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Recently Mirsky and Farahat proposed the problem of characterizing the class of doubly
stochastic matrices for which the least number of permutation matrices necessary to repre-

sent it as a convex sum has a presecribed value.
The problem of similarity of doubly stochastic
Finally, the question of transitivity of powers of sets of functions

to the number of eigenvalues of modulus one.
matrices is also treated.

It is shown that this number can be related

on the first n positive integers into itself is treated by defining a corresponding incidence

matrix and examining its powers.

I. Introduction

In 1946 [1]°® Birkhoff proved that any doubly
stochastic (d.s.) matrix with non-negative entries is
a convex combination of permutation matrices. We
recall that a matrix is d.s. if every row and column
sum is 1. Let 2, denote the polyhedron of non-
negative d.s. matrices and as noted in [5] dim €,
=(n—1)? and hence any Ae2, can be written as a
convex combination of at most (n—1)*-+1 permuta-
tion matrices. Mirsky and Farahat in & recent paper
[6] suggested an investigation of the minimum num-
ber B(A) of permutation matrices necessary to repre-
sent A€, as a convex combination. In section 2 we
obtain an inequality relating B(A4) to h(A), the num-
ber of characteristic roots of A of absolute value 1.
In section 2 we also study a problem of the similarity
of two matrices in Q,,.

In 3 we discuss conditions on A >0 that are implied

n
by the equality det (/—A)=1I (1—ay).
i=1

In 4 we obtain an inequality for the difference
between the maximal characteristic roots of two
matrices A and B satisfying B>A>0, where B> A
means b;;>aq; for all 2,7. In certain cases our ine-
quality yields better bounds than those obtained by
applying the results in [2] or [7].

In 5 we discuss the question of transitivity of sets
of functions on the set of integers {1, . . ., n} into
itself by matrix methods.

2. Doubly Stochastic Matrices

A precise statement of the result relating A(A)
and B(A) is contained in theorem 3. We prove two
preliminary results of some interest in themselves.
Recall that A>0 is reducible if there exists a per-

1 This work was supported in part by the U.S. Air Force Office of Scientific
Research.
RT The 1;avork of this author was supported in part by the U.S. Office of Naval
esearch.
3 Figures in brackets indicate the literature references at the end of this paper.

mutation matrix £ such that

AII O
PAP’ = : (1)
Ay Ay

where A;; and Ay are square matrices. 1t is clear
that if Ae?, then (1) implies that Ay, =0. It follows
that in case AeQ?, a permutation matrix 2 may be
chosen so that PAP’ is the direct sum of irreducible
d.s. matrices and 1-square matrices.

TraEorREM 1. If Se, and S is irreducible, then h(S)
s a divisor of n.

Proor. By theclassical Perron-Frobenius
theorem, more recently reproved in [8], there exists
a permutation matrix P such that

0, S 0 ... 0
0, S ... 0
ESB={" ) (2)
. S
Sy 0 co. O

where 0, is a principal square matrix of zeros and
h(S)=h. Let r(X) (¢(X)) denote the number of
rows (columns) of X. Clearly since Se?, each S;is
d.s. and 7 (S;) is the sum of the elements of S; as is
¢(S;). Hence,

r(S1)=¢(S)=¢c(0:41)=7(0:4+1) =7(S:i11)=¢(S1+1). (3)

Thus every S; is of the same order and A(S)
is a divisor of n.  We next obtz}in a relafion betweep
B(S) and B(S;) where S=S8,+ ... +8S, and +

denotes the direct sum.

TrEOREM 2. If SieQ,;, i=1,..., m, nzi 7
i=1
and S=8, + . . . +8,, then
B(S)Si; B(S)—m+1. 4)
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Proor. First we prove by induction on s that
if
T S
A=; 0:Ps, B:Z1 ¢iQs,
i= j=
T *
0<6:<6,<...<0,0<en<¢... Zg, 21‘4 0121221 @5
i= j=

Py, O, are permutation matrices, =1, ..., r, j=1,

., s, then A+ B is in the convex hull of no more
than r+4s—1 permutation matrices of the form

P,+Q, When r+s=2, then A=P,, B=¢,, and
%—I—B P1—|~Q1 Suppose for convenience that ¢; <¢,.
hen

A+ B=0,(P, Q)+ (1—6,

Px)
1—6, Q’)]’

and E

1__elml, and

& 0y

1—01§“””1—01:1'

oI
1 01 Z —b

Thus A+B=06,(P,+@,)+(1—6,) R where ReQ, is
the direct sum of two d.s. matrices, the first in-
volving r—1 permutation matrices and the second
involving s permutation matrices. We apply the
induction to R to conclude that B(R)<r-4s—2.

Hence B(A—}.—B) <r+s—1. Then an obvious in-
duction on m yields

B(S)=B(S1+ . ..+Sm)
<B(Si+. .. +8m 1) +B(Sm)—1
< :_"Z;fm&)—mww(sm)—l
2

= 5(81)—7”**“1-
j=1

TuaeorEM 3. If SeQ, and S is irreducible, then

B <h(F—1) +1. (6)

where h=~h(S).
Proor. We first observe that if P and @ are
permutation matrices then B(PSQ)=p(S) for any

Se?,. By theorem 1 let n=gh where ¢ is an integer
and let R be the permutation matrix with 1 in
positions

(¢+7,7) mod n.

Then from (2) we easily compute tfat

PSP'R=8+ ... +8,.1+8,, @)

and hence by theorem 2

B(PSP’R)=B(S) < i B(S)—h-+1.

But by the Birkhoff result quoted in the introduction
we have that

B(SH<(g—1)*+1.

Hence,
n 2
B(S) <h[(q—1)2+1]—h+1=h (%“1> ey

Actually the above techniques may be applied to
vield better estimates on B(S) than that given by a
direct application of (6). There are several alter-
natives for each of the matrices S; in (7): S; is
reducible; S; is irreducible with A(S;)>1; S; is irre-
ducible with A(S;)=1; i.e., S; is primitive. These
situations are covered by the following two theorems.

TaeoreEM 4.  If SeQ, and P is such a permutation

matriz that PSP’ =T,+ . . . T, where each T, is
an ng-square matrix either irreducible or with n;=1,
then

B(S) < z : (=1 M@ +1.

TaeoreEM 5. If SeQ, and P and Q are such permu-
tation matrices that

PSQ=8:+ ... +8., (8)

where each S; is an n-square matriz either primitive
or with n,=1, then

BS)< 3 (= 1)+ L.

We describe the procedure for obtaining the form
(8) for S: First reduce S to the direct sum of irre-
ducible or 1-square d.s. matrices. Kach of these
may then be reduced to the form (2) which in turn
is reduced to a direct sum of irreducible or 1-square
matrices. The process is repeated until every matrix
which appears is either 1-square or primitive. We
illustrate this with the following example: Let SeQ;

be given by
0, J4
= )
A0

02 12
» 0, and /, are t-square zero and

where A=<

Jy 0,
identity matrices respectively, and J,eQ, is the
t-square matrix all of whose entries are 1/t. We
verify directly that no coordinate subspace is held
invariant by S and hence S is irreducible. We first

note that S2:J4+J4 and hence the characteristic
roots of 8% are 1 and 0. Hence the characteristic
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roots of S are 1, —1, and 0 with appropriate multi-
plicities. On the other hand, 1 is simple by the
Perron-Frobenius result and tr(S)=0. Hence the
characteristic roots of § must be 1, —1, and 0 (six
times) and A(S)=2. Thus S is already in the form
(2) and we bring S by a permutation to the form

J4—|—A and by a further one-sided permutation to

Jit-L+ =T +-Li+-L 4T
Thus by theorem 2,

BS)<B(J)+BUI)+BUT)+B(J) —4+1.  (9)

A direct application of theorem 3 to ./ yields g(Jy)
<10 and (9) implies that
B(S) <11, (10)
Of course it is obvious by inspection that B(J,)=4
and hence (9) gives B(S)<5. Note that a direct
application of theorem 3 yields 8(S)<19 and the
bound given by the dimension of Qg is B(S) <50.
As a matter of fact, B(S)=
Recently one of the present authors and A. J.
Hoffman independently proved that if SeQ, then

n
there exists a permutation o such that IT s, >1/n"

It follows that the permanent of S satisfies the
following inequality:

per (S):Z H Sﬂ,le/n”
o i=1

for SeQ,. Since

. : 8(S)
where P; are permutation matrices and a,>0, > «
i=1

=1, we see that
per (8)2 (1/8(8)"

It follows that we may apply the estimates of
theorems 3, 4, 5 to obtain a lower bound for S that
in some cases is better than 1/n". These results are
motivated by a conjecture of v. der Waerden [4]
concerning the minimum value of the permanent of
a matrix in Q,,.

We next discuss circumstances under which two
matrices in 2, are similar. If Se?, and XSX'eQ,
it of course is false that either X or X! must be d.s.;
e.g., take S=1I,. However if the root 1 of S is
simple then we have the following result.

TreorEM 6. If SeQ, and S is wrreducible and
XSX'=ReQ,, then X is a multiple of a d.s. matrizx.
Moreover, there exists YeQ, such that YSY '=R.

Proor. Let J be the m-square matrix all of
whose entries are 1, and let ¢,(X) be the sum of the
entries in the ith row of X. Then XS=RX implies
that XSJ=RXJ, XJ=R(XJ). Each column of
XJ is equal to the n- -tuple (0,(X),. . ., o (X))
=u(X). Then Ru(X)=u(X) and since 1 is
a simple characteristic root of S and R (S is irre-
ducible), #(X) must be a scalar multiple of the

vector ¢ all of whose coordinates are 1. Thus
o(X)=a, 1=1, , n, and by a similar argu-
ment we easﬂy see that o,(X)—ﬁ, p=il,
n. But then a=pg and X is a scalar multlple of
a d.s. matrix. Now X commutes with J and thus
the characteristic roots of X+kJ are N-+kn, X\,
. , A\, Where \; are the roots of X and \; cor-
responds to the characteristic vector e. Choose
k so that X\N-+kAkn=0 and X-+kJ >0, and let
Y =(a-t+nk) ' (X+kJ). This completes the proof.

3. Triangular Non-Negative Matrices

TureorEM 7. Let A>0 with maximal non-nega-
tiwve characteristic root r<1. Then a mnecessary
and sufficient condition that there exists a permutation
matriz P such that PAP’ is triangular is

T (1—a.)=det (I,—A). (11)
i=1
Proor. We prove first that if
FO =T (t—as)—det (tT,—A), (12)
i=1

then f(t)>0 for t>r. In this argument and
subsequently we use the classical result that states
that if « is the dominant non-negative characteristic
root of a principal submatrix of A, then a« < 7 and
if A is irreducible then the inequality is strict.
Hence, f(r)=IL2, (r—a;)—det (r/,—A)>0 and the
1nequahty is strict if A is irreducible. To prove
that f(t) >0 we proceed by induction on n. Now
differentiating (12) we have

f’(t>=1i>‘:_‘i{jgi (t—ayy) —det (t1,_.— A([3)) } (13)

where A (i]7) is the principal submatrix of A obtained
by omitting the ¢th row and column. For each 7
the summand in (13) is non-negative by the in-
duction hypothesis (since ¢> » and r is not smaller
than the dominant non-negative characteristic root
of A(i[7)). Thus f(#)>0 and f(r)>0 so that

(1)>0. Moreover if A were irreducible it would
follow that f(1) >f(r)=1L2,(r—a;) >0.

We complete the proof as follows. Choose a
permutation matrix £ such that PAP" has the
following sequence of blocks down the main diagonal.

Bi+. ..+ B,=B,
where each B;is 1-square or possibly n;square irre-
ducible. We show that the second alternative

is impossible and it follows that PAP’ is triangular.
Clearly (11) implies that

M (1—ay) =10 (1—b;)—=det (I,—A)=det (I,—B)
i=1 i=1

=11 det (I,,— By).
k=1

207



Suppose some B,=C is irreducible. the

Then by
above argument

ik
.I_Il(l—c“)> det e By),
and we would conclude that

I det (7, —B)<TI (1—a,),
k=1 i=1

a contradiction. This completes the proof.
4. Inequalities for the Dominant
Characteristic Root

Let E™ denote the unit n-simplex. If A= 0 is
irreducible, let @ be the dominant positive root and
let 0<ze££™ be the unique characteristic vector of A

in £™ corresponding to a. Suppose >0, R0
commutes with A. Then Az=ar, RAr=allz,
A(Rz/o(Rx)) =a(Rx/c(Rz)) where if y=(; . . . Yn)

then o(y)=2>3:y;. But then the uniqueness of x
implies that Rx/o¢(Rz)=a because (Ru/o(Rx))ell™.
TaeorEM 8. Let B=A be two mon-negative
arreducible n-square matrices with dominant positive
roots B and « respectively. Let M=maz (by—ay),
4,7
= mm (biyy—aqy) and suppose that R is a mon-

negame matriz which commutes with either A or B

and possesses no zero columns.  Then
SR R
max max—-’ min m_inf—f (14)
l Y ' T3
= =
Proor. Let yef£™, 5 >0, satisfy Ay=ay and

let w=(BYy):ly;=max(By):/y;= B. Then we assert
k
that B—a<M/y;; for (B—A)y+ Ay= By,

(B—A)y+ay=By,

;(bik—aik)yk+ayi=(3y)i,
li(bk k)yk+a— By)s =125,
Yik=1 . Yi -
Now  yeE£™; hence i(bm @)Y <M, and
k=1
B—a<Mly; < ]W/mln Vi

From the above discussion we know that y=Ry/

o(Ry). Consider the function
Z Trs2;
@) ="  zE™; (15)
]Zl 12 75Ty

minimizing the right-hand side of (15) over all
reE™ yields

Yp=>MIn —;
Z: Tiy
=

Thus

B— a<M/m1n Y < AM/mm mm
Trzt

A similar computation establishes the lower bound
n (14).

Note that /2 is any non-negative matrix commuting
with A or B;e.g., any non-negative polynomial in A
with no zero columns.  We also remark that in prac-
tice we compute each column sum of R, divide it into
the least element in the column, and take the least
such quotient to obtain the denominator of the
upper bound in (14). Similarly for the lower bound.

5. A Matrix Condition for Transitivity

Let L, denote the set of integers {1, . .
suppose oy, . . ., o, are funections mapping L, into
itself. We define A, to be the set of functions of
the form ¢, 04, . . . 0y, 1<%;<k. We say that
A, is transitive for some p if for any given s and ¢
in L, there exists ¢e, such that ¢(s)=t. We define
an n-square incidence matriz A associated with 9,
as follows: For each ¢, we define ; as the matrix
whose (s, ?) entry is 1 if ¢;(s)=t, 0 otherwise; then

., n} and

let A:llc >80 Ttisclear that A>0and every row

sum of A is 1;ie., A is row stochastic. We remark
that if T', denotes the totality of non-negative row
stochastic n-square matrices, then an easy argument
[6] thows that I', is the convex hull of the set of all
matrices with exactly one 1 in each row.

In general let A correspond to oy, . . ., o and B
to ¢, . . ., ¢,. Then the (i,7) entry of AB is posi-
tive if and only if the integer 7 is mapped by some
0. into p and p is mapped by some ¢ into 5. That
18, ¢304(2)=7. Thus we have

TuaroreM 9. A necessary and sufficiert condition
that A, be transitive is that A?>>0
We easily obtain two corollaries to this result.

CoroLrary 1. Let dy={ay, . . ., 0} be a set of
Sfunctions on L,={1, . . ., n} into itself satisfying
(a) at least one o; has a fized point,
(b) mo proper subset of L, is left invariant (as a
set) by every a,e,. Then A, is transitive forp >2n

Proor. Condition (b) implies that the incidence
matrix A is irreducible. Condition (a) implies that
tr(A4)>0 and hence h(A)=1. Hence A is primitive
and the integer 2n—2 follows from a result of
Holladay and Varga [3].
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CororLrAry 2. Let Ay={ay, . . ., or} be a set of
permutations of the integers {1, . . ., n}=L, satisfying
(a) there exists an integer s in L, and a par of
permutations oy and o; such that o;o;(s)=s,
(b) no proper subset of L, is left invariant (as a
set) by every o€,
(e) mis odd.

Then A, is transitive for p>4n—4.

Proor. If there exists a o, and an integer » such
that ¢,(v)=v then we have the conditions of corol-
lary 1 and U, is transitive for p>2n—2 without the
condition (¢). If not, let A be the incidence matrix
and then tr(4)=0, but the sum of all the second
order principal subdeterminants of A is not zero.
Hence A(A) is 1 or 2. But since AeQ, we apply

theorem 1 to conclude that A(A) divides n. Thus
h(A)=1 and A is primitive. Now A? has a positive
element on the main diagonal and A(A?)=1. Thus

A? is also irreducible and thus primitive so that
applying the result in [3] again we have (A2)2"~2>0,
completing the proof.

Note that condition (¢) is essential as shown by
the following example: A, = {7, 0} where ¢;=(1234),
oo= (14 3 2) satisfies conditions (a) and (b) of corol-
lary 2. However, U, is not transitive for any p.
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