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For a suffi-

ciently differentiable set of functions we derive a class of quadratic integral identities relating

surface integrals of derivatives to integrals over R.
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Here A denotes the Laplace operator and 0<p(x).
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identities we consider a solution u of the
u=f on S.

These identities are a generalization of
des Mathé-
Payne and H. F. Wein-
As an example of an application of these
value problem Au—pu=F in R and
We obtain pointwise a

priori bounds for the derivatives of » in R in terms of a quadratic functional of an arbitrary

function.
small.

1. Introduction

In a recent paper [6]% L. E. Payne and H. F.
Weinberger give a method for obtaining bounds for
solutions of second order elliptic boundary value
problems. In that paper they give a generalization
(see eq 2.4) of an integral identity of Rellich [7] which
was essential to their method. This generalization,
which was first obtained and applied to hyperbolic
operators by L. Hormander [4], displays the highest
derivatives in the form of a second order operator
lu=(a"u,;),;. This fact makes the identity useful
in treating boundary problems for the corresponding
differential equation Lu=1F.

Use was also made of this identity by Hubbard
[5] to obtain bounds for membrane eigenvalues by
finite difference methods.

In section 2 we give a further generalization of
Hormander’s result, which involves higher deriva-
tives on the boundary and where the highest order
terms enter as derivatives of Lu. Section 3 gives
an application of these higher order identities in
obtaining pointwise bounds for the derivatives of a
function w. The particular problem treated assumes
a knowledge of Au—pu in a region R and u on the
boundary ¢’ where A is Laplace operator and p>0
in R+C. Because of the important physical appli-
cation of thislequation (see e.g.'Bergman and Schiffer
[1]), this problun was chosen as an cxample to illus-
trate a use of the higher order identity. More
general equations could be treated with only tech-
nical modifications. Other methods for obtaining
explicit pointwise bounds for derivatives in such
problems have been given by J. B. Diaz [3] and by
Payne and Weinberger [6]. In both cases the
method given involves differentiation of thc funda-
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Hence the Rayleigh-Ritz procedure can be used to make the error arbitrarily

mental solution in Green’s third identity, thus
introducing more singular behavior of the bounds
as the boundary is approached. In our paper the
bounds for derivatives of all orders have the same
behavior near the boundary, provided the boundary
data is sufficiently differentiable.

Extensions of the fundamental identity (2.4) can
be derived for higher order operators by the same
technique used here. One such, involving the
biharmonic operator A%, is applied in a forthcoming
paper of J. H. Bramble and L. E. Payne [2] to obtain
explicit pointwise bounds in the biharmonic Di-
richlet problem.

As has been previously pointed out in various
pld(os (see e.g. [6]) bounds of the type obtained here

can be used in conjunction with a Rayleigh-Ritz
technique to approximate the unknown solution (or
derivative) arbitrarily closely.

2. A Class of Quadratic Integral Identities

[1(“‘

L(u (2.1)
be defined on a region R in [, with boundary (.
The symbol |; indicates covariant differentiation
which coincides with ,; (partial differentiation with
respect to z?) in Cartesian coordinates. A repeated
index indicates summation from 1 to N. The sym-
metric tensor a”(z) is assumed to possess piecewise
continuous derivatives of order M-1. In addition,
let the eigenvalues of the matrix ¢” be bounded
away from zero and infinity in /2. Hence there
exists a positive constant, @, such that for all real
nonzero (&, ¢,) and all z in F?

= ((I’ij'/)j)li)

N N
a ' D) 8<aE<a 2 & (252))
= =il

Under these conditions £ is said to be uniformly
elliptic.
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Let fi(x),A% (x),

Al (x) be symmetric tensors
of the second order with piecewise continuous
first derivatives in R. L. E. Payne and H. F.
Weinberger have developed the following first order
quadratic identity [6] and used it to obtain pointwise
bounds in certain boundary problems. It is clear
that
(f"a ) 3) = (f"@") i) ) 5+ 210 00 U

- (fma' 7) |m 512 (_JU"G» uu[ iU ) 13
2™, L(w). (2.3)

— 2P U U —

An application of the divergence theorem yields
?{f’”a”—ija""‘}ul ,u;jv,,,(/s:fQI Ty L (w)do
c R

+fR{ (f"a") im—2f{ma™ }u u  do.  (2.4)

In an analogous manner we can develop a homo-
geneous quadratic integral identity involving second
derivatives of % on the boundary . Now
(" AV a* w5, 51) | m

= (f"AYa") |y ity 512" AV U 1520 g
= +2(f" A" w15 ) | 1 — 2" A0y (L)) ,
(A" —2(f'AYa™™) g 0
+2f A (@i ) ) jme  (2.5)
After applying the divergence theorem we have
§A’” {f a7 —2fa™ } w0, ;v ds
#
:—ZJ frA: fu‘,-,,,([;u)“(lv+2] FrAY (aFiw ) | W) jmd0
R R
WP LA id ki
+f { (fmAIJ(l )1,,1—2(.[.4('1”(1/ m),m} u, ,-ku‘j,(lv. (2.6)
R

The corresponding identity which involves covariant
derivatives of order A/+1 on the boundary is

?C A Ale{fm o fl km}/u’lkilu.i‘uuiljl‘..juyﬂlds
=—2 f . FrAY ALY g gm0
+ [ (grai A,
R
—2(ff AN AR Y,
+2 f A AR @l

inkWijy . . . a2V

j!l["l(ll"

(2.7)

Since the integrands are in each case tensor in-
variants, we may perform each integration in the

Wl . ..

most advantageous coordinate system. Since bound-
ary conditions usually are given in terms of normal
and tangential derivatives we shall display the deriv-
atives appearing in the boundary integrals in such a
form. Assume (' to be a surface possessing M1
continuous derivatives as given in the parametric
form

Xi:GL'(yl’ , ,y]\'—l)7

The unit normal X(y) satisfies

i=1, ... N. ©28)

the conditions

GEXe=0) wi=l, , N—1,

A= 2.9)
and the orientation of X?is taken inward. In what
follows Greek indices will always range over 1, . . .,
N—1, whereas Latin indices will refer to 1, . . ., N.

We introduce geodesic normal coordinates (', . . .,

y™) in a strip immediately adjacent to the bounding
surface. The transformation is given by

L R
The coordinate ¥~ refers to a distance along the

inward normal to ' at the point (y . . . y¥ ).
The metric tensor has the form

Jas= (G, +y" X E) (G f+y" X §),
Jan=(G 2 +1" X 5) X*=3y" (X*X") ,»=0,

Ian=X*X*=1

Sy, (2.10)

(2.11)

The Christoffel symbols which involve the normal
coordinate yV are

{5 }5e
{ N\ 1 bq,,,
20"

{w}={aiv}={aw}-o

The various second order covariant derivatives of u
then have the form

1 [k }a
oy yf B "

bqw

V 2

(2.12)

U o=

Uy =11 v U g
jaN —=U|Na= 07/“67/‘\’ aN
_ oL
"/JNN——'(DTN)Q' (2.13)

We indicate with a bar when the tensor is expressed
in geodesic normal coordinates. Our operator takes
the form

Lu=(a"u,;),;= (@',;),,. (2.14)
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When £ is the Laplace operator A we have

Au=08"",; ;7 =U,nn+ GPU ap,

since ¢gV=0 and ¢"¥=1. Also the first invariant

takes the form
lgrad u|?=(u,y)%+ g%, o U,p. (2.16)

We now express the boundary integral appearing in
(2.4) in geodesic normal coordinates,

——g) {f¥aii—2fai™ }a,, u,dbz—(i)

aﬂﬂu yall vﬂ)

N () — 2, @, S, (2.17)
If L=A then @“=g" and (2.17) becomes
—ﬁ {?A\v[(gaﬂﬁ)aﬂyﬁ) - (EVN>2]_‘2(.7(1%)&):&!4\7}([5"
(2.18)

The surface integral in (2.6) can be treated in a

similar manner to obtain

45 A9 (T T i5— T (Typy) ()]

—2(F9% ) (@, ) }dS.  (2.19)

In particular if /%, A**is chosen on 'so that

fN ANN
B (2.20
fa=Aai—()
then for L=A (2.19) takes the simple form
—(ﬁ{.{/“ﬂﬂl‘v"ﬁ_v’, (U nw)?}dS. (2.21)
Jc

In view of (2.15) we have thereby isolated an in-
teresting combination of mixed normal and tangen-
tial second derivatives on €' in terms of second order
tangential derivatives on (' and certain integrals
over .

In fact, a specific mixed derivative, say %y, can

be isolated in this manner. lLet
Bl el
Av=1, AV=0 i, j#o (2.22)
Then for L=A (2.19) becomes
—Cf {97 50108 (U n0)? } dS. (2.23)
o/ C

As we shall see in the next section, these choices of
f1A¥ will enable us to obtain new pointwise bounds
for derivatives in certain boundary problems.
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The following notation will be used throughout
this paper. liet f(x) be a piecewise continuous func-
tion on R+4C, then

frr=max f(x)

Jn=min f(z)
reR+C ’

2.2
zeB+C @2
For N=2, 2'=G'(y") represents a plane closed

curve. KEquation (2.10) becomes
x'=G@G(S)+Nn'(S) (2.25)
where we have set y'=S (arclength along ') and
y¥’=N (distance along the wunit inward normal
(n', n*). If K(S)is the curvature of € then we have
g"'=((1—K(S)N) 2,

gr=g"'=0, g¢®=1.

(2.26)

this coordinate system 1s, of
ighborhood of

, course,
|
Ul points are

The use of
restricted to a certain strip in the nei
the boundary where in terms of it :
uniquely defined.

3. Pointwise Bounds

As was previously noted, Payne and Weinberger
[6] made use of (2.4) in order to obtain bounds for
solutions of second order elliptic partial differential
equations.  This identity enabled them to estimate
the integral over a closed surface of the square of
the normal derivative of a solution of a second order
equation in terms ol integrals of the squares of the
function and 1its tangential derivative over the
surface. In order to bound the derivatives at
a point within the region they noted that one could
differentiate the “Green’s Identity,”” being careful
to define a “parametrix” in such a way that this is
permissible.  The resulting estimates have the dis-
advantage that the coeflicients become infinite more
rapidly as the boundary is approached than do
those in the estimates for the value of the solution
itself.  This procedure has also been used by Diaz [3]
in estimating derivatives at a point for solutions of
Laplace’s equation.

One could proceed in an alternate manner.
is, instead of differentiating the “Green’s Identity,
simpl) write the identity using for the function 1()
be evaluated at the point, the derivative of the
solution. This leads to the estimation of surface
integrals of squares of second derivatives of the
function over the surface in terms of surface integrals
ol squares of tangential derivatives of the function
over the surface. The identity (2.4) gives a means
of obtaining the necessary lll(‘([ll.lllll(‘b.

As an example of an application of these identities
we consider the problem of obtaining a priori
pointwise bounds for the derivatives of a function
u for which =Au—pu is known in R--C and u is
known on (. Here 2 1s a simply connected finite
plane region bounded by the smooth closed curve
C, A is the Laplace operator and p(x,y)>0 and

That

LX)
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bounded together with its first derivatives in R+,
(The function p is taken to be positive in R+C for
the sake of convenience. By a slight modification,
similar results could be obtained for p>0.) We
assume that Lu and w are sufficiently smooth in
R and on €' respectively,

As a starting point we use the “Green’s Identity”

5 ! ol o , .
(P)— IAuLHg} 0o la”>r/b, (3.1)

where v is any sufliciently smooth function in 2 (¢

Pis apointin the interior of R, =—— Inrp(rpe=dis-
-y g

tance from the point 2 to another point ), nn(l—og

is the outward normal derivative. Now let

U — Then we have

ou,
or;

.u,i(l’):J IAu,,(/A—{—gD (u” on

which may be written

%-’)m, (3.2)

(P = (P = | T@u—p,da= [ v,
R

v

3 or bu,, .
—{—‘(p(v<u.,- 5. —T 2 ) dS. (3.3)
We shall consider x,(P?), since x,(I°) ——71,,(/ ) 18

assumed known. \l.ll\mu use of Schwarz’s inequality
for vectors it follows that

xi(l’)x,-(l’)gl(.-(L J pud A-D(u,u)
~ R

. . Qu.; Ou.,
+j>(,u,,-u,,-l/5+v o On_ on

where D(u,u) is Dirichlet integral, and

- IS) (3.4)

Kr=8| 1r2/aiad '\})'2(//1-[—[ I*prd A
R R
+56 <°F ds+¢ s, (35)
(o}

ou,; Ou,;
. on on

Now we have

(/S<§ﬁ Wy U,y ,AS (3.6)
.

and in terms of the normal coordinate system intro-
duced in section 2 (\\l“l the boun(l(u\ coordinate
taken to be arc length, i.c., y'=S, i2=N),

g; U, i,dS:& Uy +2uinstulssdS.  (3.7)
C G

Now on C, Au—pu=uyy+u;ss—pu, so that

j} u,iju,,-»,-(/S:g) [pu—w ss— (Au—pu))?
C C

| u;—’whwzg; uiysdS, (3.8)
g
Noting that
O . du %, ;. du
uss=55—K gn=os+K 5 (3.9)

we have that

(p U, ’I//A/<)q>[ 1)11——az IAU_[HII) Ou) iS
> w
! ‘”fpp(bn)

[t follows from Green’s Identity and the arithmetic-
geometric mean inequality

dS+2 Cﬁ wiysdS.  (3.10)
JC

2
a1 b Saza?-l—%; a >0 (3.11)
(634 (04

that

a //b

1 (Au—pw)? ‘ ) 16
+2JR P04, (319

Clombining (3.10), (3.12) with (3.4) we obtain

4 2 2
X, (pIx:(p) < I{,-(Lf @_@,)ﬂ‘_)__ A

—{—"¢|: /)11—9—11) ](lS—I—?i Qu as
—}—‘) u /S+ ?(Ou) dS Fuiu.\g]b>

(3.13)

])J puwrdA-+D(uu) <
“J R

bu

All terms on the right hand side of (3.13) except
the last two are in terms of data. In order to bound
the integral of the square of the normal derivative
around the boundary we write the identity

bu ou . ouou |,
2~ - 222

i On O
:I If“.,;é"f—f.’?j—v/'{',-I?/,,11,,([11—2] SuyAud A,
JR /5
(3.14)
which has its left hand side essentially in the form

of (2.18). Here a7=6", n; and s; are the unit nor-
mal and unit tangent vectors respectively and JE
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an arbitrary continuous, piecewise continuously dif-
[erentiable vector field in R+ . We choose f* such
that ffn,=0 on €. (For example, if /2 is sldl—slldp(‘(l
with respect to the origin, then we may take ff=uz*.)
From (3.14) we obt.un the inequality

(F*m) 56(3’,‘2 48
SEP,[W'“ i | (35) @

(f fl’)uj

+ (O K+ K)D(u,u) + purdA
R

L ' LT N NI DT
—}—KJRfj (Au—pu)dA  (3.15)

where € is any bound for the largest eigenvalue of
the coefficient matrix [—/%867 /' ]+/ a5 and K, and
K, are posili\"o Let c=max [}, (f‘/ 'p)ar) and choose

— 2 9
ot Ky Ky =22 talke Ky — YO 20

o (For example,
1

and K,= I{,—.) Then we have, using (3.12) and (3.11)
1

with (3.15),

T o A fouy CP "
L, d S kn,
2 (./ Ny, )///‘ '(. ( ()'l ) (/ SS‘ A [/ Ny,

9

4(f%)%] (OUN? o K1 fipirnm— moye
aF (fn;) :I(()S) 4S5+ (7 Jlff Ji(an /”l) ’/‘1

(8 pu)? § s s
T [\|.[/. P - s ‘+[” (f’/,l) S, (3.16)

or for simplicity

N a"\ 2 N N b Y N Oll
fP(bh ) dS S(lrlg)(vuzzlb . ("2g>,, (\O.\' ) dS

B '(I;;g) (Au—pu)*dS
(o4
where
K2(f*n);,
(I’_Q(/n/s)m [f 711 f”l) -

== ,/) { *(f' ' ”+AII' }

Finally,

(1=

we need to obtain a bound for éuzwsl/bﬂ

c
We make use of (2.23) and (2.6) assuming that the
vector field f* and the tensor field AY have heen
chosen as indicated. We then obtain the identity

q) (Wins— ltfs,s)(l'b"*—zf JrA Y, 4 (A), dA
o C R
+ f ALY =2 FUA) e d AL (3.18)
R

We assume also that /7 and A% are bounded together
with their derivatives in R-+C. (If the boundary
is sufliciently smooth one can define these tensors

(in the (S,N) system) as follows.  Let
f'=0, fr=(1—KN) 1
_ for N<=
An—An_Ar—0 A"=(1—KN) =

) 1
for N >=
>K

where K is a constant greater than the maximum
curvature K, of C.
Using (3.11) and Schwarz’s inequality we obtain

from (3.18)
Cﬁ uﬂ-,«/SS? u’j’SS'IS—i—J (Au—pu),(Au— pu),dA
~sC {6} R
—{—J (pu),,-(pu),,-«/;H—j C' %y nd A (3:19)
R J R

where

( ikl )fA,I {mi, ‘”/Jmn (‘/mllij)“"'(Ikl;g(j?‘_llij)Jk_ (_;2())
The last term on the right hand side of (3.19) is
bounded as follows:

J (""")/‘,-,‘1/,/-,4/41§/)’J Wy i, 1A (3.21)
J R

JR

where Bisa constant.  After a moderate calculation,
making use ol the definitions of /" and A” in the normal
coordinate system, it is possible to obtain the bound

B=14+K—K,+max (K, 2|2(K")*/K>*—K|x)
where K’ is the derivative of the curvature with
respect to are length. Now using the divergence
theorem we have

. | > d
JRu,iju,i](l‘-laﬁu,i <nj b—x,—ni 7;) w, AS
+ J (QuydA  (3.22)
R

where the n; are Cartesian components of the
exterior unit normal.  We may rewrite the boundary
integral in terms of normal and tangential derivatives

and obtain
f o idd=+2P S S5 ds

G

ou O*u

)ls+f (Au)?dA.  (3.23)
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Using (3.11) we have
fu,,,u,“ A<g§ <Du) ds+<ﬁ (a“) as
+56 (HK)( )dS+‘?f (Mu— puytd A
+2 JR (pu)dA.  (3.24)

Using (3.11) and (3.12) we have the inequality

fR (pu)2dA§pM{§ urdS
+§ﬁ< )ds+f (u— ’”‘) dA}- (3.25)

Combining (3.17), (3.24) and (3.25) we have

J Uy iUy dALD ?u dS+b, 9/)‘(611 (IS
—H);,Sﬁ o u> (IS—H)J (Au—pu)*d A

where

bl_[(l+K)IVI+‘)PAI1(11+2])1I bv:l(lTLK\\[‘!")]"V\(I-
+Kary bs=1 and bs=2+[(1+K)a +2parlas+2pu/pn
(3.26)

Now in (3.19) we are left to consider the terms
4> U ssdS and J (puw),; (pu),;dA.
JC R

In order to bound the latter we can write

L(zm),t (pu),dA

:f (p’ip)iu2+2pu) i, iu+pzuyiu)i)d‘4
R

< [ (i) (Gouetufia - 320
R P 2

D D
where (3.11) has been used with a:\/ip’—;)&-

Now (3.27) and (3.12) yield

I (pu);i(pu)ridA

l zpvipvf ,2> {? 2 ?(% 2 Aw
g2<—p +17) { Puas+¢ bn) as

(Au—puy } :
+fR 7 dA ¥ (3.28)

and hence, using (3.17) we have

f (pu),,(pu), dA<ec, ?u?(IS
R (o4

?( ) dSH c;?(Au*pu)%S (3.29)

where
I '21)”-1)”- 2’)
== 2 g 1+ay),
ei=g (. P ) (U
1/2p,:p,: 2)
== =1 @
2( 5 i x
and

_l zp)ipri 2> ( i)
03—2< P i M aa+]’M
Finally we have from (3.9), (3.11), and (3.17)
; ou\?
ngst <2K3,a, P uw2dS +2K3,a, — ) dS
¢ J \os
o%u\? =
—|—2§<—;> ({S-FZAL%,UBI (Au—pu)*dA.  (3.30)
o \0s? R

Combining (3.19), (3.21), (3.26),
we have

gﬁuwlswlgﬂ uws+d§<a“ (zswgg a“ s

—th‘ (Au—pu)2dA+(/;,J (Au—pu),(Au—pu),;dA
R R
(3.31)

(3.29) and (3.30)

where
(]1— K¢1(11+Bb1+01, (]2—2K Gg+Bbz+C2,
([3:2+Bb3, ([4:2K§{a3+Bb4+03 tllld ([5:1.

Now (3.17) and (3.31) may be inserted into (3.13)
to vield the desired bound,

xX:(P) < Kr {ﬂl ﬁuﬁdS‘i—ﬁz ﬁ(%?)z ds

+33§ﬁc <§—S%’“>2 dS+8; f (du— puyl

1 mf (Au—pu),,—(Au—pu),,dA} (3.32)
R

where the 8,'s are explicitly determined constants.

It should be pointed out that for the sake of
simplicity, no effort was made to obtain the ‘“best”
such bound. Better bounds could be obtained, for
example, by leaving certain known quantities under
the sign of integration (compare equations (3.16)
and (3.17)) rather than replacing them by a maxi-
mum value.
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4. Higher Derivatives in N Dimensions

The process described in section 3 can be general-
ized easily to higher derivatives. In boun(lnw the
Mth derivative we must require the existence and
integrability of Mth derivatives of Au—pu, pu, and
\1+1 tangential derivatives of u on . We also
assume that bounds have been obtained for the
various lower order differential invariants.

The mode of generalization will become apparent
from the case M=2 where we assume that bounds
have been obtained for

J pu%lz*,])(u,u),] u,fju,ij(lz',Cﬁ L ds, ?u, iUy i 7S
R R Joon (c]

(4.1)

as was done explicitly in two dimensions in the

previous section.
If w, denotes the surface area of the unit sphere
in N dimensions then

== 1|

Ny V>2
(A)\ - 2)0),,1 PQ

= N>2 (4.2)

We can write

1s a fundamental solution of Au=0.

Xi;(P)=u,;;,(P) ——JRI‘(Au— 1’)u),,»jrlz':fkl‘(pu),,~j(11,‘

,bu 1
+<ﬁ ( "’bz a

I2dv does not exist for N >4 we cannot apply

(4.3)

Since
R . . . 93 .
Schwarz’s inequality, as was done in (3.4), for dimen-

sions lnghol than three.
For N >4 we apply Schwarz’s inequality as follows

» 2
(J I‘wlv) Sf r“'“I‘?(lvf r~ @ =Day2dy
R R R

where the singularity of T is chosen as the origin. In

order to boundJ =Y =D2dp we use “‘Green’s Iden-
R
tity”
,__J [A().— (N—3))1L2__,.— (A\/'—B)Au2]dy
R
=Boundary Integrals.

Now using (3.11) we can easily obtain

. 4 .
f r~ ¥ Pty <o N7 f r~ V= (Au— pu)*dv
R alN—{( Jr
+Boundary Integrals.

This same basic technique may be used to handle all
terms in (4.3) for N>4.
606580

61—4

The boundary integrals occurring in the above in-
equalities are the same as those to be dealt with
below.

We shall show how the desired bounds may be
obtained for N<3 since in higher dimensions only
technical details enter.

Applying Schwarz’s inequality,
(3.4), we see that

as was done in

X, (P)x:,(P) SKl.{Jk(pu),f/(pu),,-fln

+§ ,1,71,,,41S+g> Ou,,,bu,,,] IS} (4.4)

where Kr is given by (3.5).
We see that

J(l’u)n‘j([’")yfj(/?‘s:; ])m'_‘])—”> fplﬁ
R P MJR

+12(1),,1),i)j,1)(11.u)+3])}§,J WUy igly i 5dv,  (4.5)
R

but by assumption each integral on the right side of
(4.5) has a known bound. Snml(ul_\' we assume that
a bound is known for Bu,u,,dS.
C
[t now remains for us to obtain bounds for the last
term of (4.4). We see that

Qu,;; 0U
on

) ]\_

G s W S
on i./ J" Uy ixnU) jIN

C

?(/"B([st u]a‘YVUBM \(ZS+O§ aﬁu]aN’VuiBVVdS
c

+§ﬁ (ﬁ I NNN) “dS. (4- 6)
¢

From (2.15) we see that
(4.7)

The first two expressions on the right are known and
)

?_LIGNN: (Aﬁ‘“l_ﬁj’)lfjf" (pu) Iv_!]aﬂﬁlﬂﬁ"'

% k 7 :|
Jaﬁ“/ ay ayaayﬁ o 13
k\ - kY =
- {a-y}u“'&— {B‘Y} U (4.8)
where
bu -
“ =yt {,Y]L} ;. (4.9)
The first term on the right side of (4.8) is known. We
can use the inequalities
b, ) < 719"
b N U S o9 G 4 1, (4.10)
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where 7;, 7, are upper bounds for the largest eigen-
value in each case, to complete the bound for

§ g“‘* ﬁ[aNN/I-'_L[BNNdS
c

by a function of the quantities (4.1).
Furthermore, from (2.15) we see that
’Z—L[Ng\n\r:(A’L_L—‘T)’l_lz)“v—f—(j)a)|N—ga5’i2}a@Ar (411)

and hence we can bound the last term of (4.6) in
terms of known quantities and a bound for

§ GBG"U )y ipond S.
c

From (2.7) for M=2 and the choice

f\_lr fa:O'
Aaﬂ:qaﬂ Ea:[.ﬁ"" — 0
BW_—1 Bii—0 1,j#N, (4.12)

we have
§ [9%8G7 2% ayny U gon— 9B avn U gy ]S
C
—— | 1A B Qu—p) st

+f { (fmAi]Bk lars) ]m_2(fsAijBkl) 1 } u’l ii;rul]l.vd‘"/’-
R

(4.13)
Hence
ﬁg“ﬂ g”ﬁ,mﬂmwdss Cﬁc g""ﬂlawﬁwmvds
4 j; AY BE (Au— pu) . (Au— pu) 5
+(pw)u (puw) ) dv+-1(w15),  (4.14)
where
K= | {(PAYBS 2 4B,
R
+f’:][8A“Bkl} Uy ixr umsdv. (415}

But
I (uyi8) S73J

>

U, 15U, ijkd'v
R

:Tg{§ ’LL, iju'[jkvkds——f (Au)‘iju’ ”'d@}
(o] R

2 .
:%3) § gi]'gkl’ﬁ[{]ﬂi”ldsﬂ’rgj (Au)'iju'“(h)
e Jo "
+€§ GG gyl s (4.16)
Cc

where 73 is again an upper bound for the largest
eigenvalue of the coefficient matrix in (4.15). We
can substitute (4.1) into (4.4) for e<1 and achieve
the desired bound for

95 GPGU arn U gondlS.
C
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