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Analyticity and Probability Properties of
One-Dimensional Brownian Motion

Abolghassem Ghaffari
(July 11, 1961)

The most general solutions of one-dimensional Brownian motion, governed by the
Chapman-Kolmogoroff functional equation, in the form of series of products of two
Laguerre polynomials are deseribed. Some analytical and probabilistic properties of these
solutions are discussed and it is shown that these solutions are different from those given by
A. N. Kolmogoroff. The limiting behavior of the probability function is investigated.
A derivation of the corresponding parabolic partial differential equation is obtained.

1. Intreduction

The mathematical study of Brownian motion and diffusion phenomena in the case of a
nonuniform fluid led S. Chapman [1] ! to introduce the functional equation

f(P,T +Tn,7',f)zjf(p,,T,/‘,t)f(p-—p’,Tg,/'-i—p,,t+7)(lp’. (1)

B. Hostinsky [11] in studying the functional equation of M. Smoluchowski [19] for the
same problem, observed that the functional equation of Chapman was a generalization of the
functional equation of Smoluchowski, and found the general solution of the Chapman equation
by using the method of integration by substitutions due to V. Volterra.

The same author [11] puts the functional equation of Chapman in the more symmetric
form

*b
f('rly;l'li’ tlr t3>: I f('rlfmivtl;t‘-’).f(‘ri;;r31t27t3>(l'r2 (2)

Ja

which is equivalent to that of* Chapman for the case where the space in which the Brownian
motion or diffusion phenomena take place has only one dimension.

On the other hand, A. N. Kolmogoroft [17] has considered directly a very general func-
tional equation valid for a domain of any number of dimensions, which reduces to eq (2) in
the case of a single dimension and which can be considered as a very general form of one of
the conditions which occurs in the problem of chain probabilities studied by Markoff.

Moreover, A. Kolmogoroff has given particular solutions of eq (2) and has shown that
very wide classes of his solutions satisfy linear partial differential equations of the second
order and parabolic type, and generalized the functional equation of Chapman from the special
problems of Brownian motion and diffusion phenomena to chain probabilities. The eq (2) is
commonly called the Chapman-Kolmogoroff functional equation.

Nevertheless, the most general solution of the Chapman-Kolmogoroff equation has not
been given. M. Fréchet, however, has given very general solutions having forms different
from the forms given by the preceding authors.

M. Fréchet has found two methods: the first [6] is based on a procedure used in mathe-
matical physics and the second [7] on reducing the study of the most general solutions which
are doubly square integrable to the corresponding study in the discontinuous case. The two
methods provide two distinct forms whose equivalence is neither obvious nor certain.

The most general solutions of the Chapman-Kolmogoroff equation in one-dimensional
space have been given by M. Fréchet and the present author. In fact, the case of the finite
interval (0,27) has been treated by M. Fréchet [6], and the case of a region infinite in both
directions has been investigated in detail [8, 10].

1 Figures in brackets indicate the literature references at the end of this paper.
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In this paper some analytical and probabilistic properties of the most general solutions
of one-dimensional Brownian motion in the interval (0,o) are described. The corresponding
parabolic partial differential equation, which constitutes the fundamental equation of Brownian
motion and diffusion theory, is obtained, and the limiting behavior of the solutions at infinity
is analyzed.

2. Statement of the Problem and Formulation of the Fundamental Results

Let us consider a free spherical Brownian particle (i.e., in the absence of an external field
force) depending on a finite number » of parameters and which can assume all states ¢, forming
a certain set V' (which one can consider as a region of v-dimensional Euclidean space). One
assumes then that there exists a probability w(M,s; »,t) that the Brownian particle passes
from state A at the instant s to any one of the states of a set » at the later instant #.

The probability function w(M,s; »,t) is, by virtue of the total probability theorem, an
additive function of the set ». It is clear that

w(M,s; v,s)=06(M,v)

S 1 if Mev
L0 if M.
When s<t, one can consider the simple case where the additive function of the set » can
be represented by a Lebesgue integral

w(Mis; »,8)= f F(Ms; Qt)dQ 3)

where

where d@ is an element of the »-dimensional space and f is a v»-tuple integral.

When this assumption is made, one finds, in applying total and compound probability
theorems that the Brownian displacement function f, which govern the »-dimensional Brownian
motion,” satisfies the Chapman-Kolmogoroff functional equation

FOM8; PO= [ M55 Quif Quus P,)dQ @

for s<<u<t. V denotes a v-dimensional Euclidean space and f is Lebesgue-measurable in V.

In the problem of chain probabilities, f(M,s; P,t)dP is the elementary probability that the
state of a physical system, fixed by » parameters, and represented by M at the instant s, be-
comes at the later instant ¢ one of the states of a certain elementary set dP of states. However,
in this interpretation the transition probability or density probability function f(M,s; P,t)
must satisfy the probabilistic conditions

f(M,s; Pt) >0, (5)
ﬁ J(Mys; PHydP=1. 6)

If the physical system is moving continuously it has to travel the finite distance MP during
a finite time ¢ different from s. Then if the states M and P are two different states we have

lim f(M,s; P,t)=0, M#P. 7)
t-s

If the state P coincides with the state M, the transition probability f is no more continuous
and it tends to infinity as t—s
lim  f(M,s; P,t)=c. ®

P->M,t-s

2 By a v-dimensional Brownian motion we understand a »-dimensional strong Markoff process whose proiections are all one-dimensional
Brownian motion.
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Such properties of the transition probability function f, when ¢—s, resemble those of the Dirac
6-function which is a kind of improper function. It follows that the condition (8) must be
excluded from chain probabilities. Therefore the assumption of the existence of an elemen-
tary probability f(M,s; P,t)dP cannot be accepted completely and an exception must be
made for the case s=t, M=P. If fis interpreted as a generalized function, in the sense of the
distribution theory, then the case s=¢ and M=P is covered by the statement that f has
6-function behavior in this case.

Using the additive theory, both N. Wiener [23] and P. Lévy [18] obtained very important
results concerning the transition probability function. M. Kac [12], S. Kakutani [14, 15] and
others in a series of papers obtained properties of the Brownian motion in a »-dimensional
space and in connection with the Riemann surfaces. An interesting probabilistic discussion
of the general diffusion process in one dimension is also given by W. Feller [5]. Recently
M. Kac [13], relying on the properties of Wiener measure in the space of continuous functions,
showed the disadvantage of Wiener measure theory applied to Brownian motion.

On the purely physical side the two papers by Uhlenbeck and Ornstein [21] and Uhlenbeck
and M. C. Wang [22] should be mentioned.

3. Method of Solution

To obtain a very general solution of the functional eq (4), M. Fréchet [6] tried a method
of separation of variables in the form
n
F(M,s; Pity=> A;(M,s)B,(P,t) 9)
=1
and found that the necessary and sufficient condition that the expression (9) should be a solu-
tion of eq (4) is that, for the values of % such that s<u<t, the functions A,(Q,u) and B,(Q,u)
form a biorthonormal system over V| i.e.,

1 if i=j

f_Ai(Q,u)B,(Q,u)(leaf, where 6”:{ (10)

0 otherwise.

Nevertheless, Fréchet realized that the expression (9) does not satisfy the conditions of
chain probabilities and introduced instead the infinite series

F(M,53P,) =32 Au(M,5) Bu(P,1) (11)
n=0

and proved that the necessary and sufficient condition that the transition probability function
f(M,s; Pt), satislying the Chapman-Kolmogoroff eq (4), could be written, in at least one way,
in the form (11) where the convergence is uniform for s<t, is that the functions A,;(Ms),
B;(P,t) form a complete orthonormal set over V.

The series solution (11) is supposed to be uniformly convergent for s and ¢ fixed such
that s<t, and M, P varying arbitrarily over V.

4. One-Dimensional Case

Considering the case of one-dimensional space (v=1), and with the usual notations x,
9, and z for M, P, and @, the Chapman-Kolmogoroff eq (4) can be written in the form

Jasp0=[ flasz iyt s<ut (12)
14
Fréchet’s method led us to take for the solution of eq (12) the infinite series
f(x,s;,t)=224,(2,5) B(y,t)
n=0
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where the functions A,, B, form a biorthonormal set over V.
The case of the finite interval V(0,27) has been treated by M. Fréchet [6]. The solution
of eq (12) on (—o o) in the form of a series of products of two Hermite polynomials has been

given by the author [S, 10], and its analytical and probabilistic properties are discussed in
detail.

The most general solution of eq (12) in the interval (0,») is also given by the author
[8, 9] in the form

f(z,s; ?/,t)=i¢(“’ (@) ()0 (s,t) =exp <——— (xy)2 Z)\ LS @)L ()67 (s,t), a>— (13)
n=0
where the infinite sequence of L*-functions {1//(‘;’ (x) }
_1 ]| €
Vo @=nrexp [ =3 |10 @

form a complete orthonormal set over (0,»), and L@ (z) is the nth associated Laguerre poly-
nomial defined by

(a) __x-a d" n+a =3
LS @)= nl da” & ).
In addition,
O(S,t)-—agii<l for s<t,

a(s) is a positive increasing continuous function 0, chosen arbitrarily, and

F'(n+a+1)

M=

J
where I' denotes the gamma function.

It has been shown [8, 9] that, for s, fixed such that s<t and z,y varying arbitrarily over
(0, ), the series solution (13) is absolutely convergent in (0,o) and uniformly convergent in
(e, ), € being an arbitrarily small but fixed positive number.

Using Hardy’s formula

>N (@) L ()67 = (1—6) ~(6z) % exp 0(x+y):| [me)m],
n=0

where I, denotes the modified Bessel function of the first kind, as the generating function
for the series solution (13), we get

a 1
a5 0) =075 (1= oxp [ LT OCED 7, [0 (1)
The modified Bessel function 7,(z) is defined by
a+2n
IR =1"dl{0z)= ,E;L'Z(?—i—n)'

where z is positive and « is an integer.

For a a positive integer or zero, a condition which is not incompatible with the assumption
a>—1, I,(z)is positive. Thus, according to (14), the transition probability f is always positive
for any values of 2z and ¥ in the interval (0,o). Therefore, the solution (13) satisfies the
condition (5) provided « takes positive integral or zero values only.

It has been shown [8, 9] that, as a consequence of Kogbetliantz’s inequalities [16], the solution
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(13) satisfies the special probabilistic condition

lim f(.'E,S; Z/;t):(),
t—s

for any finite and positive values of 2 and %, and also the condition

lim J(@,s;9,t) = .

Yoz, 158
5. Limiting Behavior of the Probability

Let us investigate the asymptotic behavior of the probability w(z,s;V,t), defined by (3),
when the time ¢ tends to infinity. To do so the existence of the limit of the transition proba-
bility f defined by the uniformly convergent series

R P <ry>§{r—1<a+1>+g v reowe} )

should be sought. Having in mind that in the factor 6(s,t)=a(s)/a(t) the function a(f) is a
positive increasing continuous function of , two cases may occur:

1. lima(t) = o

{t—> o

hence

lim 6(s,t)=0.

(>

Therefore, for z, 9, and s fixed and ¢ tending to infinity we have
(-3
lim f(2,s;9,8) =T""(a+1)(xy)2 exp [—(z+y)/2]
{—>

which depends on z and 3. It follows from (3) that the limit of the probability w(z,s; V,t), where
V' is the interval (0,), is given by

. S N € _ x
lim w(;r,s; V7t) =0 7 <~+ 1> 1= ((x+ 1 ),)‘Z exp [—5]
t—>w 2

provided a>—2. This limit depends on the initial state z which is called a nonoscillatory
case. This terminology is due to M. Fréchet, and it means that the probability « tends to a
limit, in the ordinary sense, when ¢ tends to infinity.

By assumption, « takes positive integers or zero values, and therefore the condition a>—2
is fulfilled.
2. The only alternative to the case 1 is that

lim a(t)=d

)
where d is finite and positive. In this case
lim 0(s,t)=a(s)/d=a,(s)
{> o

where 0<a, (s)<1.
It follows that

lim #,5,0=(a)f exp | —E5Y | 3N @1 L L),
> n=0
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hence
Iim w(z,s; V,t)= (xy)z exp Z N Hay($)1AL () LS () dy

to o n=0

=2 K Ja2()]"9 (x)
where

e j U () dy.

Therefore the limit of the probability w depends completely on the initial state z at the instant s.
This second case is also a nonoscillatory case.
The above results can be stated as follows:
TuaroreM. If the transition probability f(x,s;y,t) satisfying the Chapman-Kolmogoroff eq (12),
1s i the form (13), then the limit of the probability «, when t tends to infinity, exists and depends
on the inatial state, i.e., the probability is nonoscillatory, provided o takes zero or positive integral
values.
6. Stochastic Partial Differential Equations

A. Einstein [3] showed that the probability density fsatisfies a partial differential equation
of diffusion type whose coefficient is a certain diffusion constant related to the viscosity and
temperature of the medium in which Brownian motion takes place, and to the radius of the
Brownian particle (assumed spherical).

The existence of the probability density f has been established by many authors from
different viewpoints, especially by A. N. Kolmogoroff [17] and W. Feller [4]. Kolmogoroff
proved that any function which satisfies the Chapman-Kolmogoroftf equation satisfies also a
second-order partial differential equation of parabolic type, and he obtained a class of particular
solutions and showed that these, subject to certain special conditions concerning the order of
the magnitude of moments, satisfy, in variables z and s, the equation

B(z,) S s L1 Yo (15)
where

4o
Bz(x,t)—hm%At j (y—2)*f (z,t,t +Aty)dy,

poe
A =lim f (y—a)f (@, 1+ At y)dy,
under the assumption that the ratio of the moment of order 3 to that of order 2 tends to zero
at the limit At=0.

Kolmogoroft’s partial differential equation was derived by C. M. Tchen [20] independently
of Kolmogoroft’s method.

It can be shown that the solution (13) is different from those discussed by Kolmogoroff.

To see this, note that if the solution (13) belongs to those of Kolmogoroff, then there would
exist two functions A and B such that the solution (13) satisfies a partial differential equation
of type (15). Calculating the derivatives of f, given by (13), we get

of = [ aty], 0
35— @z exp| —=5= | 2 n

L A n>0 )\

0 G [ . 5
e e patas [(2 )P+ @ | LOw

> Lfl‘”(r)L(“’ )

gii:i=(xy)§e><p "%?‘/ 255 [L’““)(J)WL(__””)L,(“)<1)+(4 4.[22a a+l'>L(a)(x):|Lm)(y>’

= _ n>0

where prime denotes the derivative with respect to .
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For z and y varying in (0,« ), ¢fixed, and slying in a bounded interval such that s<¢, theseries,
obtained by differentiating (13) term by term, are uniformly convergent. Substituting the
above derivatives in (15), one gets

exp [——] (@) 3538 W] L0 ) =0 (16)

where U,(z,s,t) denotes

n

e a" P L @)+ A I:L’(“)(r)-i—(%———i) L«ﬂ(@]

+ B (z,5) [L’n'(“) (x)_{_(g_x) L;‘(a)(x)_}_(ij 4ﬂ2a_a+1> L@ (x )]

Since the relation (16) must hold for any value of v in (0, ), the expression in the square
brackets must be zero for any positive integer value of n; that is, after dividing by L (z),

n 0f iEaci(@m) a 1=l L/<")($) a—ch a1
354 T Ha5) [+ 2 [Fee G s = @

As ; g is independent of n and z, it is clear that the relation (17) does not hold unless the

two coefficients A(z,s) and B?(x,s) are both zero. Therefore 6(s,t)=a(s)/a(t) will be inde-
pendent of s which is contrary to the assumption that a(s) is a positive increasing continuous
function of s. This proves the statement.

It can also be shown by computation that the relation (17) is possible if the two functions
A(z,s) and B(z,s) are both zero. In fact for n=0, we have

é_:ﬂ4+a2—2a—212(cx+] )
B 2r(x*—a)

(18)

On the other hand, setting n=1 and n=2 in relation (17) and eliminating 5 ag between the

two relations obtained, one gets

A C
B=D (19)
where
- 2(a—1x?) ix4—{—az—20{ a1 2242 (a—22) (x—a—2)
Trz@—a—1)" 42 2 P—2(at2)22+ (at2) (af1)x
and
D 2(z—a—2) 2 %4
T 2—2(at+2)z+ (@+2) (et+1) (z—a—1) '2

The two ratios (18) and (19) are different, hence the relation (17) does not hold unless the
two functions A and B are both zero.

Now we propose to obtain a derivation of the corresponding parabolic partial differential
equation or the so-called backward equation of diffusion theory. For this purpose we can
use the generating function (14) and get

1.(2)=0% (1) exp| SE0EXD 163,55 4,0 (20)

where
2=2(1—6)"(xy)*2,
and I,(z) satisfies
22/ (2) +2la(2)— (o2 +2%) 1(2)=0 (21)

prime denotes the derivative with respect to z.
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Taking the derivatives of (20) with respect to 2 and computing the different terms of (21),
one gets

/ - 1-+6) 1
2l,=220% (1—0) exp ( ;_(1 (10_){—7/ ][Ox+2 1+09)

W s (140) (I+7/ o off1+0 (1+0)2 146
2L =422 (1 0)0‘1’[ 21— :I{ 5zt T oz 7"+2J«>+f|:4(1 PERFEG] o)]}

(1+0)(1+1/) a?(1—0)*+-46xy
2(1—6) (1—0)2

(2221, —62 (1—6) exp L

(1+0)(1+?/)

Substituting in (21), and dividing by 03 (1—8) e\'pl: 51— ]We have

2 9 [ (1+0)

12 2 i bf 2*(14-6)°+-22(1—6%) —a?(1—6)*— 4011/][:0‘

+1 {=+ o (22)

The relations
ol., O~ of, ,, Oz
S il Y,

lead us to express f in terms of IFand b—g as follows:

2(1—6) of of

=0T hr—at—0r2+20(1—0)—28a+7) \" 26" 2z

Substituting the above expression of fin (22) and setting

B(x,s)=222(1—6) [(1+6) z—a(1—0)*+26 (1—6)—20 (x+y)] [x? (1 +0)?
422 (1—6%)—a2 (1—6)2—40xy]
and
v(x,8)=x{2[x(146) +(1—0)] [(1+08) 2—a(1—0)*+20 (1—0)—26 (z+y)] [2? (116)*
+22(1—6%)—a?(1—0)2—40zy] ' —1},

8(x,8) Sty (a,0) L9 Y, (23)

one gets

On the other hand
of _of 08_a'(s) of
ds 000s a(t) o8
0 Of of a(s) a(t) of a(s) of
0 a(t)a’(s) os a’(s) Os

so that

where prime denotes the derivative with respect to s. Hence equation (23) becomes

*f  of a(s) of
B bx2+ ax+a ’(s) Os my (Z9)

This derivation presupposes certain differentiability conditions on f and a(s), namely:
f must have continuous partial derivatives of order <2 with respect to z and s, and the right-
handed derivative a’(s) must exist. Therefore the following theorem can be stated:
TuroreM. If the transition probability function f, defined by (13), is of the class C?, and the
right-handed deriwative a’(s) of the increasing continuous function a(s) exists, and s everywhere
positive and different from zero, then the transition probability f satisfies, in the variables x and
s, the parabolic equation (27).
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It can be observed that the parabolic eq (24) to which the solution (13) satisfies is different,
from equation (15) given by Kolmogoroff.

The coefficient of g\ in (24) suggests setting a(s)=¢*, and then putting a(t)=¢’, we have

Hzes—l

The special case a(s)=¢" leads us to a particular solution of eq (12) in the form

f(r,8; ,0) =exp [— (@-+y)/2)(ey)2 Z A texp [n(s— )L, (2) L (y)

n=0

(1+46) (r+y) [2(0”/)
1n ¢
=0 2(1 6)~ pr[ o(—9) (25)
and the eq (24) will be reduced to the normal form
of , of [ of
BortY oz tos— " ()
If we now set, more generally,

a(s)=e®
where the variable S increases with s, then

i) ="
and

.\‘:u(S)

t=u(T)

W h(‘l(’/ M L)Y IS an mncereasing (()“[v]““()”b Ill“(;t»lo” ()f AS. \‘ e 1]](‘“ }N\\("
5
0,'4*63 T

The function f(z,s;y,t) becomes F(x,S;y,T), and the Chapman-Kolmogoroff equation will
still be satisfied if the instants s,  are replaced by numbers S and 7" and the function F'(z,S;y,T)
can be written as follows:

F(x,S;y,T) :J F,S; 2,0)F(zU; y,T)dz,  S<U<T. (27)
0

The series solution (13) now becomes

(2, y,0) =fla,u(S); yu(D)|=F(x,S; y,T)
— v _Ii?/ , .g = el - _m (a) (. ()
—exp [ =I5 @ 0 exp In(S— DI WL (). (25)

When the time t—w, 7 tends either to infinity or (7" being negative as well as S) to zero,
then 6 tends either to zero or ¢, so that the limiting behavior of the probability function w,
defined by

F(r, S5y, T)dy,
JO
will still be nonoscillatory.

There i1s nothing arbitrary in #(z,S;y,T), defined by (28), which is a particular solution

of (27). Therefore the most general solution will be in the form

f(f,- 7/ {) [’[ )”() ’/ ’7(’)]

where n(s)=In a(s) is an arbitrary function varying in (—o o).
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