + p 1 + Te2iF t , ) 

p 
(30 sin TJ o. 
(3 sin TJ ' 

1- p 
T=--· 

l + p 

(6.20) 

(6.21) 

(6.22) 

(6 .23) 

(6.24) 

(6 .25) 

(6. 26) 

N ow for all v2< (35, (3 sin TJ > (3o sin TJ o, so thatO > p > 1. Consequently, O< T< l and IT exp 2iF(v) 1< 1. 
The denollJinator of (6.25) can therefore be represented by its Taylor expansion, and it follows 
that 

(6.27) 
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This result already makes evident the ray nature of the approximation. Successive 
terms of the series correspond to the rays which are, (1) reflected by the sleeve, (2) reflected 
once at the conducting cylinder , (3) reflected once at the conducting cylinder and once inter­
nallyat the dielectric surface, etc. The phase function of each term corresponds to the number 
of path segments a ray traverses in the dielectric (with a minus sign added for each reflection 
at the conducting cylinder), and its amplitude function includes the appropriate transmission 
and reflection coefficients for each contact with the dielectric surface. Since these quantities 
are all functions of the integration variable, successive terms can be evaluated in detail only 
by more and more intricate stationary phase approximations. There is, however, one limiting 
case for which it is relatively easy to establish the correspondence between the terms of (6.27) 
n,nd optical rays. When the radii a and b b ecome indefinitely large, while their difference, 
d= b- a, remains constant, the solution for the cylindrical problem at each point b = (b,8) of the 
dielectric surface approaches that for n, plane wave scattered by a conducting plane sheet 
with a dielectric coating of thickness d, the dielectric surface being tangent to the cylinder at 
the point in question. 

To see how this comes about let us substitute (6.27) and (6 .17) in (6.1). The first integral 
of the r esulting asymptotic series becomes 

(6.28) 

where the limits on the integral define the in terval within which the D ebye approximations 
are valid and where 

(6.29) 

For hrge f30 the principal co n tributions to this integral come from the neighborhood of th e 
stationary points of g(l )(v) in (- A, A). Since the asymptotic integrand decays exponentially 
outside this interval, one may extend its limits to (- co, co) without appreciable error. Then 
if a stationary point of g(l)(v) is located at V = Vl , the Taylor expansion of (6.28) in the vicinit,y 
of this point gives as its first approximation , 

(6.30) 

where A= V- Vl and the subscripts indicate functions that are to be evaluated at ]I = Vl. 

'1'he value of v r equired in (6.30) is that which reduces o,g (l )(Vl) = O to an identity. It 
can be shown that this occurs for the angle ( l1o)1= ~ 7r- 8, corresponding to 

]11 = f3o sin 8 (6.31) 

According to the condition specified prior to (6.17), the angle 8 must therefore be such that 

(6.32) 

It is clear that this inequality cannot under any circumstances be satisfied at the shadow 
boundary where 8= 71'/2. With (6.31) and (6.26) we determine that 

1 
02g(1 ) (111) = - - - -

, f30 cos 8 
and 

2Pl 2f3o cos 8 1 R 
1+ P1 f30 cos 8+ f3 cos 8n +, (6.33) 

where R is the reflec tion coefficient for a plane dielectric surface [8] and the angles of incidence 
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and refraction are related by 
sin () 
- .--=n. 
sm ()n 

With these results, we have 

1 . [ 2 JI/2.7r J' a> [ . )..2 J 1jt(ll (b)"",,_ (l + R)e- 'Po Coso e'i" d'A exp -~ . 
2 7r(30 cos () _ a> 2(30 cos () 

(6.34) 

The value of the infinite integral is given in standard tables, and (6.34) can be reduced to 

(6.35) 

which corresponds in amplitude and phase to the sum of the incident and reflected rays at the 

dielectric interface for angles ()< ~ (fig. 3) . Note that further restrictions on (), such as (6.32), 

are no longer required. 

FIGURE 3. Depicting ray geometry. 

The second term in the expansion of (6 .1) is 

(2)1/2 . 7r f A . 2 . 
1jt(2) (b) = -;: e''4 - A dll(iJo sm 1'}0) - 1/2 (1 ; p )2 exp ~g (2) (p) , (6.36) 

where 
g (2) (II) = 2F (II) + g (l) (p). (6.37) 

Again, after finding the point P2 at which Ovg (2) (1'2) vanishes, we can approximate (6.36) with 

where ).. = P- P2 and the subscripts indicate functions that are to be evaluated at 1' = 1'2' 

According to (6.37) the required stationary point is the solution of 

With the help of (6.23) and (6.29) it may be shown that this equation is equivalent to 

(6.38) 

(6.39) 

(6.40) 

In order to discuss the solution of (6.40) in the plane limit we shall assume that (1'} - n is small so 
that sin (1'} - S-) is approximately equal to its argument. Then 

cos 1'} 0 
1'} - S-"'" -.--', 

sm 1'} iJ 
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where o= kd and terms of order (0 /(3)2 have been neglected. Accordingly, if (7] -.1) is to be n. 
smfl,ll quantity it is sufficient that o/(3=d/b« l, provided 7] ;;r::0 or what amounts to the same 
thing, ))2;;r:: (32. This requirement is, of course, the same fl,S that already imposed by the original 
Debye approximations. With this understanding, (6.40) can be put into the more convenient 
form 

[
COS 7] oJ . cos 7]0-2 - '--(3 = sm 0, sm 7] 

(6.42) 

Expanding the left-hand side of this relation up to terms of order 0/(3, we obtain 

(6.43) 

where as before 

))1 = (30 sin 0; PI 
{3 cos On 
(30 cos 0 

Since in this limit V2 is a perturbation on VI, all functions of V2 in (6.38) have Taylor expansions 
in the neighborhood of VI' Retaining terms in 0/(3 if they affect the phase of >/; (2) but not other­
wise, we find, for example, that 

g (2) ())2) = g (2) (V1) + ( V2- ))I )g (2)' (vJ + .. . 

=- (30 cos 0+ 2((3 cos On) ~+o (~r 
To this degree of approximH.tion (6.38) becomes 

(6.44) 

1 [ 2 J.1 . . .4J oo [ . A2 ) f (2)(b) "'--2 (l + R )(l - R) (3 0 2 eXp[-~{3ocOS O+ 2~ocosOnle ';;: clA exp -~2(3' 0 ' 
~ 7r 0 cos - 00 0 cos 

and wcfinally obtain 

where 

l - R 2(3 cos On = T 
(30 cos 0+ (3 cos 0" . n ' 

(6.45) 

(6.46) 

(6.47) 

The quantity, Tn, is the transmission coefficient of a ray incident on the dielectric surfacc from 
thc iatcl'iol' at an anglc On with the normal. If the transmission coefficient from the external 
region is designfl,ted by T = l + R, then the sum of (6.35) and (6.46) has the form 

(6.48) 

These two rays are depicted in fi.gure 3. It is an elementary exercise in geometry to show that 
their amplitudes and phases are exactly those predicted by ray optics, provided the dielectric 
surface is nearly plane over the arc segment illuminated by the bundle included beLween rays 
1 and 2. Additional rays for this quasi-plane example may be written down by inspection from 
the further terms of (6.27). 

7 . References 

[1] C. C. T a ng, J . Appl. Phys. 28, 628 (1957). 
[2] E . C. Titchmars h, Eigenfun ction expans ions, p . 113- J.6 (Oxford U nivcrs ity Press, Oxford, Engla nd, J.958). 
[3] N . Marcuvitz, Commu n. Purc Appl. Math. i , 284 (1951). 
[4] T . T . Wu , Phys. Rev. 10i, 1201 (1956). 
[5] R. D. Kodi s, Brown Un iv . Sci. Rpt. 139 ] /8, AFCRC-TN-57- 957 (October 1957). 
[6] C. N. Watso n, Bcsscl function s, p . 76, 2d ed . (Cambridge Univers ity Press, Ncw York 22, N.Y., 1945). 
[7] G. N. Watso n, Bessel fun ctions, p . 42, 2d ed. (Cambridge U nivers ity Press, New York 22, N .Y. , 1945). 
[8] J. A. Stratton, Electromagnetic t heory, p. 492-4, 1st cd. (McGraw-Hill Book Co., Inc., New York, N.Y., 

1941). 
(Paper 65Dl- 99) 

33 


	jresv65Dn1p_19
	jresv65Dn1p_20
	jresv65Dn1p_21
	jresv65Dn1p_22
	jresv65Dn1p_23
	jresv65Dn1p_24
	jresv65Dn1p_25
	jresv65Dn1p_26
	jresv65Dn1p_27
	jresv65Dn1p_28
	jresv65Dn1p_29
	jresv65Dn1p_30
	jresv65Dn1p_31
	jresv65Dn1p_32
	jresv65Dn1p_33
	jresv65Dn1p_34

