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Recently Mirsky and Farahat proposed the problem of characterizing the class of doubly 
stochastic mat riees for which t he least number of permutation matrices necessary to r epre­
sent it as a convex sum has a prescribed va lu e. It is shown that this number can be related 
t o t he number of eigenvalues of modulus one. The problem of similarity of doubly stochastic 
matrices is also treated . Finally, the question of t ransitivity of powers of sets of functions 
on t he first n positive integers into itself is treated by defining a corresponding incidence 
mat rix and exa minin g its powers . 

1. Introduction 

In 1946 [1] 3 Birkhoff proved that any doubly 
stochastic (d .s.) matrix with non-negative entries is 
a convex combination of permutation matrices. We 
recall that a matrix is d.s. if every row and column 
sum is 1. Let r2n denote the polyhedron of non­
negative d.s . matrices and as noted in [5] dim r2 1l 
= (n- l)2 and hence any AEr2n can be written as a 
convex combination of at most (n- l )2+ 1 permuta­
tion matrices . Mirsky and Farahat in a recent paper 
[6] suggested an investigation of the minimum num­
ber .s(A) of permutation matrices necessary to repre­
sent AEr2n as a convex combination. In section 2 we 
obtain an inequality relating .s (A) to h(A) , the num­
ber of characteristic roots of A of absolute value 1. 
In section 2 we also study a problem of the similarity 
of two matrices in r2n. 

In 3 we discuss condi tions on A ~ 0 that are implied 
1) 

by the equality det (I - A) = II (I-a tt ). 
;= 1 

In 4 we obtain an inequality for the difference 
between the maximal characteristic roots of two 
matrices A and B satisfying B~A~ O , where B~A 
means b ij~ a tf for all iJ In certain eases our ine­
quali ty yields better bounds than those obtained by 
applying the results in [2] or [7] . 

In 5 we discuss the question of tnmsitivity of sets 
of functions on the set of integers {1, . . ., n } into 
itself by matrix methods . 

2 . Doubly Stochastic Matrices 

A precise statement of the r esult relating h(A) 
and (3(A) is contained in theorem 3. We prove two 
preliminary results of some interest in themselves. 
R ecall that A ~ 0 is reducible if there exists a per-
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mutation matrix P such that 

(
All 0 ) PAP' = , 
An A 22 

(1) 

where All and A22 are square matrices. It is clear 
that if AEr2n t,hen (1) implies that A 21 = 0. It follows 
that in case Aer2n a permutation matrix P may be 
chosen so tha t PAP' is the direc t sum of irreducible 
d .s. matrices and I-square matrices. 

THEOREM 1. 1j SEr2" and S is irreducible, then h(S) 
is a divisor oj n. 

PRO OF. By th e cla ss ical P erron-Frob enius 
theorem, more recently reproved in [8], there exists 
a permutation matrix P such that 

o 

(2) 

where OJ is a principal square matrix of zeros and 
h(S)= h. Let reX) (c(X» denote the number of 
rows (columns) of X. Clearly since SEr2n each S, is 
d.s. and l' (S t) is the sum of the elements of Si as is 
C(Si)' Honce, 

reS t) = C(S i) = C(OH 1) = r(OH 1) = r(SH1) = C(SHl). (3) 

Thus every S i is of the saIDO order and h(S ) 
is a divisor of 11 . We next obtain a relation between 
.s(S) and .s(Si) where S = SI + + S m and + 
denotes the direct sum. 

m 

i=l, ... , m, 71=~ nt 
;=1 

(4) 
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PROOF. First we prove by induction on r+s that 
if 

T • 

O< 01:S02:S ... :s Or, 0<'PI:S'P2 ... Sips, L; 0;=1= L; 'Ph 
;=1 j=l 

Pf, Q, are permutation matrices, i=l, .. . , r, j=l, 
... , s, then A+B is in the convex hull of no more 
than r+s-l permutation matrices of the form 
P f-+-Q, . When r+s=2, then A=P1, B =Ql, and 
A + B = P 1 +Ql' Suppose for convenience that¢lS¢I' 
Then 

(5) 

T 0 
and ~ 1 101 = 1, and 

Thus A-+-B=OI(P1 +QI)+(1-01) R where RfQn is 
the direct sum of two d.s. matrices, the first in­
volving r-1 permutation matrices and the second 
involving s permutation matrices. We apply the 
induction to R to conclude that (3(R) Sr+s-2. 
Hence (3(A+B)Sr+s- l. Then an obvious in­
duction on m yields 

(3(S) = (3(Sl + ... -+-Sm) 

S(3(Sl-+-' .. + S m-l)+(3(Sm)- 1 

m-l 

S L;(3(S,)-m+ 2+(3(Sm)- 1 
j=1 

m 

= L;(3(SJ-m+l . 
j= 1 

THEOREM 3. If S fQ n and S is irreducible, then 

(6) 

where h= h(S). 
PROOF. We fhst observe that if P and Q are 

permutation matrices then (3 (PSQ) = (3(S) for any 
SfQn' By theorem 1 let n=qh where q is an integer 
and let R be the permutation matrix with 1 in 
positions 

(q+i, i) mod n. 

Then from (2) we easily compute tr at 

PSP'R = Sl + ... -+SII-l-+-SII, 

and hence by theorem 2 
h 

(3 (PSP'R) = (3(S)S L; (3(S,)- h+ l. 
;=1 

(7) 

But by the Birkhoff result quoted in the introduction 
we have that 

Hence, 

(3 (S) Sh((q- l)2+ IJ - h+ 1 = h ('X-1 Y+l. 

Actually the above techniques may be applied to 
yield better estimates on (3(S) than that given by a 
direct application of (6). There are several alter­
natives for each of the matrices S , in (7): S; is 
reducible; S, is irreducible with h(S;) > 1; S; is irre­
ducible with h(S,) = 1; i.e., S t is primitive . These 
situations are covered by the following two theorems. 

THEOREM 4. If SfQn and P is such a permutation 
matrix that PSP' = TI -+- . . . -+- Tk where each T j is 
an nrsquare matnx either irreducible or with n ,= 1, 
then 

THEOREM 5. If SfQn and P and Q are such permu­
tation matrices that 

(8) 

where each Sj is an nrsquare matrix either primitive 
or with n j= 1, then 

m 
(3(S) S L; (nj-1)2+ l. 

j= 1 

We describe the procedure for obtaining the form 
(8) for S: First reduce S to the direct sum of irre­
ducible or I-square d.s. matrices. Each of these 
may then be reduced to the form (2) which in turn 
is reduced to a direct sum of irreducible or I -square 
matrices. The process is repeated until every matrix 
which appears is either I -square or primitive. We 
illustrate this with the following example: Let SfQg 

be given by 

(
02 12) 

where A= , 0, and It are t-square zero and 
J 2 O2 

identity matrices respectively, and J,fQ, is the 
t-square matrix all of whose entries are l /t. We 
verify directly that no coordinate subspace is held , 
invariant by S and hence S is irreducible. We first 
note that S2=J4+J~ and hence the characteristic 
roots of S2 are 1 and O. Hence the characteristic 
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roots of S are 1, - 1, and 0 with appropriate multi­
plicities. On the other hand, 1 is simple by the 
Perron-Frobenius result and tr(S) = 0. Hence the 
characteristic roots of S must be 1, - 1, and 0 (six 
times) and h(S) = 2. Thus S is already in the form 
(2) and we bring S by a permutation to the form 
J 4+A and by a further one-sided permutation to 
J 4+I 2+J 2=J 4+Il + 11 + J 2 . 

Thus by theorem 2, 

(9) 

A direct application of theorem 3 to J 4 yields (3(J 4) 

~ 10 and (9) implies that 

{3(S) ~ 11. (1 0) 

Of course it is obvious by inspection that (3(J 4 )=4 
and hence (9) gives (3(S) ~5. Note that a direct 
application of theorem 3 yields {3(S) ~ 19 and the 
bound given by the dim en ion of n8 is {3(S) ~ 50. 
As a matter of fact, {3(S) = 4. 

Recently one of the present authors and A. J. 
Hoffman independently proved that if Sen" then 

n 

there exists a permutation rT such that II s;,(i)~ l inn. 
j= 1 

It follows that the permanent of S satisfl es the 
following inequality: 

n 

per (S)=~ II st.(t)~ l /n" 
u i= l 

for Senn' Since 

where PI are permutation matrices and aj~ 0, 

= 1, we see that 

per (S)~ (l/{3(S))n-l. 

{J (S) 

~ai 
j = 1 

It follows that we may apply the estimates of 
theorems 3, 4, 5 to obtain a lower bound for S that 
in some cases is better than l inn. These results are 
motivated by a conjecture of v. del' Waerden [4] 
concerning the minimum value of the permanent of 
a matrix in nn. 

We next discuss circumstances under which two 
matrices in nn are similar. If senn and XSx- lenn 
it of course is false that either X or X-I must be d.s .; 
e.g., take S = I n• However if the root 1 of S is 
simple then we have the following result. 

THEOREM 6. Ij Sen" and S is irreducible and 
XSX-l=Renn, then X is a multiple oj a d.s. matrix. 
Moreover, there exists Yen" such that YSy-l = R. 

PROOF. Let J be the n-square matrix all of 
whose entries are 1, and let rTj(X) be the sum of the 
entries in the ith row of X. Then XS=RX implies 
that XSJ =RXJ , X J = R(XJ). Each column of 
X J is equal to the n-tuple (rTl(X),' .. , rTn (X)) 
=u(X). Then Ru(X) = u(X) and since 1 is 
a simple characteristic root of Sand R (S is irre­
ducible), u(X) must be a scalar multiple of the 

vector e all of whose coordinates are 1. Thus 
rT j(X) = a, i = 1, . . . ,n, and by a similar argu­
ment we easily see t.hat rT j(X' )= {3, i=l, .. . , 
n. But then a= {3 and X is a scalar multiple of 
a d.s. matrix. Now X commutes with J and thus 
the characteristic roots of X + kJ are Al + kn, f..2, 
. . . , An, where Aj are the root of X and Al cor­
responds to the characteristic vector e. Choose 
k so that Al+kn~O and X + kJ»O, and let 
Y = (a+nk)-I(X+kJ). This completes the proof. 

3. Triangular Non-Negative Matrices 

THEOREM 7. Let A ~ 0 with maximal non-nega­
tive characteristic root r ~ 1. Then a necessary 
and sufficient condition that there exists a permutation 
matrix P such that P AP' is triangular is 

" II (l-ajj)=det (In -A). 
;=1 

(11) 

PROOF. We prove first that if 

" f(t)= II (t-att)- det (tIn-A), (12) 
i = 1 

then jet) ~ 0 for t ~ r. In this argument and 
subsequently we use the classical result that states 
that if a is the dominant non-negative characteristic 
root of a principal submatrix of A, then a ~ rand 
if A is irreducible then the inequality is strict. 
H ence, j(r) = IIi~'t (r-ai/)- det (rI,,-A) ~O and the 
inequality is trict if A is irreducible. To prove 
that jet) ~ 0 we proceed by induction on n. Now 
differentiating (12) we have 

}'(t)=t{ .II. (t -ajj)- de t (tIn - 1-A(iIi)) } , 
. = 1 ]"'. 

(13) 

where A (i Ii) is the principal submatrix of A obtained 
by omitting the ith row and column. For each i 
the summand in (13) is non-negative by the in­
duction hypothesis (since t ~ rand r is not smaller 
than the dominant non-negative characteristic root 
of A(ili)) . Thus j'(t)~O and j(r)~O so that 
j (1) ~ O. Moreover if A were irreducible it would 
follow thatf(l) ~j(r) = .II'~I(r- a/i»O. 

We complete the proof as follows. Choose a 
permutation matrix P such that P AP' has the 
following sequence of blocks down the main diagonal. 

Bl+ " .+Bm=B, 

where each B j is I-square or possibly ncsquare irre­
ducible. W e show that the second alternative 
is impossible and it follows that P AP' is triangular. 
Clearly (11) implies that 

11 n 
.II (l-aii)= II (l - b;;)=det (In-A) = det (In-B) 

; = 1 i= 1 

m 

= II det (Ink-Bk)' 
k= 1 
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Suppose some B~=C is irreducible. Then b:l tr.e 
above argument 

and we would conclude that 

m " 
II det (I nk- B k ) < II (I -aii), 

k=1 ;=1 

a contradiction. This completes the proof. 

4 . Inequalities for the Dominant 
Characteristic Root 

Let E (n) denote the unit n-simplex. If A?. 0 is 
irreducible, let a be the dominant positive root and 
let O<xEE(n) be the unique characteristic vector of A 
in E(n) corresponding to a. Suppose R20, R-,t-O 
commutes with A. Then A x=ax, RAx= aRx, 
A(Rx/u(Rx)) = a(Rx/u(R x)) where if Y= (YI .. . Yn) 
then U(Y) = '22i~lYf' But then the uniqueness of :1.' 
implies that R x/u(Rx)=x because (Rx/u(Rx)) eE(n ). 

THEOREM 8. Let B?. A be two non-negative 
i rreducible n-square matrices with dominant positive 
roots (3 and a respectively. Let M = max (bjj-ajj), 

i,j 

m = min (bjj- ail) and suppose that R is a 'J1on­
i,j 

negative matrix which commutes with either A or B 
and possesses no zero columns. Then 

m M 
------<(3 - a<------

r · - - r 
max max--,!-'- min min~ 

j '22 rkj J :L:>kJ 
(14) 

k=! k= l 

P ROOF. Let yeE(n), y> O, satisfy Ay= ay and 
let }J. = (By) j/Yi= max(Byh /y,,?. {3. Then we assert 

k 

that {3-a~M/Y i ; for (B -A)y + Ay= By, 

(B-A)y + ay= By, 

(3- a~M/Yi~M/min y". 
k 

From the above discussion we know that y = Ry/ 
u(Ry). Consider the function 

(15) 

mmulllzmg the right-hand side of (15) over all 
xeE(II) yields 

Thus 

A similar computation establishes the lower bound 
in (14). 

Note that R is any non-negative matrix commuting 
with A or B ; e.g., any non-negative polynomial in A 
wi th no zero columns. We also remark that in prac­
tice we compu te each column sum of R, divide it into 
the least element in the column, and take the least 
such quotient to obtain the denominator of the 
upper bound in (14) . Similarly for the lower bound. 

5 . A Matrix Condition for Transitivity 

Let Ln denote the set of integers {I , ... , n } and 
suppose UI, •• • , U k are functions mapping L n into 
itself. We define 2rk to be the set of functions of 
the form UilUi2 .. . Uik' I ~ij~ k. We say that, 
2rp is transitive for some p if for any given sand t 
in L n the re m,'1sts cf>e2rp such that cf>(s) = t. We define 
an n-squiLre incidence matrix A associated with 211 
as follows: For each u, we define f); as the matrix 
whose (s, t) entry is 1 if Ui(S)= t, 0 otherwise; then 

let A=~ ~Ll f)i' His clear thatA 2 0 and every row 

sum of A is 1; i.e., A is row stochastic. ' Ve remark 
that if r n denotes the totality of non-negative row 
stochastic n-square matrices, then an easy argument 
[6] thows that r n is the con vex hull of the set of all 
matrices with exactly one 1 in each row. 

In general let A correspond to UI, . •. , U k and B 
to cf>1, ... , cf>m. Then the (i ,j) entry of AB is posi­
tive if and only if the in teger i is mapped by some 
Ua into p and p is mapped by some rPf3 into j. That 
is, rPf3Ua(i) = j. Thus we have 

THEOREM 9. A necessary and sufficieT't condition 
that 2rp be tran sitive is that .liP> O. 

We easily obtain two corollaries to this result. 

COROLLARY 1. Let 2rJ = {UI, ... , Uk } be a set oj 
junctions on Ln = {l, . . ., n } into itself satisjying 

(a) at least one u, has a fixed point, 
(b) no proper snbset oj L n is lejt invariant (as a 

sct) by every Uie2rl . Then 2rp is transitive jorp 22n 
- 2. 
PROOF. Condition (b) implies that the incidence 

matrix A is irreducible. Condition (a) implies that 
tr(A» 0 and hence h(A) = 1. Hence A is primitive 
and the integer 2n-2 follows from a result of 
Hulladay and Varga [3]. 
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OROLLARY 2. Let ~I = { O"I, ••• , O"d be a set oj 
permutations oj the integers {I, . . . , n } = Ln satisjying 

(a) there exists an integer s in L n and a pair oj 
permutations O" j and O" j such that O" jO" /(s)=s, 

(b) no proper subset oj L n is lejt invariant (as a 
set) by every O" j e~I' 

(c) n is odd. 

Then ~p is transitive jar p~4n- 4 . 

PROOF. If there exists a O"m and an integer v such 
that O"m(v) =V then we have the conditions of corol­
lary 1 and ~p is transitive for p~2n-2 without the 
condition (c). If not, let A be the incidence matrix 
and then tr (A ) = 0, but the sum of all the second 
order principal subdeterminan ts of A is not zero. 
Hence h(A ) is 1 or 2. But since Aean we apply 
theorem 1 to conclude that h(A ) divides n. Thus 
h(A)= l and A is primitive. Now A 2 has a positive 
elem ent on the main diagonal and h(A2) = 1. Thus 
A 2 is also irreducible and thus primitive so that 
applying the result in [3] again we have (A2)2n-2> O. 
completing the proof. 

Note that condition (c) is essential as shown by 
the following example: ~I = { O"I' 0"2} where 0"1 = (12 3 4), 
0"2= (14 3 2) satisfies conditions (a) and (b) of corol­
lary 2. However, ~p is not transitive for any p. 
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