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Fresh or outside air needed for ventilating underground installations is introduced

through shafts or tunnels.

from the air to the rock in summer and from the rock to the air in the winter,
reducing the seasonal cooling and heating loads of the underground installation.

For a shaft or tunnel in continuous use, heat is transferred

thereby
The possible

benefit of this tempering effect in reducing the size and operating cost of the air cooling and
heating system of the installation cannot be realized in the design stage without a reliable

means of estimating the influence of the tunnel.
are developed by mathematical analysis of the problem,

computing the tempering effect

In this paper, equations and functions for

assuming a sinusoidal variation of the outside air temperature, and are shown to be in
substantial accordance with experimental results obtained in tests made in a small-scale

model tunnel.

1. Introduction

When outside air for ventilating an underground
chamber, or for other purposes, is drawn continuously
through a long tunnel or airway in rock, heat inter-
ch(mgo between the rock and the flowing air con-
siderably reduces, by the time the air reaches the
far end, the fluctuations of temperature to which
the entering outside air was subject as a result of
diurnal and seasonal changes.  The tempering thus
effected by the rock in (001111& summer air and heating
winter air may have an important benefit in reducing
the design size and operating cost of the air cooling
and heating systems of an underground installation.
Mine and tunnel air ventilation studies [1, 2]t have
shown qualitatively the reduction of the fluctuations
of temperature of outside air flowing into mines,
but have ventured no analysis of this process for
prediction of temperatures and heat flow quantities.

This paper presents the results of a mathematical
analysis of the heat transfer between the air and the
rock, assuming that the temperature of the entering
air varies periodically and sinusoidally. For the
case of long tunnels in rock, diurnal and short-time
climatic fluctuations are quickly attenuated and
damped out in the first part of the tunnel. Con-
sequently, the significant, fluctuation is the seasonal
or annual periodic variation in outdoor air tempera-
ture, which is known to approximate a sinusoidal
oscillation [3].

The mathematical solutions obtained are for the
ase of dry air. Efforts to take account of heat
exchanges between the air and rock due to con-
densation of moisture from the air, or its evaporation
from the rock, introduce mathematical complexities
that prcclude analytic solutions. However, the
results obtained for dry air are conservative in
regard to the amounts of heat transferred between
the air and rock, as the effect of latent heat transfer

*This work was supported by the Protective Structures Branch, Office of the
Chief of anmeors U.S. Army.
1 Figures in brackets indicate the literature references at the end of this paper.

is to increase the total heat exchanges to values
oreater than those given by the equations for dry air
conditions.

To determine the validity of the analytical
treatment for design purposes, experiments were

conducted on a small-scale model underground
tunnel, and the data thus obtained were compared
with the results predicted by the analytical method.

2. Analysis

To obtain a mathematical expression for the heat-
transfer characteristics of the rock surrounding an
air-intake tunnel, let us assume that the tunnel
takes the form of a hollow cylinder. Let us further
assume that the temperature 7, of the air entering
the tunnel varies periodically about its mean annual
value 7', in accordance with the following relation-

ship:
(’IVO— 7'1') — (71)(111:“) -

where the angle wf increases by 27 radians (360°) in
1 year.

For convenience in the development, we will use a
subrogated temperature 6, defined as (7—T),
where 7' is the steady temperature of the rock
remotely surrounding the tunnel. On this basis,
the subrogated annual mean temperature 6; of the
entering air is (7,—T5); the amplitude of entering
air temperature Varlauon (T 0(max) — T, 1s dosmnatod
as A. Accordingly, the equation above becomes:

To— T;=0,=06,+A cos wt. (1)

T;) cos wt

The hollow cylinder has a radius, @, but is other-
wise unbounded. The surrounding solid has a
conductivity K, specific heat ¢, and thermal dif-
fusivity e. The air flows in the O\hndm at a velocity
V in the direction of the positive z-axis. It 1s
assumed that in the surrounding rock, heat is
conducted radially but not parallel to the axis of
the cylinder, and the thermal properties are in-
dependent of temperature.
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Let M’ be the mass of air in contact with unit
surface area of the cylinder, ¢’ the specific heat of
the air, 6, the air temperature at a distance z and
time ¢, and A the coefficient of heat transfer between
the air and the cylinder surface. The heat balance
equation satisfied by the temperature of the air at
distance z is then:

M %01‘1+ V‘Zﬁ:l_{_h(or—ea, 2)=0 (2)

dx

where 6, , 1s the temperature at the surface of the
cylinder at distance x. The heat transfer at a
distance z along the cylinder surface is:

—K(df;;f):h(ez—em ). (3)

Equations (1), (2), and (3) provide the boundary
conditions for the differential equation for conduction
of heat in the solid:

106, 100,

r Or a Ot ={

0%,
br2z+
A closely approximate solution for the temperature of

the air at distance z, assuming steady periodic heat
flow, is:

T,—T=0,—e 4 [Acos (wt—AB’)+6, cos AB’] (4)

where A involves z, and A’ and B’ involve h.

The derivation of eq (4) is given in section 8.1.
The symbols are defined in section 8.3. The functions
A’ and B’ are plotted on figure 1 for a useful range of

the variables z(=a+w/a) and n(=ah/K).

3. Model Underground Tunnel

The model underground tunnel (see fig. 2) was
cylindrical, 6 in. in diameter and 33.7 ft long, sur-
rounded by 18 in. of 1:4 cement-sand mortar.
Several thicknesses of !4-in. hair-felt insulation were
placed on the outside of the mortar. Air was drawn
through the tunnel by a blower and its rate of flow
was measured by means of an orifice in the sheet
metal duct connecting the tunnel and the blower.
At the entrance to the tunnel was a sheet metal
duct containing chilled water coils and electric strip
heaters. The chilled water coils were used to cool
the air to a temperature below the lowest tempera-
ture to be encountered at the entrance to the tunnel.
The electric strip heaters were governed by a pro-
gram controller that modulated the heat input to
the air so that the entering air temperature varied
sinusoidally as a function of time. Thermocouples
were located at the entrance and exit and at various
locations in the tunnel, and in the surrounding
cement mortar, as shown in figure 2. The thermal
properties of the cement-sand mortar were deter-
mined from samples obtained during pouring
operations.
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Ficure 1. Values of A’ and B’ as functions of z(=a\"w—/a)

and n(=ah/K) for use in eq (4).

Each test consisted of four cycles of temperature
variation with a period of 16 hr and an amplitude
of about 20 °F. Because the transients due to the
initial nonperiodic condition were virtually elimi-
nated in the first two cycles, the last two cycles were
used for test results.

4. Results

Three tests, in which weight rate of air flow, W’,
was varied, were carried out on the model under-
ground tunnel. The parameters for these tests are
given in table 1.

TaBLE 1.  Test parameters

Angular velocity, w____________________________________
Tunnel radius, a_______________ I
Tunnel length, L
Thermal conductivity (mortar), K__ ___| 0.747 Btu/hr-ft-°F
Thermal diffusivity (mortar), e________________________ .031 ft2/hr
Specific heat (air), ¢/ ___________ .24 Btu/lb-°F

z=a \//w/a ______________________________________________ .89
|

0.3927 radian/hr
.25 ft

- 33.7 1t

Pertinent test data are given in table 2. The
observed entering air temperatures were substan-
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Ficure 2.

tially sinusoidal and conformed very closely to the
equations (within +0.25 °F), of the form of eq (1),
set forth in table 3. The observed values of air
temperature at the exit of the tunnel (L=33.7 {t)
were found to lag in phase those of the entering air
by about 0.14 radian. All experimental quantities
involved in eq (4) were determined directly, except.
the coeflicient of heat transfer, £. Since 6, is a
maximum when (wt—AB’) equals zero, eq (4) serves
for computing A’, from which the values of & were
obtained. The values of 4 thus computed are pre-
sented in table 2 and are compared with values of
the forced convection heat transfer coefficient cal-
culated from an equation given by MecAdams [4]
which, with appropriate properties for the model
tunnel and air substituted, is

h=0.016(TW")°-5, (5)
TaBLE 2. Dala and results from lests on model underground
tunnel
Test No. 1 2 3
109. 4 101. 4 100. 8
65.2 60.0 60. 0
87.3 80.7 80.4
22.1 20.7 20.4
95.0 90.2 91.5
75.0 71.0 71.2
85.0 80. 6 81.35
Mean remote temp. of solid (mortar), 7%, °F__ 83.2 80.3 82.2
0= T, O e 4.2 0.4 —-1.8
Air flow rate, W/, b/hr_ 336. 4 367.9 451.2
Coeflicient of heat transfer h, Btu/hr-{t>-°F:
From €q (4) - e oo oo 1.76 1.85 2.22
oI e Q) L SLE S 1.69 1.82 2,14

Diagrammatic skelch of model underground tunnel.

TarLe 3. Applied entering and predicted leaving — air
temperatures
Entering air (eq. 1) Leaving air, L=33.7 (eq. 4)
Test 1.______ | Ty=87.4422.2 cos wt TrL=85.1410.0 cos (wt—0.1417)
Test 2....___| y 0.7420.7 cos wt | TrL=80.5+ 9.7 cos (wt—0.1425)
Test 3. __ ‘ Ty=80.4+420.4 cos wt | TL=81.3410.2 cos (wl—0.1457)

Substituting the derived values of %, and observed
values of A, 6;, and the parameters from table 1 in
eq (4), for L=33.7 ft, we obtain the time variation
of the leaving air temperature as given by the equa-
tions in table 3. When these equations were plotted,
the curves followed the experimental data within
+0.25 °F.

The tempering effect of the tunnel on the air is
shown by referring to test No. 3, table 3, where the
amplitude of the air which was 20.4 °F at the en-
trance, was reduced to 10.2 °F at the exit.

Although the experimental data on air temperature
satisfied the analytical solution of the problem, it
was felt that further substantiating information was
desirable. Equations for the time-variation of tem-
peratures at various radii in the surrounding cement-
sand mortar were therefore computed from eq (12)
for test No. 3, as shown in table 4. Plots of these
equations with associated experimental data appear
in figure 3.

TasLe 4. Temperatures in the cement-sand mortar for test No.
3 al cross-section x=22.7 ft, as predicted by eq (12) of section
8.1

At radius 7=0.33 {t T'z,»=82.04-3.1 cos (wt—0.733)
At radius r=0.50 {t T'z,r=82.141.7 cos (wt—1.169)
At radius r=0.75 {t T'z,r=82.24-0.7 cos (wt—1.815)
At radius r=1.25 ft T2,=82.240.1
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Ficure 3.  Avr and mortar temperature history for model underground tunnel (test No. 3, lable 2).
Experimental data for temperatures in mortar at various radii from center of tunnel are denoted by symbols.
5. Discussion leaving air temperatures given in table 3. These

For the model tunnel, values of the coefficient of
heat transfer were computed from eq (4) and the
temperature amplitudes of the leaving air by the
method outlined in section 4. A comparison of
these coefficients with those determined from eq (5)
shows agreement within 5 percent, which is within
the probable accuracy of the thermal properties of
cement-sand mortar as determined by tests on a few
samples.

For tunnels or shafts probable in underground
installations, the diameters are likely to be greater
than 3 ft. Values of the coefficient of heat transfer
are not found in the literature for airways of this
size and would be particularly difficult to predeter-
mine for the rough and irregular surfaces usually
resulting from the excavating process. However,
reasonable values may be estimated from compro-
mise considerations of values determined for air flow
in small cylinders and air flow parallel to planes,
and with an allowance for roughness of surfaces.

Substitution of the parameters and the derived
values of & into eq (4) gave the equations for the

equations showed differences less than 0.3 °F when
plotted with the experimental data. Differences
less than 0.5 °F were found between observed tem-
peratures in the surrounding solid (mortar), and those
computed by eq (12), as shown in figure 3.

Because the experimental data agree closely with

values computed by eqs (4) and (12), the analytic
appxoa(‘h developed in this paper should be appli-
cable for determining temperatures in tunnels of
larger size.

6. Application to a Practical Problem

To design heating and air conditioning equipment
for an undelglound nstallation, it is necessary to
predict the maxunum and minimum temperatures
of the air when it is delivered at the installation.
From eq (4), the maximum and minimum tempera-
tures occur when wt=AB8" and wt=n-+AB’, respec-
tively. Using eq (4), these extreme values’ may be
written

(6) m==2"44" (A0, cos AB’). (6)
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Figure 1 1s a plot of A” and B” as functions of n and
z computed for a range of values expected in a
practical problem.

For a sample hypothetical problem, consider a
square tunnel with nominal dimensions 7 ft by 7
ft by 2000 ft long, continuously delivering air to an
underground installation at a rate of 50,000 cubic
feet per minute, or 228,000 pounds per hour. For
noncircular cross sections, the equivalent eylindrical
radius, @, is equal to 2 (cross sectional area)/(per-
imeter). Assumed parameters for substitution in
eq (6) are given in table 5.

TaBLE 5. Parameters for hypothetical problem

Thermal conductivity of surrounding rock.
Thermal diffusivity of surrounding rock___
Angular velocity (period one year)
Coeflicient of heat transfer_
Equivalent radius of tunne
Amplitude of outside air_

Mean temperature of outside _
Remote rock temperature______

Specific heat of air_ ________________________
‘Weight rate of air flow_ N

ah/K=10
@ v"w/aZU.:')
=4.48

2. gy S

A’ (function of z) figure 1.

B’ (function of » and z) figure 1. - =2.15
K L/e’W'=0.0439

) O

The extreme values predicted by eq (6) are

(0) =34 and —39 °F.

Because 0 is a subrogated temperature based on a
zero value equal to the remote temperature of the
surrounding rock, the maximum and minimum air
temperatures at the end of the tunnel (L=2000 ft)
are 55+34=89 °F and 55—39=16 °F, respectively.
The maximum and minimum outside air tempera-
tures (eq (1)) are 97 °F and 7 °F, respectively.
The maximum and minimum air temperatures at the
end of the tunnel lag those at the entrance by an
angle equal to AB’, which in this case equals 0.094
radian, equivalent to a time-lag of 5.5 days.

Although the rates of heat loss and gain of the air
in a tunnel were not discussed in the experimental
portion of this paper, they are of considerable interest
in the application to practical problems. For the
hypothetical problem, the average rate of cooling
by the rock during the cooling season (eq (14), sec-
tion 8) is 251,000 Btu/hr, or an equivalent of about
21 tons of refrigeration. The average rate of heating
by the rock in the heating season is 309,000 Btu/hr,
equivalent to the heating effected by burning about
3.35 gallons of fuel oil per hour. The maximum
cooling and heating rates are substantially greater
than the average, as indicated by eq (13).

7. Conclusions

Mathematical equations are derived for computing
the tempering effect of a long tunnel in reducing the
amplitude of climatic temperature variation of out-
side air flowing through a tunnel. Results of experi-
ments support the application of the developed
equations for design purpoces.

The functions necessary for design use of the
equations have been evaluated for a useful range of
the parameters and are presented graphically.

In the design for heating and air conditioning sys-
tems, fresh or outside air necessary for ventilation of
an underground installation represents a portion of
the heating and cooling load for the installation.
Without a means for determining the temperature
of the air at the end of its passage through tunnels
or shafts, the designer is forced to rely upon the
outside air temperatures for design conditions. The
hypothetical problem of section 6 shows that the
heating and cooling loads for design purposes are
considerably reduced when the temperature of air at
the end of a tunnel is predicted by the derived equa-
tions. These equations are included in a design
manual for military installations [5].

An assumption has been made which develops a
degree of uncertainty toward the use of the equations.
An effective coefficient of heat transfer value “A”
suitable for a particular application may, in most
ases, only be determined as an educated guess, be-
;ause no predictable values for large size tunnel
airways are available from literature.

8. Appendix

8.1. Solution of Heat Transfer Problem

With the boundary conditions as set forth in eqs
(1), (2), and (3) of section 2, eq (4) may be obtained
by assuming that the temperature in the surrounding
solid at a cross section at a distance z from the en-
trance is

6, ,=Fe'“t, where F=f(r) )
and also that the temperature of the flowing air is:
6,=Ge'¢t, where G=f(x). (8)

By substituting the appropriate derivatives of eq (7)
in the differential equation for conduction of heat
radially in a cylindrical system having angular
symmetry:

0% 100 160_0
o2 ror aot

the latter becomes

prplp el
r 0%

This 1s the modified Bessel equation of zero order,
for which the general solution given in terms of the
modified Bessel functions 7,, K, is

F—DI, <1' \/ %>+( K, <r \/ %)

For I to be finite as » approaches infinity, D=0,
and a particular solution is:

161



F=CK, (r\/ %)

and from eq (7),

b= CetetKo (ry 2} ©)

Differentiating,
) ()
dr),_, a a

Substituting eqs (9) and (10) in eq (3), and solving
for ) eq (10) becomes:

B "
) _ gy o (o)
ar) - Tia T f“’)
EK1<“\/Z)+EK°<" o

Simplify by letting

Ce'et (10)

(10a)

2:(1\'/(.—0/—11
Ky(z4[1) =Ny(2) i,

Vi Ky (24/) = Ny (2) et +5}

n=ah/K
_. N2
P A 0(2>

u:¢1(2>+3{—¢0(z>.

Where values of the functions of Ny(z), Ni(2), ¢o(2),
and ¢:(2) are given by MclLachlen and Meyers [6], eq
(10a) becomes

_ 4@)
dr),—
Rationalizing and further simplifying, eq (3) be-
comes

(0) nPel(u+1r/2)
a n_i_Pez(;.rf-‘lr/Q)

Ky, P—

d
-k(3)

=58 A yiB b0,

7 sin u-Fin cos u

D)
l—i—{—%—2 Sin u

2ma
where
e ?:r(f n m ,u) N
———I-P—Q sin
B’— 2T COS p (5 )
——]—--—2 Sin g

Substituting the above in eq (2)

Ko,

dw+dt Yomireq (A’ T1B)=0.

Substituting from eq (8),

VG’ +iol 4 r - (A'+iB)=0.
Letting A= dte 4

2maVM'c’ W'’

the solution of the differential equation is:
G—Je [—@—Amq qB’)]-
Substituting in eq (9),
b—Je [iwt-—%—}—A(A’ﬁ—iB’)]-

Equation (1) states:

Bo=0:+Ae' !
then

J:A+0¢€iwt.

Making this substitution,

A4 I:Aez' (m-‘%f-_u;’)_}_eieﬂ <‘;’J+1B'>]

Considering only the real part,

‘AA’[Acos<wt—————AB >+0 cos ( + —}—AB’)]-

For frequencies w under consideration, the term wz/V”
is negligible and a closely approximate solution is

0,—e *[A cos (wt—AB’)+0; cos AB’]. 4)
Without giving the derivation from eq (9), the

temperature at radius, 7, in the solid surrounding
the tunnel is:

0.
t+S— = S—
R Ny(R) cos (wt+ T)+A cos ( T)
Ny(2) \/ DY P
()’l) + 2 SN u
(12)
where

R=rvwja=rz/a
S=¢o(R)—¢o(2)—AB’

T L COSUE

——sin u

P
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8.2. Air Heat Exchange

At any time, f, the rate at which heat is lost by
the flowing air is:

q=W'¢ (6—0,).

The maximum rates of cooling and heating of the
air are given by

W'e' [£Ay1+e 244 —2¢-44" cos AB’

+6,(1—e=44" cos AB’)].
If it is assumed that cos AB’~1.0, then

gn=W’¢’ (1—e=44") (£ A+0,). (13)

The average rate of heat flow for a given cooling
or heating c\(lo is:

. 2A ,
qau:]ir/(,/(l_(/.__.1;1’) <i7+01>° (]4)

8.3. Symbols

Unless otherwise labeled, quantities are dimen-
, d
sionless when consistent units are used:

A=KzW'e’,

2r(P—n sin ) . .
A== it ~— Bty plotted on figure 1 as a function

,l)_+_,;l,_; sin of n and z,

a—=radius of hollow cylinder, {t,

=2(cross section)/(perimeter), for noncircular
cylinders,
! 2mn cos - ; ;
'= P £, plotted on figure 1 as a function
n i
1)_+_ —2sinp ofnandz,

c=specific heat of surrounding solid, Btu/lb-°F,

¢’=specific heat of air flowing in cylinder,
Btu/lb-°F,

e=Dhase of 1\(1])(‘112111 (natural) logarithms,

h—coefficient of heat transfer between air and
surface of cylinder, Btu/hr-ft>-°F,

K=thermal conductivity of surrounding solid,
Btu/hr-ft-°F,

M’ —=weight of fluid (air) per unit of surface area

ol eylinder, Ib/ft?

n=ah/K,

P=2N1(2)/Ny(2),

g=heat flow rate from air to tunnel wall, Btu/hr,

r=radius, {t,

T=temperature, °F. 7, is temperature of air
entering tunnel; 7’; is annual mean value of
Ty. T is the steady temperature of the deep
underground rock remotely surrounding the
tunnel,

=time, hr,
V=velocity in tunnel, {t/hr,
W’ =weight rate of air flow, 1b/hr,
r=distance from entrance of tunnel, ft,

z=ayw/a, ) o )
a=thermal diffusivity of surrounding solid,
{t2/hr,

A=amplitude of annual variation of 7, about
the mean value 77, °F,
- (r WO(mux)_ 7‘1‘) =1 /Q(Tﬂ(ma.\')_ Tﬂ(min))’
pu=¢1(z) +m/4—¢o(2),
f=subrogated temperature, equal to (7—75), °F,
0;—subrogated annual mean entering air temper-

ature, equal to (7,—1T}), °F,
w=angular velocity, radian/hr.

Temperatures at various positions are indicated by
the subsecripts:

0=at tunnel inlet (z=0, < a),
z=at distance z from lumwl mlet (r<<a),

L=at tunnel outlet (z=1L, r<a),

ra=at radius 7 at distance z from tunnel inlet
(r>a),

a,x=at tunnel surface (r=a) at distance z from
inlet.

The subscript m denotes a maximum or minimum
value.
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