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This paper derives an accurate intermediary orbit of an artificial satellite of an oblate
planet. The drag-free motion takes place under the action of a gravitational potential
which fits the even zonal harmonizs exactly through the second and approximately through
the fourth, in the case of the earth. This potential leads to separability of the Hamilton-
Jacobi equation.

Two alternative sets of orbital elements are set forth. The first set is related directly
to initial conditions, but requires numerical factoring of a certain quartic to evaluate some
of the integrals. The second set, on the other hand, permits exact factoring of both quartics
that appear, but is not related directly to initial conditions, so that its members can best
be obtained by a least-square fit of the solution over many orbital revolutions.

The final solution is given in terms of certain uniformizing variables, whose periodic
terms are correct through the second order in the oblateness parameter and whose secular
terms are exact, for the intermediary orbit. These exact solutions for the secular terms are
expressed by means of certain rapidly converging series, with complete avoidance of elliptic
integrals of the third kind. Sections 9 and 10 give a summary and a list of symbols.

1. Introduction

The author has introduced a gravitational potential [1]* for an axially symmetric planet
which accounts rather accurately for its oblateness and yet still leads to separability of the
problem of satellite motion. The resulting solution is expected to yield an “intermediary
orbit” somewhat more accurate than those heretofore used, in that it accounts for all of the
second zonal harmonic and for more than half of the fourth zonal harmonic. (Previous in-
termediary orbits [2, 3] have accounted for only part of the second harmonic and have neglected
the fourth harmonic.) The residual fourth harmonie, the odd harmonies, the tesseral harmonies,
the lunar-solar forces, and aerodynamic and electromagnetic drag are then to be considered as
producing perturbations of this intermediary orbit.

Izsak [4] has already given an analytical solution for this intermediary orbit, with both
periodic and secular terms correct through the second order in a certain oblateness parameter.
His solution makes rather heavy demands on the reader’s knowledge of linear fractional trans-
formations and the theory of elliptic functions in the complex plane. The present paper
avoids these complications, with elliptic integrals occurring only in the simple forms of the
complete first and second kinds.  Furthermore the resulting solution not only gives the periodic
terms correctly to the second order, but gives the secular terms “exactly’; i.e., to arbitrarily
high order. T wish to acknowledge very explicitly, however, that I am greatly indebted to
Izsak for the introduction of one of the sets of orbital elements that T use. Knowledge of
this set, which permits exact factoring of a certain refractory quartic, has influenced my treat-
ment of the whole problem.

2. Statement of Problem

If p, 1, ¢ are the oblate spheroidal coordinates introduced in [1] and if 7, 6, ¢ and X, Y, Z
are the corresponding spherical and rectangular coordinates, then

X+iY=r cos 0 exp ig=[(p*+¢*) (1—n*)]} exp i¢, (2.1)
Z=r sin 0= pn, (—1=9=1). (2.2)

1 This work was supported by the U.S. Air Force, through the Office of Scientific Research of the Air Research and Development Command.
2 Figures in brackets indicate the literature references at the end of the paper.
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Here 7 is the geocentric distance to the satellite and 6 and ¢ are respectively its geocentric
declination and right ascension. For sufficiently large r, p~7» and n=sin 6.

With the origin taken at the planet’s center of mass, the intermediary orbit is then the path
of a particle in the approximate potential field

Vi=—up(p®+c*n") 7, (2.3)
where u is the product of the gravitational constant and the planetary mass and where
=T o (2.4)

Here 7, is the equatorial radius of the planet and o/, is the coefficient of the second zonal harmonic
in the expansion of the planet’s true potential in spherical harmonics. For the earth J,=(1.08)
1073, to three significant figures.

According to [1], the coordinates p, 5, ¢ satisfy the following equations, involving quad-
ratures:

t+61:ifp PZF‘%(p)dPiCQJ" 2G4 (n)dn, (2.5)
Py 0
P j " Fri()dpta f " @-i(n)dn, (2.6)
6—By— TF oy f ’ (o) 1 F4(o)dp L f " A=) IG-H(n)dn. @.7)
Py 0

Here F(p) and G(n) are the quartic polynomials
F(p)=c*af+(0*+¢*) (— a5 +2pp+2e1p?), (2.8)
G(n)=—ad+ (1—7*) (g +2aic™y?). (2.9)

The o’s and 8's are the Jacobi constants, with the energy o, <0 for satellite motion and with the
polar component of angular momentum a;—0 according as the orbit is direct or retrograde.
To orient oneself, note that in the limiting case ¢—0 of Keplerian motion the separation constant
a, reduces to the total angular momentum, —g, to the time of passage through perigee, 8, to
the argument w of perigee, and B; to the right ascension @ of the ascending node. The Jacobi
constants may be determined, at least in principle, from the initial conditions; we have more
to say about this point later. The constant p, is the next-to-the-largest real zero of F(p) and
thus is that zero ol F(p) which is closest to the smaller zero of

f(p) =—a3+2up+20up°. (2.10)

To solve (2.5) through (2.9) for p, 7, and ¢ as functions of ¢, we must first solve (2.5) and
(2.6) for p and 5 and then substitute the results p(z) and () into (2.7) to determine ¢(¢). To do
so we must first evaluate the above six integrals, which we shall obtain in terms of certain uni-
formizing variables. In turn, evaluating these integrals presupposes knowing how to factor
the quartics F(p) and G(n).

3. Factoring the Quartics: Orbital Elements a,, ey, 1, 81, 8, B3

In the case of elliptic motion (¢=0) the perigee and apogee radii r; and r, would be the two
zeros of f(p), viz,

7"1:(10(1_60): (31)
7'2:(140(].‘}‘60), (32)
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where

1
ar:)E_i ,uafl (33)

=1-+2madu2. (3.4)

In our present problem, with ¢#0, we may still define constants a, and ¢, by (3.3) and
(3.4), as well as another constant
1o=c08" ! (as/as). (3.5)

The constants aq, eo, 10, B1, B, and B; constitute one possible set of orbital constants.  We may also
introduce the corresponding semi-latus rectum p,, defined by

Po=ao(1—¢5), (3.6)
so that .
3= upy. 3.7)

A determination of ay, as, and «; would then furnish a,, ¢y, and 7,. If the subscript 7 denotes
initial values, then (per unit mass)

on=%ui—up;(pit+cni) (3.8)
ay=7r} cos? 0,6, =X Y ,— Yzz\‘,i; (3.9)

where © means speed and a superseript dot denotes the time derivative. Also, by equations
(50), (59.1), (13.2), (10.2), and (55) of [1],

og=(1—n%) "(pi+cn) i+ 03— 2auc?ni(1—n})]. (3.10)

Thus a knowledge of the initial coordinates and their initial derivatives would determine the
o’s and thus the constants a,, ¢, and 7.

A knowledge of their numerical values would then permit a numerical solution of the
quartic equation I”(p) =0 and thus furnish the numerical values of p;, ps, A4, and B necessary to
factor F(p) into the form

F(p) =—2a1(p—p1) (pa—p) (p*+ Ap+B), (3.11)

where p; and p, are the zeros of F(p) closest to the values 7, and .. Then, in the intermediary
orbit, p 1s restricted to the interval p, <p =< p, between two spheroids.
By equating the coefficients of corresponding powers of pin (3.11) and (2.8) we find

P p1Fps— A= —pa; '=2a,, (3.12)
D2 B+ p1pa— (p1+p2) A=c*— oo ' =+ ap, (3.13)
p: (p1+p2) B—p1ps A= —ucla; '=2a,c?, (3.14)
ol p1p2B=—%c%(cd—ad)ai =ayp,c? sin? 1, (3.15)

with use of (3.3) through (3.7).

By beginning with the zero-ordersolution A=B=0, o1+ py=r+r,=2a¢, pipo=717s=apy,
one can solve this set of equations for the four unknowns A, B, p;+ps and pp,, by a
method of successive approximations. If

0 =C*[pi= (7e[po)?eJs, (3.16)
r=(1—e})}, (3.17)
Y= az/ay=C0S 1o, (3.18)
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the second-order solution, through kg, is

A=—2kpp[1+ko(202—3s22—4+8y2)+ . . .], (3.19)
B=k,pi(1—y1)[1+ko(4y?—x%?) + . . ], (3.20)
p1t+pe=2px ™1 —kox?y? —kiz*y* (222 — 32 —4+8y) + . . .|, (3.21)

p1pa=px 21+ kg2 (22 —4) — k22 (1202 —at—202%%— 164322+ 22 + . . .]. (3.22)

The constants

a=4(p1+n), el
P2—p1

— 24

¢ Pz+P1’ (3 )

p=a(l—e) (3.25)

will occur throughout the evaluation of the p-integrals. In terms of a,, ¢y, and 4, their values,
to the second order in k,, then satisfy

p/po=1-F2kq2(x2—2) +kiy? (32t —2aty?— 1622 +24a%2+ 16 —3292) + . . ., (3.26)
Dofp=142key? (2 —a?) +kiy?(— 32t 624>+ 1642 —40a2y2—16-+48y2) + . . ., (3.27)
—p2
%zg=1—|—koy2(3x2—4)+k3y2(5x4—214y2—2()x2+28x2y2—|— 16—32y2)+ . . ., (3.28)
1—62%—1 lk 2(3x22—4 1]622204 17242 — 8022+ 136222+ 64— 1449>

1m0 ) =g (Bt — )+ Ry Q00— 17— 8027+ 13627+ 64— 1y + . . ,

(3.29)
(1—e2)ip~'—ag (1—ed) ~H1+3 ko (4—a?) +} kiy2(— a4 Tty 4 4822

—1042%2—64+176y2)+ . . .. (3.30)

In those places where ¢ occurs alone in the theory, i.e., not in the combination 1—¢? it may
of course be found by use of
e=[1—(1—e)] (3.31)

By (3.28) this results in
e=[e§+ha??(4—32%)+ . . ]} (3.32)

so that when ¢, is comparable to k&, it is not feasible to expand ¢ in a power series in ky; indeed
if ¢,=0, we should need a power series in k.

Direct use of this second-order solution in factoring F(p) will lead to p-integrals that have
secular terms correct only to O(k?). Since we are aiming at arbitrarily high accuracy for the
secular terms, we include it here for other purposes. The most important of these purposes
is to furnish information about the orders of various quantities in k,; e.g., A and B are both of
order %,. Such information will be necessary in carrying out the solution of (2.5) through (2.7)
for the periodic terms. The second purpose is to furnish a convenient starting point for any
investigators who may choose to use a,, ¢, and 7, along with the 8’s, as orbital elements, and
who will therefore have to solve the equation /(p) =0 numerically. A third purpose is for use
in calculating the mean motions to first order, for comparison with other theories.

The quartic G(n), which is quadratic in 7?, may be factored either as

G(n)=—2a:¢*(n§—n2) (93—n?) (3.33)
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Oor as
() =(g—ad)n*(n2—n D (n2—n5?). (3.34)

If we use the latter form, we find on comparing (3.34) with (2.9) that 5,2 and 7,2 are the roots
of the following quadratic equation in n~2:

(cd—ad)n 4+ ane®—ad)n 2 —202=0. (3.35)

Thus
15 *=3(d—20uc?) (—a3) " (1+ W), (3.36)
15 '=3(G—2c?) (g —ed) "I (1—WH), (3.37)

where
W=148ac?(ai—ad) (cZ—2a:c?) 2. (3.38)

From (3.36) and (3.38) it follows that for ;< 0
mSay *(eg—af) <1 (3.39)

and we shall see below that for satellite motion 73>>1.  Since 7* cannot exceed 1, it follows that
in the actual motion 5 always lies in the interval —»,< 9= between two hyperboloids.
We readily find that

o= (81N %9) [1—3 ke®y*+ 5 kia'y*(Ty*—4)+ . . ], (3.40)
(1—np) ¥=lsec ig|[1—3 ke2*(1—y*) +§ kix' (1—y?) Gy*— D+ . . ], (3.41)
0y 2=kex2(1—kex22+ . . ), (3.42)
(no/n2)2=lkox2(sin? o) (1—2kex22+ . . .). (3.43)

Note that 7;2=<ky=1073%, so that »3=1000.

4. Factoring the Quartics: Orbital Elements a, e, I, 8, 8., 8;

If we equate the coefficients of powers of #* in (3.33) with those of corresponding powers
in (2.9), we find

5
ay

2 2 1. . 9
No=n— L Qalcz——lTLa()])()/c ; (4-1)
2 2
2 9 a—as Py -, -
M= "5 5 — 5 SIN* 1. 4.2
NoM2 2&102 02 0 ( )

If in (3.12) through (3.15) we use (3.23) through (3.25), we find

2a— A=2ay, (4.3)
B+-ap—2Aa=c*+aopo, (4.4)
2a B— Aap=2a,c?, (4.5)
Bap=a,p,c?sin? i,. (4.6)
Suppose we now regard a, ¢, and
no=sin [ (4.7

as known. (When we adopt a, ¢, I, and the 8’s as orbital elements we are certainly assuming
so; we discuss later how they may be determined.) Then in treating the p-integrals we have
five unknowns, viz, ao, €, 7, A, and B, and in treating the n-integrals one additional unknown,
viz, ny. Altogether then, we have six unknowns and we have six equations with which to
determine them, (4.1) through (4.6). With these orbital elements, viz, a, ¢, and n,, however, it
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turns out that the system can be solved exactly and with considerable ease, for the required
unknowns. This property of a, e, and n, was first pointed out by lzsak [4].
To carry out the solution, first eliminate 5, from (4.1) and (4.2). The result is

9 2/1_ .2
o gint iy pi4 STL=10) (4.8)
a; @oPo

On inserting (4.8) into (4.6), we find
Bap=c*ni [agpo+c*(1—nf)]. (4.9

If we now use (4.3) to eliminate @, from (4.5) and (4.9) to eliminate a,p, from (4.4), we find a
pair of simultaneous linear equations for A and B:

(ap—c?) A—2a B=—2ac?, (4.10)
2¢*nsa A+ (ap—c*ng) B=c*ni(ap —cnp). @)
Their solution is
____ 2ac*(1—nj) (ap—c*nj)
(ap—c® (ap—c™n}) +4ac*nd (4.12)
(ap—c’) (ap—c*nj) +4a’c?
Y . .
B ap =) (ap—cnd) T 4y (®.13)
Then, from (4.3) and (4.12)
kA *(1—n3) (ap—c*ng)
200, @ - 2a—1+ (ap—c?) (ap—cin?) +4adciy? (R
and from (4.9) and (4.13)
2 2 2,02 202
% a2 (ap—e*)(ap—c*ni) +4a*c*
20~ P T AT O G, ) (p—tat) et} e
Equation (4.8) and the relation n,=sin [ give
Y
as=ay | 1— ap.) €08 1, (4.15a)

so that (4.15) and (4.15a) determine asz. Finally, to obtain 7,, combine (4.2) and (4.6) to
obtain n;2=c*y? (Bap)~* and then use (4.13). The result is

¢ (ap—c) (ap—cny) +-4a*cini,
Yoap (ap—c)(ap—cind) +4aie

(4.16)

This completes the solution for the required unknowns when the orbital elements are a, ¢,
and /. In terms of these orbital elements we can now factor the two quartics F(p) and G(n)
exactly and thus evaluate all the integrals.

With use of the old oblateness parameter k,=c?/pj and a new one, suitable for use with this
second set of orbital elements, viz,

k=¢/p*=(r/p)*J, (4.17)

we can readily show that, to the first order, the equations of sections 3 and 4 give similar results.
Thus we readily obtain

A= —2kp, cos? ig~—2kp cos? I, (4.18)
B =kypi sin? ig=~kp? sin? I, (4.19)
%zl-{—ko(l—e%) cos? iy~ 1+4+k(1—e?) cos? I, (4.20)
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p—°z1+2k0(1+08) cos? 1g~1+2k(1+¢?) cos? I, (4.21)

P
2
%Z;’ ~14-ko(143¢d) cos? =14k (1+3¢?) cos? I, (4.22)
:12 ?’z1+%k(,(1 —e3) cos? iuzl—}-%k(l—ez) cos? 1, (4.23)
7]32zk“<1_6(2))+ o« e zk(1_62)+ c e ey (4.24)
(no/n2)2 ~ko(1—e2) sin? 7y ~k(1—e?) sin2 I+ . . . . (4.25)

With either set of orbital elements, the final solution will be given in terms of @, ¢, I, pi,
B, and Bs, and certain angles £, », and ¢, analogous respectively to the eccentric anomaly, the
true anomaly, and the argument of latitude in elliptic motion. Once one knows a, ¢, and /,
one can then determine the g’s by observing, at various times, whatever quantities will best
serve to determine £, », and .

If one is using a,, ¢, and 7, as elements, one has to determine them from initial values or
from some procedure equivalent to determining initial values. Omne then has to factor the
quartic F'(p) numerically to determine a, ¢, and n,=sin /.

If one is using a, ¢, and 7 as elements, one has to determine them by following the orbit
for many revolutions and then applying some sort of iterated least-square process. In this
case one can then find the Jacobi constants a1, as, and ag and thus a,, ¢, and 7, by means of the
equations of this section.

In any event, the determination of orbital elements, by comparison of theory and ob-
servation, is ordinarily considered a completely separate problem in celestial mechanics from
the calculation of the motion for given orbital elements. We have included the above remarks
only to aid in the possible application of the present theoretical solution. Indeed the problem
is further complicated by the small perturbations that occur in practice.

In the rest of the paper we simply assume a, ¢, no=sin I, 81, 8, and g5 to be known and then
complete the solution for the intermediary orbit. There will he one restriction, however.
The method of evaluating the p-integrals will be found to depend on the orbital inclination
1o or 1. For values of I less than 1°54” or greater than 178°6’, a different approach would be
needed. We shall therefore restrict considerations in the present paper to orbits that have
inclinations between these two values, thereby ruling out equatorial or almost equatorial
orbits.

5. The p-Integrals

In (2.5) through (2.7) the p-integrals are

o= [ F o), (5.1)
P
Ro=a | " F o), (5.2)
Y
Ry=+ f ’ (o6 F-Y(p)dp, (5.3)
Pl
where F(p) is given by (3.11), A and B by (4.12) and (4.13), p by (3.25), and p, and p, by
p=a(l—e), ps=a(l+e). (5.4)
Equations (5.4) follow from (3.23) and (3.24). Then
F=4(p)=(—2a) " (p—p1) (p2—p)| I~ (1+Ap~ '+ Bp~?) % (5.5)
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If, for convenience, we put

A=—2b,, B=bZ A=b,/b, (5.6)
and
h=b,/p, (5.7)
then
(14+Ap~'4Bp~2)~i=(1—2N\h+h?)? (5.8)
n=0

if |h|<1 and |N|<1.
The expansion (5.9) will be a convenient tool for evaluating all the p-integrals, whenever
it can be used. To see when, use (5.6), (5.7), (4.18), and (4.19). Then to O(k)

bi=Fkp cos® 1, by=Fk¥p sin I,
so that b,/p<1 and

A=Fk? cos? I csc 1>0.
Thus to O(k), N<1 whenever
kt cos? I ese 1<1,
or whenever
tan? /+tan* I >k
or
2 tan2 [ >(1-+4k)i—1.
To O(k), this becomes
tanz I >k.

But k= (r,/p)%J, and J,=(1.08)107% for the earth, so that A<_1 whenever
[tan 7] >0.033 7,/p.
For close orbits 7,/p =1, so that the necessary condition becomes
I,<I<180°—1,, I,~1°54".

The expansion will thus work for all satellite orbits that are inclined more than 1°54’ to the
equator. For those orbits that lie closer to the equator one must use some other method to
evaluate the p-integrals. On inserting (5.7) and (5.9) into (5.5), we find

F(p) ™= (—2) ™ 23 3P, (o™ (o —p1) (p2—p)] . (5.10)
With use of (5.1), (5.10), and (5.6), we find

(—2) R, = f ’ <p+bl>[(p—pl><p2—p>1-%<szdp>+§ P, () f * =" l(o—p1) (p2—p)]~H( L dp).
(5.11)

Each of the separate integrals in (5.11) is a multiple-valued function of p. It is appropriate
to change variables in each to a uniformizing variable £ or », analogous respectively to the
eccentric and true anomalies in elliptic motion. We define £ and » by requiring them to
satisfy

p=a(l—e cos E)=(14e¢ cos v)~p (5.12)

and always to increase with time. Then, from (5.12), (5.4), and (3.23) through (3.25), we find

[(p—p1) (p2—p)]H(£dp) =dE=(1—e*)}(1+e cos v)'dv (5.13)
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5.1. The Integral R,

On introducing % into the first integral in (5.11) and » into ecach of the integrals in the
series, we find

(—2a)'R1=b E+a(ll—e sin )+ (1—e2)¥p é (bs/p)™P, (\) fﬂ (14-¢ cos o) 2dp. (5.14)

To investigate the convergence of the series we write

Slfé (bo/p)" P (V) fv (14¢ cos v)"2dv (5.15)
= (bs/p)* méo (bz/p)’”l’mﬂ()\)fov (14-¢ cos v)"dv. (1.16)

Then '
|8 = (bz/'p)zngo(bz/P)mIPmH()\)l(1+€)ml) (5.17)

and since |P,(N)[=1 for all [N\|=£1, we have

|S1| = (bz/l’)%go l:bl—(lf—”)] (5.18)

< (b/p)™

=T=b(1top (5-18)
By (4.19) and (5.6), however, b,/p=~Fk* sin I and of course 14¢=2, so that
by(14¢)/p=2k* sin 1 <2k*, (5.20)

Since k~107%, we have by(1+¢)/p <0.063. Thus the series S; converges, and converges more
rapidly than a geometric series of common ratio~1/16. Actually, since we have shown that the
series S converges absolutely, we can regroup it into the sum of a series S, containing only the
even values of n and a series Sj; containing only the odd values of n. It is then a simple matter
to show that S;=S,,+8S converges more rapidly than the geometric series [1-4b,(1-+¢)/p].
> 0% [0.(1+e)/p)™.  That 1s, we can actually expect the convergence of S; to be as rapid
as that of a geometric series of common ratio [by(14-¢)/p] =4k =1/250.

To decompose the series S) into a part proportional to » and a periodic part, note first that if

Fm(®) EJ‘U(Hre cos v)"dv, (5.21)
0

then f,(») —(27) f,.(27)» is an odd function of », of period 27x. But f,(27)=2f,(x), so that
we obtain

Fn(®) EJ (I+e cos z,')’”dv:r'lvf (14-e¢ cos 1:)”‘(&!-}—%0,”]- sin jo. (6X22)
0 0 j=1

To obtain, to any order in k, the parts of the p-integrals proportional to », we shall need to con-
sider all integral values of m in #~'f,(r). To obtain the periodic parts correct to order £?, we
shall need values of m only up to 4.

To obtain a convenient expression for the »-term of £, (»), note that [5]

J (24+/22—1 cos v)"dv=nP,(2), (5.23)
0

for all values of z, including real values greater than unity. Here P,(2) is the Legendre

polynomial
2 —m (Z"lv
P, (2)=

771'! (lzm

(*—1)", (5.24)
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of the same polynomial form in z that holds when [z|<1, when it can be defined by the usual
generating function. If we put

z=(1-—e?)"? (5.25)
in (5.23), we find
J” (1-+e cos v)"dv=m(1—e2)™2P,[(1—e?) %] (5.26)
0
=R, (N1—e?), (5.27)
where
R, (x) =2"P,(1/z) (0=z=1). (5.28)

Thus R, (z) is a polynomial of degree [m/2] in 22. The first few of these polynomials are given
in table 1.

TaBLE 1

m ‘ Ry (z)

1

1

15(3—12)

15(5—322)

(18) (35—30224-324)

(18) (63—70224-1571)

(Y6) (231 —31522+10524—525)

DU W~ O

From (5.22) and (5.27) we then obtain
f (14e cos @)’"dr:Rm(\/l—-e?)v—l—Xw‘, Cpj + SIN 0. (5.29)
0 j=1

Through m=4, the coefficients ¢,,; are easy to find, simply by binomial expansion of the integrand
and conversion to a trigonometric polynomial.
The results are given in the following table:

TasrLE 2. Coeflicients cp; in (5.29)

N
N\ J il 2 3 4
m o\
S

0

i 1

2 2e €24

3 3e+-3e3/4 3e2/4 €312

4 de+4-3e3 3¢2/2+-¢4/4 €/3 e4/32

In (5.14), b3=0(k"?) and P,(N)=0Q°)=0(k°) if n is even or P,(\)=0(\)=0(k?) if n is
odd. On inserting (5.29) into (5.14), using table 2, and keeping periodic terms through O(k?)
only, we find

(—2a1)}Ry=b,E+a(E—e sin F) —%—Alv—}—i_‘_,Al,-sin v, (5.30)
where -
A=(1—=e)p 33 (/)" Pu VB2 (1= 27) (5:51)
and
Anzg’ﬁ%fzf (—2b.82p+-B)e, (5.32)
Amz%ﬁf Ber. (5.33)

The above proof of convergence of the series for R, also shows the rapid convergence of the
series (5.31) for the coefficient A; of the v-term.
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5.2. The Integral R,

On inserting (5.10) into (5.2) and using (5.12) and (5.13), we find
(—20) Ra— (1— 2t S (ba/p)"P, (V) f (B onn o (5.34)
n=0 0

As above, one can show at once that this series converges more rapidly than the geometric series
02 n-olba(1-F¢)/p]", with common ratio b,(1-+¢)/p <2k*=~0.066. The same proof then applies
to the coefficient A, in

. 4
(—2041)511’2:/121'—}—2/12; Sill j'?'. (535)
i=1
Using the same methods as for R, we then find

Ay=(1— ) p 32 (by /)P (N R (V1 —02) (5.36)

n=0
and, through periodic terms of O(k?):

An=(1—¢*)’ple[bip™'+ (363 —b3) p2 —§b:b3(1 -+ €%/4) p~*+ 8bi(4+3e2) p~1], (5.37)

. e 3b4

Ayp=(1 —02)’])”1[—(8 (302—b3) p2—2e2b,bip3+ i%:((‘w“r 64)1)“‘]; (5.38)
-3

An=(1—e?)ip™' T (=bib3p~*+bipY), (5.39)

Api=(1—e2)hp=3 -G':G biet. (5.40)

5.3. The Integral R;

If in (5.3) we now use the binomial expansion

(p2-c?)~1=p~2 i (—1)7cp2 (5.41)

J=0

and insert the expressions (5.10), (5.12), and (5.13), we find
(—26!1)%]‘33:(1—62)%27”3f 25 (=17 (e/p)*(1+e cos ©)* 3 (bo/p)" P, (M) (14-€ cos v)**2dv,  (5.42)
0 j=0 n=0

where the integrand is the product of two series, each of which converges absolutely for any
value of ».  Then [6] it is equal to the series formed by summing the products of the individual
terms, taken in any order, and this resulting series is itself absolutely convergent, for any value
of ». Tt is therefore uniformly convergent, by the Weierstress M-test [7], so that it may be
integrated term by term.

Let us now rewrite (5.42) in the form

(—2a)iR3=(1—e?)ip~3 D, (1+4¢ cos v)™+2dv. (5.43)
0 m=0
Here
1D) = B (5.44)

summed over all those non-negative integral values of 7 and n” for which
2j+n'=m, (5.45)
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and where
d;=(—1)’(c/p)¥, (5.46)

8= (bo/P)" Prr(N). (5.47)

Then, because of the uniform convergence,

(—2a)iRs=(1—e)ip 3Y D, | (1€ cos v)™+2do. (5.48)
0

m=0

It is interesting to investigate here the rapidity of convergence of the series

SEZm) Dmf (1+e cos v)"*2dv. (5.49)
n=0 0
If m is even, we have m=2i and n’=2n, so that 2j+2n=27 and j=i—n. Then
DlnzDZi:Zdi—n62n:Z (___l>1'—n(c/p)Zi—2n(b2/p)2nl)2n(>\)} (5'50)
n=0 n=0
so that
1Dy < (e/p)* Z‘g (bofc)?. (5.51)

But e?=kp? and bi=kp*sin® I, by (4.19), so that

(bofe)?=~sin* [ <1.
Then
|Dy| < (i+1)E (5.52)

If m is odd, we have m=2i+1 and n’=2n-+1, so that

D2i+1=§ di—n62n+1:7§) (_1>i_n(c/l))w_2n(bz/p)2n+lpzn+1()\)' (5-53)
Then
|Dyi1| = (e/p)2i(by/p) 12_0 (by/e)* < k'k? (++41) sin 1. (5.54)

Then, breaking up S into an even series S, and an odd series S,, we find
18,/ 30 (DI (1402w (146 3o (41D k(1+e). (5.55)
=0 =0

Using > \cei=(1—2z) ! and > Fir’=z(1—2) 2, we find > 7 (1+1)a*=(1—1z) 2 so that
(1+e)

|S.|= I—kA+e)F (5.56)

Similarly
|S,| Sk (1+e)%sin T S (i4+1)[k(1+€)?]" (5.57)

1=0
ki(1-+e)vsin 1 -
= —kaFoF 02
Thus,

RE (1+e)*[1 +k* (1+e) sinl] (5.59)

1=k +e)

The series (5.49) for R; thus converges more rapidly than the series expansion of the function
given in (5.59).
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Through O(k?) the values of I),, are given by

TaBLE 3

m 1 Order ‘ Do

|
0 ko ‘ dodo=
1 k dody= 51 h/p=k cos? T
2 k| doda+drdo= (ba/p)2Ps(bi/b2) — (c/p)?
3 2 ’ oo dr31 = (baf D)2 P (brbe) — e/ )2 0o/ )
4 k2 dods+dido+dado= (ba/p)* Ps (b1/b2) — (¢/p)? (ba/ D)2 Pa(bi/bs) +(c/p)*

As with R, and R, we find

(—2a1)%}i’3:A325+Zﬂ Asj sin v, (5.60)
J=1
where
Ay=(1—e)ip™ > DpR i 1—e?). (5.61)
m=(

The remarks about the convergence of the series (5.49) apply also to (5.61).

Since 2y is multiplied by ¢*=kp* in (2.7), we need periodic terms only through O(k), in
order to have periodic terms in the final solution correct through O(k*). By (5.43) and tables
2 and 3, their coefficients are

Azn=(1—e2)ip3e [2+b1])'1 <3+262>—p'2 <%§+(:2> (4+362)]; (5.62)
A= (1—et)ip-3 74'+£ % et—p ;29 ) ~—+cz>i| (5.63)
Ag=(1—e?)tp™8 :li;%l~;1}2 <§+62>]’ (5.64)
Ag=(1—e2)tp-3 : ;rpr )] (5.65)

6. The -Integrals

In (2.5) through (2.7) the n-integrals are

Ni=+ fﬂ n*G " (n)dn, (6.1)
0

No—+ f " G (n)dn, 6.2)
0

Ny=+ f " (=) (), (6.3)

where G(n) is given by (3.34), 7, by (4.16), a2 by (4.14) and (4.15), and a3—a3 finally by (4.8).
In evaluating N, and N, it is convenient to put

n="0 sin lﬁ, (6.4)

where ¢ is to be an angle that always increases with time. In the limiting case ¢=0 we should
have sin y=siné/sin I and ¥ would thus reduce to the argument of latitude, i.e., to the angle
between the line of nodes and the radius vector to the satellite.
Then
+ G (n)dn=(c5—a3) “Ino(1—¢* sin® ¥) "y, (6.5)
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where

g=mno/n:=0(k¥) <1, (6.6)
7, being given by (4.16).

6.1. The Integrals N, and N,

Insertion of (6.4) and (6.5) into (6.1) gives

v
Ni—(ad—ad) - 8 f (1—g? sin? ¥)~* sin? Ydy. 6.7)
0
Because of the identity

(1— @2 sin? ) “3g? sin? Y= (1— 2 sin? ) 1 — (1—¢? sin? )} (6.8)

, Y Y
Ni=(@—ad) a2 [ "= sior o) -ddu— [ C(1— ¢t sine oy (6.9)

0 0

= (ag—a3) “inoq 2 [F(¥,9) —E¥,9)], (6.10)

where I'(¢,q) and E(¢,q) are respectively the elliptic integrals of the first and second kinds, with
modulus ¢.
Insertion of (6.4) and (6.5) into (6.2) gives

12
A f (1—g* sin? p)~3dy 6.11)
0

= (a3—ad) "ol (¥,q). (6.12)

Thus N, and N, can both be expressed exactly in terms of elliptic integrals of the first and
second kinds. Our ultimate purpose, however, is to express each uniformising variable as the
sum of an exact secular term and periodic terms correct through O(%2). For this purpose it is
convenient to express each elliptic integral as a linear combination of ¢ and a Fourier series
>0 B, sin 2ny.

To do so, consider

v
F,q) Ef (1—¢? sin? ) ~¥dx. (6.13)
0
Some simple transformations show that

Fi+m9=Fi,9+2K(q), (6.14)

where

/2
K(q) Ef (1— @2 sin? z) “idx (6.15)
0

is the complete elliptic integral of the first kind. It follows that the function F(¢,q)
—(2/m) K(q)y is periodic in ¥ with period .

Furthermore it is an odd function of ¢, so that it can be expanded in a Fourier series containing
only the sines of even multiples of . Thus,

F(b,q)—2/m) K (g) v+ méF“" sin 2my. (6.16)

To calculate the Fourier coefficients F,,, differentiate (6.16) with respect to ¢ and use (6.13).
Then

(1— g sin? ¥)~t=(2/m) K (Q)+23° mF,, cos 2my. (6.17)
it
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The Fourier coeflicients #,,, are then given by
/2 )
qu=(2/7rm)f (1—¢q? sin?x)~* cos 2mud. (6.18)
0

Since cos 2ma is a polynomial in cos® z, each F,,, can ultimately be expressed as a linear com-
bination of K(g) and the complete elliptic integral

/2
E(g Ef iy (6.19)
0
Such a procedure, however, would not readily reveal the order of each coeflicient in ¢*, which

itself is of order k. (Actually we shall show that F,,, is of order £™, so that we shall need only
F, and F,,.) Instead we expand the radical, obtaining

. . SH2n) g sIn 2t .
(1—q2 sin? x)—i:1+n§1 <——2gn(T (()20)
Then
= (2n)!g* (/2 .
”'””:7% %,'f()—n?)—zf sin?” z cos 2mad. (6.21)
n=1 « 2] 0
Also
o 2n)! sy . (2w)! : .
sin? I:(i!jzﬁ—}—(—l) T JZ:E) (—1)7 (Qﬁ/i:ﬁ cos (2n—2j)x, (n=1) (6.22)
and
cos [(2n—29)z] cos 2mz=13% cos [(2n+2m—2j)x]+3 cos [(2n—2m—27)x]. (6.23)
J ]

The integral of this product from 0 to =/2 fails to vanish only if j=n-m or if j=n—m. The
value j=n-4m is absent from (6.22), so that only the term j=n—m in (6.22) contributes to
the integral in (6.21). Thus

(2n)! ™
(n4+m)!(n—m)! 2

/2
J sin?* x cos 2madr=(—1)"272" ) (n=m). (6.24)
0

N

On inserting (6.24) into (6.21), we find

© (In, !2 21
Fon=(—1y"m"! ol

i=m (n+m)!(n—m) !24"(11,!)2' (6:25)

Inspection of (6.25) now shows that /,,=0(¢*"")=0(k™). The first two values are, to order
q" or order k*

ql 8 4 .oy N
_3¢
Fq2—256+. . (6.27)
For our purposes, therefore,
F ¢’ 3 O\ 3¢t .
f(x//,q):(2/7r)K(q)\,b~—§ 147 ¢ ) sin 2¢+§—56 sin4¢+. ... (6.28)

Similar considerations about periodicity and oddness show that

EW,q) Ef»ﬁ (1— ¢ sin? z)¥dx=(2/r) E(q)x//JriEqm sin 2my. (6.29)
1

0
Then, as before,

(1—g? sin? ¥)i=(2/r) E(Q) - 23 mE,p, cos 2my (6.30)
1
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and

/2
Em:(z/,rm)f (1—¢? sin? 2)* cos 2madz. (6.31)
0
Also
. ) e (2n—2)!¢*" sin?"
2\ o 2
(1—¢? sin? 2)¥=1 ngl =i l(n—1)1 x (6.32)

Inserting (6.32) into (6.31), we find

— _1_ S (2n—2)'g2ﬂ fﬂlm in2ne ¢
E,= rm,§122”‘2n!(n—1)! , 8 cos 2mad. (6.33)

On inserting (6.24) into this, we obtain
(—1)mtt & 2n)! (2n—2)! g

Egn= m =2l (n—1)! (n+m)! (n—m)! (22
Thus F,,, is of order ¢*" or of order k" and
_o. ¢
Ea=%45+ - o (6.35)
4
E,= 256+ e (6.36)
Then, for our purposes
E®W,9=2/m) E(q) ¢+<q sin 2\0—2%6 sin 4y . . .. (6.37)

Finally, inserting (6.28) and (6.37) into (6.10) and (6.12), we have for the n-integrals
Nl and Ng:

2
Ni=(ad—a3)"tn} I:Bl <1—|—% q2> sin 2¢+g—4 sin 49+ . . .:l, (6.38)
Ny=(a2—a?) 2n0|:BQ (4+3q2) sin 2¢—}—%l; sin4y+ . . .:l, (6.39)
with
B, = [K(Q) E(9l= 9+ Q+198Q .o (6.40)
2 1 9
B,== K(Q=1+7 ¢+g ¢+ - - - (6.41)

Here the terms in ¢ are exact. In /N, the sines are correct to O(k?), while in V; they are correct
only to O(k); this is as much accuracy as we need for N,, however, since it is multiplied by
¢¢=kp? in the first kinetic equation (2.5).

6.2. The Integral N;
From (6.3) and (3.34) we have

(=) Ny=+ f " (1= 1) " (L—1/nd) ~H(1—n2nD) . (6.42)
Then since
L = (2 -
(=) H=35 2, (6.43)
we obtain |
. = (2m)] gy
(—a) Ne= 3 %2— L, (6.44)
where
L= ifﬂ(l—n"‘)“(1—712/113)'%112'%1- (6.45)
0
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With

L=+ [ "= i) 1 (6.46)
and
(I—nt "' p*m=(1—a0%)"— 2172”, (mz=1), (6.47)
we then find o
Ln=L—L, (mz1), (6.48)
where "
it f "y (1—n2/n) 4. (6.49)

To evaluate L, rewrite (6.46) as
n =
L= [ "t =t —n5) Yy (6.50)
0
and introduce the new variable X, defined by the equation

tan Xx= (1—113)é tany=|cos [ | tany (6.51)

and the requirement that x and ¢ shall keep in step. IL.e., whenever ¢ equals a multiple of
7/2, x shall be equal to ¢y. Then

csc2y=1-+cos? [ cot?x (6.52)
and
n"2=nq 2 cscy=1-+tcot? I csc? X, (6.53)
so that
n %dn=cot? I csc2 X cot X dx (6.54)

and cot Xdx=0 according as dn=0 in (6.50). With yp=1, sin ¢ its integrand becomes

+ [tan I| cot X | tan X | dx= | tan I |dX, (6.55)
so that
Ly=|tan I| x=90(1—n3) *x. (6.56)

To fit the angle x into one’s knowledge of the corresponding elliptic motion, note that as ¢
approaches zero, n approaches sin 6. Then, by (6.53),

. tané
=1 —h—
X—>sin (1 on ]>—¢ Q, (6.57)

where @ is the right ascension of the node.
To evaluate the integrals L,,, put n=n, sin ¢ in (6.49). Then

¥
Llnznﬁ"“f sin®" r dx, (6.58)
0
so that
L10: NoY. (659)

To handle the cases n=1, we rewrite (6.22) as

sin?* x=

@n)! | g1og 5 _(=D'CH!
2y ,)2+2 Z}(n%—])'(n i cos 2jx, (6.60)

thus finding

2041 (90) | om)! 9
L= ppriane SIS, z). (6.61)

Insertion of (6.48), (6.59), and (6.61) into (6.44) then yields
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(Qm) ,’)—-2m (2m)[ —2m m—1 2n+1(2n)1

(2m)!qzm
(a3— aa) Aa—LoZ 2m( N2 —"’70‘p7’§—22—mw ¥ Z 2m(m!)2 = 2”(%!)

— ( ) ‘2m 27;_'_1() an ( (277/)‘ bin 2]‘10
fn?\—'z 22m(m|)2 Z ]=Zl n+])‘(n NG (6.62)
If in (6.62) we now use (6.56) and the relation
—2\—} (2m) Iny>
(1_772 2) mZ:O 22m(m‘2)2 ) (663)
we find
(3—ad)INz=no[(1—n3) "} (1—n5;?)~ ’X+B3‘l/+2 By, sin 25y, (6.64)
where
By=1—(1—n;)"— Z=2 Y3 2", (6.65)
_ @m)! @)
'Ym—'22m<m!)2 = 22)2(,,“)2’ (666)
and
2 . , (2m) In5 2™ 2 (—1)7(2n)! sin 27y
. 2MY=—> 2 =T .
2 B sin 27¥ ; 22 (m )2 zz Jz-l () n—5)'j (6.67)

The easiest way to isolate the coefficients B;, is to use the orthogonality of the functions
sin 2s¢. Then
. (27)@)' —2m m— 1,’7271‘) 2n(___1)( )y

BBSZ_,,,§;J+1 P ()T 2= (ns)in—s)ls (6.68)

:0(772_23_2)7 (669)

so that By=0(0n;*)=0(k2), Byu=0(;°%=0(?), etc. Thus, to obtain the sine terms of Nj;
to O(k?), we need only

3
Bgl:ﬁ 7](2)7]2_4—}— 80 00 (670)

To test the convergence of the series ; Yams ¥, note first that

@n)! 1.3.5. (2n—1) 1
onu)e 2.4.6..20 =»  ("ED (AL
and hence that
m—1 2n+1 .
(2n) n} om 1 (6.72)

() = 2

for any orbit, polar or nonpolar. Then, by (6.66), (6.71), and (6.72)

'ymég <m2_1>§1—36 (m—1), (m=2). (6.73)
Thus v,,<_m and '
mZ_) Yy 2”<Z may 2", (6.74)
But
e {(2—n52 e
e e (e Rk

where 7;2=0(k). 'Thus the series > y,n; ¥ converges rapidly.
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To test the convergence of the Fourier series >, By, sin 2sy¢, note that

> By, si 3 = @mymasl (2!
1‘;1 Bs, sin 2sy| < ; [B(Ksl = m=28+1 2mm(m )2 £, 227 (nt-s)(n—s) ! (6.76)
But
(2n)! - (2n)!n!n! - (2n)! (m)(n—1)(n—2) . .. (n—s+1)W _ (2n)! <

2 (n+s)l(n—s)! 222 (n+-s)!(n—s)! 227 (n))? (n+s)(nts—1)(nts—2) .. (lle)“’”(nV)2
by (6.71). Then

m—1 (2)7/)'

= 22”(n+s)!(n,—s)!< "
and

(2m) Iny 2"

m In; ® o
< Z W<Z mn,®

m=8+1 m=2

Z Bs, sin 2sy

by (6.71) again. Then, by (6.75)

s sin 2\1//l<n) 2 ;—7’52;) (6.77)

Since 5, 2=0(k), the Fourier series converges rapidly.

Thus all terms in (6.64) remain finite for all n5 =1, except the term involving x, which appar-
ently may become infinite for polar orbits. Note, however, that N; occurs only in eq (2.7)
for the right ascension, when it has a factor as, which vanishes for a polar orbit. To see what
happens in this case we must investigate the limit of a;/Ny as n2—>1. For a polar orbit we have

a3 Ny=az(a—30) “dno(1—n5) 2 (1—n5%) =X+ O(as). (6.78)

But |as| (e2—a3) ~i=|as|as ! to O(e) and by (4.8) and (4.2)

ol 1= (1— 31— 5 sin? igh=(1—nd(1— 15D} to O(axs). (6.79)
Thus to O(as)
az;N3=(sgn az)X (polar orbit). (6.80)

If we now use (6.51) to plot x versus ¢ for various values of 73, we obtain figure 1.

{n+1)m

Fraure 1. Plot of x versus y for various values of n.
|
an+3)m
2

e | e e TR LS

nm (n+5)m (n+n)m
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The general form of these curves can be checked, as follows. From (6.51)

tan X=e tan ¢, e=(1—ni). (6.81)
To find what happens to a polar orbit we must let e approach zero.
If we put
v=(n+31)r+Ay, X=(n13)r1-Ax n=0,1,2.3, .. .),
then

tan Ax=e¢"! tan Ay.

If we keep Ay fixed and let e—0, then if 0<Ay<7/2, it follows that Ax—=n/2. If —;—r<A¢<O,

then Ax—>—m/2. In a polar orbit, whenever the satellite passes over a pole, y=(n-+3)r,
with ¢ >0, so that x thus jumps by +=. By (6.80) and (2.7) the right ascension ¢ then jumps
by -+ in a direct orbit or by —= in a retrograde orbit. These are expected results, which
had to be obtained as a partial check of eq (6.64) for V.

7. Mean Motions

The purposes of this section are to obtain expressions for the mean motions correct through
the first order, to find if we are on the right track, and to obtain exact expressions for the mean
frequencies for later use in section 8 in checking the secular terms in the final solution.

If p,, p,, and ps are the generalized momenta conjugate to p, 5, and ¢, then the action
variables

7= pap=2 | "o, (7.1)

J E? Pndn=4joﬂopndn, (7.2)
2

Jy 556 p¢d¢=f0 Dodd—2ras, (73)

are functions of the Jacobi constants «;, as, 3. (Since these JJ’s occur only in this section,
there is no danger of confusion with the coefficients of the zonal harmonics in the expansion
of the potential.) The a’s are then functions of these J’s and the mean frequencies [8] are
given by

mean p-frequency =y, =0q;/dJ;, (7.4)
mean g-frequency =, =0a;/0.J,, (7.5)
mean ¢-frequency =uy;= 0a;/0J;. (7.6)

Note that », and »; are identical with the usual nodal and sidereal frequencies, but that », is
somewhat different from the usual anomalistic frequency.
To compute these frequencies, one may use the system of equations

3. Oy me_ga_l - -
2 _ba_n_ban_al"’ (=123 (7.7)
With the use of (7.4) through (7.6) and the abbreviation

=0/ Oy (7.8)
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these equations become

vieJ i1+ veen =1l (7.9)

V1J12+V2J22 :O, (710)

V1J13+V2J23+27FV3:O, (71])

with the solution

VIZJQQ/A <712)

VZZ_JH/A (713)

2mvy=—wJ 13— 2o (7.14)

AEJHng—‘Jlge]-gl (715)

With the use of eqs (13), (53), and (55) of [1] and sections (5) and (6) of the present paper
we find

Ju=2R1(ps) =27(—201) "}(a+b:+A4,), (7.16)
J1n=—20,R5(ps;) = —2may(—2a1) 14, (7.17)
J13=2a3 R 3(p;) =2mc2a3(—20) "1 A3, (7.18)
J =42 N1(no) =2mc*(cg—a3) 13 By (7.19)
J 22 =40, N, (o) =2may(c5—3) “¥19 B, (7.20)
J s5=—4a3Ny(mo) = —2mas(ad —ad) "t By+ (1—n) “H(1—n3*) 2] (7.21)
Then
2mv=(—2a)}[a 41+ A+ c2niA, By By ']t (7.22)
2mv = (a3—ad) g LA, Byt [a+ b1+ A+ g A, By B3 Y L. (7.23)

The above results are all exact, for the potential (2.3), and we shall refer to them again in
section 8.

For comparison with other theories it is desirable to express these mean frequencies as
power series in the oblateness parameter. For this purpose it is convenient to use the orbital
elements ao, ¢, and 7, and since we shall carry the series only through the first power we may
replace ko=c?/pi by k=c*/p®.

With use of the relations in sections 3 and 4, the above equations then become

2mvi=ny+ O (k?) (7.24)
27v,=mn, [1+ 2k (5 cos 2ip—1)]+O(k?), (7.25)
where 7, is given by
u=n3ag. (7.26)
Similarly
Jis=7k(2-+¢€2) cos 1,+0(k?), (7.27)
Jp3=—2m sgn az+rk(1—e}) cos 1+ 0(k?), (7.28)

which together with (7.14), (7.24), and (7.25) lead to
2mvg/ne=(sgn az)[1+3k(5 cos2ip—1)]—32 k cos i,-+O(k?). (7.29)

Here sgn ay=+1 accordingly as the orbit is direct or retrograde, respectively.

To avoid any use of the concept of an osculating ellipse, we may define the mean motions
as follows. We say that the ascending node exists only when the satellite is over the equa-
tor, travelling north. Let Q be its right ascension at such a time. We then define the mean
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motion @ of the node relative to OX by

G=lim 2= (7.30)

2
ti>o tz_t()

where Q, and 7, are the values of Q and ¢ at some (ascending) node and Q; and ¢, are their values
7 nodes later. Since the present system is of the conditionally periodic Staeckel type, it
follows, after some fairly close reasoning that I shall here omit, that

Q=2 (|vs|—»,) sgn as. (7.31)

We also say that p-perigee exists when, and only when, p=p, and we let ® be its right as-

cension at such a time. Then the mean motion of p-perigee relative to OX must be equal to
the mean motion ® of its equatorial projection relative to OX and

T .. D,—P
=llmn ——

tiow tz“tO

(7.32)

Here @, and ¢, are the values of ® and ¢ at some p-perigee and @®; and ¢; are their values ¢
p-perigees later. Then, again omitting the proof, we have
=27 (|vs] —r1) sgn as, (7.33)

Now let » be the arc on the celestial sphere from an ascending node (when it exists) to
the next p-perigee. Then, since the mean relative motion of these points must be equal to
the mean relative motion of their projections in the equatorial plane, we find that the mean

motion & of p-perigee relative to the node is given by
:o:(:i;—é) SEN g, (7.34)

=27 (v,—n1), (7.35)

with use of (7.31) and (7.33), for any orbit, direct or retrograde.
From (7.31), (7.25), and (7.29) it follows that

Q= —3kmno cos to-+-0(k2) (7.36)
and from (7.35), (7.24), and (7.25) that
o= 3keno(5 cos? iy—1)+O(k2) (7.37)

Here ny/27 is the frequency in an elliptic orbit with the same total energy. Equation (7.36)
agrees with results found by many other authors, as does (7.37) when @ is the mean motion
of r-perigee relative to the node. By (2.1) and (2.2), however, r”2=p*+kp* (1—»?), so that r
and p differ by a variable quantity of O(k). Tt is thus a little surprising that the mean mo-
tions of p-perigee and of r-perigee relative to the node should be equal through O(k). This
means that the mean p-frequency is equal to the mean r-frequency to this order.

8. Solution of the Kinetic Equations

Before solving the kinetic equations (2.5) through (2.7) it is convenient to have several
relations connecting the uniformising variables £ and ». From (5.12) we obtain
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cos K—e

1—e cos E (8-1a)

COS V=

The requirements that do/dt>0, dE/dt>>0 for all ¢ lead to the result that do/dE>0 for all ¢.
Because of this result, (8.1a) leads to

(1—e?)isin K

l—ecos £’ (ol

sin o=+

without ambiguity in sign. For a given value of £, eqs (8.1a,b) determine » modulo 2.
On imposing the further requirement that » shall always equal £ whenever the latter is a
multiple of 7, we find that £ determines » completely. Two other relations are often useful,

viz,
) 14+e\z E i
tan 5—(1-:;) tan E (51(,>
and
v—E  ysin K

¢ =- ) y=e — (1 —p2 S
tan 5 [—v cos B “1—(1—e)i<1. (8.1d)

Before beginning the solution of the kinetic equations it is desirable to assemble the
results already obtained. By (2.5), (2.6), (5.1), (5.2), (5.30) through (5.33), (5.6), (5.28),
(5.35) through (5.40), (6.1), (6.2), (6.6), and (6.38) through (6.41),
the equations for p and 5 are

t+B1=(—2a) b E+a(F—e sin E)+Aw-+A; sin v+ A, sin 20]
2
+c2(ai—a3) ¥} [Bltp——é (2+¢?) sin 21//—|—g~4 sin 4\//]+1)01'i0(1ic terms of O(k?), (8.2)

Bg/ag:_<_2al) [A)l’+A)1 QI“ (+41 29 b 1 217+£1~>3 gill :;I‘+[124 %in 477]

+ (a2—ad) ~in, [le// 2= (44-3¢?) sin 2¢+2;—( sin 4¢:|+pcr10dlc terms of O(k*). (8.3)
Here
=a(l—e cos E)=a(1—e?)(14e¢ cos v)7}, (8.4)
=1 Sin ¥, (8.5)
with £ and » connected by any of the eqs (8.1).
A =(1—e)p i:? (bo/p)"Pu(b1/b:) Ry o[ (1 =€)} =0 (k), (8.6)
Ay = (=) 35 (bfp) Pulb/B) R, (1—e)]=0G), (8.7)
n=351—e)ip~%(—2b03p+b3) =0(k?, (8.8)
A= (1—e)ip tbler=0(k), (8.9)
2
Bi=_ 5 (K@ —E(@l=0(), R
B2 K(@ =001, (s.11)
q=mno/1:=O0(k?). (8.12)

K(q) and E(q) are the complete elliptic integrals of the first and second kinds.
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Ap=(1—¢)lep~3 [—%Aﬁ-}-(i—ALB) g Ay (1 +Z—>+§B2(4+3e2):|=0(k), (8.13)

v s34 1p\€,, 9 3 03, 1
Au=(—etp~s| (3438 oty ABen+d B(Set et o), (8.14)
2
Agp=(1—e*)p~% élf—ggp—ﬁ;i =0(k?), (8.15)
3 5B
Ap=5z5 (1—e)ip™°B2'=0(k"). (8.16)

In the above equations ¢’=r2J; is regarded as known, as are the orbital elements a, e,
n0, Bi, and B;. Then p=a(1—€*) and 7y, A, B, a1, as, and a3 are given by section 4. Also

h=—34, B=B, Ru(x)=2"Pu(1/2), with [z]<1.
To solve (8.2) and (8.3), place
E=E-1E, 2=0,~+1,, v=v,+¢,, (8.17)

where the subscript s means “secular” and the subscript p “periodic.”  Then if p goes through
N, cycles in time 7, and if 5 goes through N, cycles in time 7%,

= o i /.
B=p=l8=0= lan QWAI:%M (8.18)
Ti>w TI
T 2 . 2 4 T‘)
Y=y,= lim WN“:ZWZ. (8.19)
Ty> T2

Since we have already obtained exact expressions in section 7 for »; and »,, it is clear that we

can obtain the secular terms exactly. We shall also obtain the periodic terms through O(k?).
By (8.18) we can write

B ==l (8.20)

where M will play the role of the secular part of a mean anomaly.
Then
E=M+E,, v=M,+v,, =y, +¢,. (8.21)

We may obtain the secular solution of (8.2) and (8.3) independently of section 7, by
dropping all the sines in those equations, placing '=v=»M_ and ¢ =1, and solving the resulting
equations for M and ¢;. The resulting equations are

(—2a1)7F (@+ b1 +A1) M+ (5—af) “Hn Bipe=1 -+ B4, (8.22)
= (—2041) -3 Azﬂls+ (a%—afé’)‘% 77()B2\bs:ﬂ32/a2; (8-23)

with the following solution.
8.1. Secular Solution

it B, (t4-B1)—c*Boa; 103 Br ,
(@a+bi+A)) Bytc2ni A, By

As (4B +Boas t (a1 b1+A1)_
(a+b:+A4,) By+cn2 A By

M,=(—2a) (8.24)

(8.25)

¥s=(ag—a3)tny!
Comparison of these results with (7.22) and (7.23) shows that Z\.[S:qu and ¢S=2m}2, as ex-
pected. We may now rewrite these expressions more conveniently as
M=27y (t+B1—c*Br05 92 B1 By 1Y), (8.26)
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U=2mv, [t+B1+Boas ! (a4 b+A1) AT (8.27)
As a check, note that to O(k°), 2wy, =2mv,=mn,, so that

M=n,(t+8)+0k),
be=ralt+80 + 44 000

But, to order k°, a,=(up)? and A,=(1-¢*)ip~!, so that nea(ayds) ' =neaplup(l-¢*)] =1,
since nia’=u to O(k").
Thus

Kbszkjs_l"ﬁz—l'o(k);

as is to be expected, with g8, replacing w.
As a later aid in reducing the solution for the periodic terms to Kepler's equation, it is
here convenient to rewrite (8.22), by transposition of some of its terms:

t+ 61— (—2a) “Ha+b) M= (—20) T A M+ (a2—a3) i Biys. (8.28)

8.2. Periodic Terms

We shall put, successively,

=k, Up= "0, Yo="0; (Step 0)
*p =FEy+ Ey, 7’,;:Uo+l‘1, 1//,):500—}-1//1; (Sbt‘p 1)
E,,:E()‘Flgl‘*’]ag, 7’p:’1’a+1’1+?72v ¢,;:¢1)+1//1+¢2~ (St‘—‘l) 2)

In step 0, we retain in the equations (8.2) and (8.3) only those periodic terms which are
of (Ok"), viz, sin E. In step 1, we retain in these equations all periodic terms of order £° or k,
but none of higher order. In step 2, we retain in the equations all periodic terms of order £°,
I, or k* but none of higher order. In carrying out each step, bowever, we shall suppose that
each quantity involved is calculated to such an accuracy that the error is of order £*. Then,
effectively, £, v, and ¢, will all contain terms of order k and %% as well as terms of order £°.
By, vy, and ¢, will contain no terms ol order £°, but will contain terms of order £ and k% [/,
vy, and Y, will be of order 2. Such a procedure will greatly simplify the resvlting equations.

8.3. The Periodic Contributions E,, v, and ¢,

On placing E=M+ Ey, v=M+v, and ¢y=v¢,+y¢, in (8.2) and (8.3) and retaining only
the term sin % of the periodic terms, we find

t+B1=(—2a1) "i[(a+ b)) (M, + Ey) —ae sin (M, + E,) +A:M,]+c*(o3—ad) “niBiys, (8.29)
Bafory=— (“2041) h%f12(ﬂfs+ Fo) SiE (a;—a%) _%WOBQ(\I/3+¢0). (8.30)

On subtracting (8.28) from (8.29) and dividing the resulting equation by (a+b,)(—2a) %,

we find
M+ Ey—e' sin (M,+E)=M,, (8.31)

where
) = 8.32
¢ a/“i“ b1<1 (q 3 )
since b;>0. Equation (8.31) is Kepler’s equation for M+ K, with an effective eccentricity
¢’.  Let us suppose it to be solved by the most appropriate method, which will depend on the
value of ¢/.  We then have M+ FE, and can then find »=M -+, by use of eqs (8.1).
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On subtracting (8.23) from (8.30) we then obtain ¥, as a function of ,:
Y= (—2a1) "H(ag—af)ing ' A2 By 0. (8.33)

Here the coefficient yo/v, is unity to O(k°), but to follow the procedure outlined above we must

not make such an approximation. Instead we must calculate it so accurately that the error is
of order &°.

8.4. The Periodic Contributions E,, v;, and ¢,

Now, knowing M, ¢, E;, v, and ¢, we place E=M+ Ey,+E,, v=M+vy+v,, and ¢y=
Yo +vo-Hr into eqs (8.2) and (8.3), discarding only the periodic terms of order k2. Then

AFEh= (—2041)"1"[(0‘5‘ bl) (Ms+ E0+E1>_a@ sin (2‘13+E0+E1)+A1(Z\1s+7)0)]
+e(ag—ad) g Bi(¥s o) — 1 sin (2¢5+2¢0)],  (8.34)
52/“2:—(“2a1)_%[/12(zus‘|‘l’a‘|‘ 1)+ Az sin (ﬂfﬂ‘ vy) + Aj, sin (2AM3+ 2’00)]
2
() Il Bt vt o)=L sin @ut2w) | (339
Subtraction of (8.28) from (8.34) and division of the result by (a-+b,)(—2a;) =% now gives a
Kepler equation for M+ E,+ E;:
M,+Ey+E,—é’ sin (M,+Ey+E)=M,+M,, (8.36)

where

Mi=(atb)! I:——(z'll—l-chgAgBlB;‘)vo-{—%% (—201)}(ad—ad) ~Hnd sin (2¢S+2¢0>]. (8.37)

Here we have used (8.33) to combine terms in »; and ¢,. The quantity M-+, is then a mean
anomaly whose secular part is exact and whose periodic part is correct through order k. Tt
has no periodic part of order £°; this is characteristic of a mean anomaly.

It 1s not necessary to solve the Kepler equation all over again. If in (8.36) we put

sin (M, Ey+F) = (1—1E2) sin (M,+ Ey)+ E; cos (My+Eo)+ O(E?), (8.38)

the error is of order £*. Then (8.36) and (8.38) yield a quadratic equation for F;, whose so-
lution through terms of O(k?) is given by

B M, ¢ Misin (M4 E)
T 1—e’ cos (M+E,) 2 [1—e cos (M,+ Ey)]?

Ky (8.39)

To find », insert v=M+v,+v, and E=M,+ FE,-+ E, into eqs (8.1) and solve for »,.
On subtracting (8.23) from (8.35) and eliminating terms in 2, and ¢, by use of (8.33), we
then find

U= (—2a1) ¥(e2—ad) g B; A+ Ao sin (M +vy) + Ags sin (2M +20,)] (8.40)
2
+9g By 'sin (29 240).

(Note that the elimination of »y and ¢, would not have been possible if they had been carried only
through order £°.)

8.5. The Periodic Contributions E,, v,, and ¥,

Finally, knowing M, ¥, Ey, vy, %o, £, v1, and ¢y, we place E=M+Ey+ FE\+FE,, v=M,
+voto, 0., and y=v¢,+¢o+¥i -+, in (8.2) and (8.3), discarding only the periodic terms of
order greater than 2. The equations become
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t4-Bi= (—20)~H{(a+-b1) (M, + Eot- B - E)—ae sin (M4 Eot E+-E) - A (M, 4-00--0,)
+ Ay sin (M +v,)+ Ao sin (2M+20,) |4 c2(ai—ad) ~ind I:B1(‘Ps+‘l/o+¢1)
—g ) sin @02t 20+ sin (et aw) | (54D
ﬁ2/a2:—(“2011)_%[A2(Ms+vo+l‘1+?’2)+A21 sin (Ms+vo+??1>‘|‘A22 sin (2A13+21?()+21’1)

- Agg sin (3M,+-300)+ Agq sin (4M - 400)] 4 (o — ) ~bno [B2<¢s+¢0+¢1+¢2>

_% (4+3¢? sin (2\//s+2¢0+2¢1)+2;i6 ¢* sin (4%—}—4\00)]. (8.42)

On subtracting (8.34) from (8.41) and discarding periodic terms of order &* or higher, we find

(== (—2&1)_%[(a‘+‘b])E2—(l€Eg oS (]"IS‘I_EO‘l_El)—{—Aﬂ)l‘l_An sin (n{s‘{—l’(o

+ Ay, sin (2M,+-200) [ +-c*(a}—a3) ~in} [Bl‘l/l'_'% Y1 cos (2¢-+2¢)

—Lsin @200+ sin k4 | (349)

Then
- M,
T 1—¢ cos (M +E+E)

E, (8.44)
where

M,=—(a-+b,) ‘ll:Alvl + Ay sin (M +v,) + Asp sin (2M +20,)

+cz(_2al)%(ag—ag>-%ng{ Bupi— s 1 cos <2¢s+2¢0)—182 sin (2¢S+2¢0)+b%i- sin (49 +-4y0) }] (8.45)

It is easy to show that, to order k?
M+Ey+E +E,—e'sin (M+Ey-+E+Ey) =M +M,+ M, (8.46)
so that M, is the second-order periodic term of a total mean anomaly

M=M+M,+M,+ ... (8.47)

corresponding to the effective ececentricity e’.

To find v, insert o=M, ,+vy+v,+0v, and E=M,+ E,+FE,+E, into eqs (8.1) and solve
for v,.

To find ¢», subtract (8.35) from (8.42) and discard periodic terms of order £* or higher.
The result is

Yo=(—2a1) "} (ad—a})ing LBy [ Asvy+ Ay cos (M) +2.A0501 cos (2M (+20,) 4 Az sin (3M -+ 3v,)
> 2 2 2
+Ayysin (4M+40)]+4 By [w cos (24,4200 +3° sin (224-2¢0) —3 & sin <4¢x+4wl,>]- (3.48)

This completes the solution, with exact secular terms and periodic terms correct through
order k2%, for I, », and ¢ and thus for the spheroidal coordinates p and .
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8.6. The Right Ascension ¢
From (2.7), (5.3), and (6.3) we obtain
o=Ps+ s Ny—c a3 ;. (8.49)

Then, from the equations in sections 5 and 6

6—ur-as (@) ~hno| (1—m) 11 —n2) x4 By

«

4
—I—B% nins tsin 2¢ | —clo(—20n) I:Agv +> 1 As, sin frw:ly (8.50)
=

where x is an angle that always equals ¢ whenever ¢ is a multiple of 7/2 and which also satisfies
tan x=(1—»2)! tan ¢.

The expressions for A; and the Ajy,’s are given in (5.61) to (5.65) and that for B; is given in
(6.65).  With the secular parts of » and ¢ exact and their periodic terms correct through order
k?, the right ascension ¢, as given by (8.50), has a secular part that is exact and a periodic part
correct through order &% To check the secular part of ¢, note that one can obtam it from
(8.50) by placing x=y=1v, and »=0, and discarding the sines. If we do so and also use »;=2m»,
and tﬁ'x:27ru2, we find

q[')s:—27rc2a3(——2a1)7%A3v1+27ra3(a§—a§ T By (1—n3) 2 (1 —n32) " Hye=—wJiz—reeds  (8.51)

on comparison with (7.18) and (7.21). Thus we find

S (8.52)

by (8.51) and (7.14), a result known to be correct [8].
A summary of the principal results of the paper follows in section 9.

9. Summary of the Solution

We assume that u and ¢ are known, where u is the product of the gravitational constant and
the mass of the planet and where ¢?=7%J;, r, being the equatorial radius and .J; the coeflicient
of the second zonal harmonic of the planet’s gravitational potential. For the earth J,=
(1.08)10%,

It X, YV, Z are the usual rectangular coordinates of an artificial satellite and if r, 6, ¢ are
respectively its planetocentric distance, declination, and right ascension, its oblate spheroidal
coordinates p, 1, ¢ are given by

X+1Y=r cos 0 exp 1 ¢=[(p>+¢2) (1—n»)]} exp i¢,

Z=r sin §=pn, (—1=9=1).
The potential
Va=—up (p*+c*n*)~!

then fits the even zonal harmonics exactly through the second and, in the case of the earth,
approximately through the fourth. Solution for the motion with such a potential thus furnishes
a very accurate intermediary orbit. Since this potential leads to separability of the Hamilton-
Jacobi equation, the solution is given implicitly by the quadratures of eqs (2.5) through (2.7).
The integration constants are the Jacobi o’s and f’s.

If the initial conditions are known, one can readily evaluate the o’s. Then if one can
evaluate the integrals in (2.5) through (2.7) one can also evaluate the p’s. KEvaluating the
itegrals depends on factoring the quartics F(p) and G(n). The factoring of G(n) is immediate,
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since it is quadratic in 7°.  To discuss the factoring of F(p) we introduce, in place of the o’s,
the orbital elements ay=—p/2a, eo=[142a03/u*]}, and iy=cos ' (as/ay).
With p varying in the range p, = p= p,, we write

F(p)=c’a3+(p*+c?) (—a3+2pup+201p%) = (—2a1) (0 —p1) (p2—p) (p*+ Ap+B)

and find that A, B, a, p, and ¢ occur in the p-integrals.
Here

1 4p1py 2P10> P27 pP1 ,
== +p2), 1—el=—""+ =q(l—e? =———"—[1—(1—e2)]}
2 (ortp2) (P1‘+‘P2)2’ p=a( )= PI+P2 ‘ p2tp1 L= (1=e )]

Thus A, B, pi+p., and pyp, are needed. 1If we put
Po=ay(l—e5), ko=c?/p;, w=(1—ed)?, Y=as/ay=C0s 1,

then through O(k3)
A=—2k,psy?[1+ko(222—3x22—4+48y®) + . . .],

B=kop(1—y)[1-+ko(4y*—a2>)+ . . ],
2a=p;+ p2=2pox " 21— ke?y? — kixy? (22— 3x22—4+8y?) + . . ],
ap=p1p>="p5r [1 +koy?(x?—4) —kgy* (1222 — 2*—202%2— 16+ 322 -2'y?) 4 . . .].

I ag, €o, 10, Bi, B2, B; are used as orbital elements, we then assume that the quartic #(p) is fac-
tored numerically, to as great an accuracy as may be desired, with the aid of the above relations
as a starting point.

With » varying in the range—1=< —n=n=<n,=1, we write G(n) =—ad+ (1—2%) (Z+2acn?)
=—2a,¢2(n3—1?2) (n3—n?) and find

Mo 3 2a16 Sanc? (az ;)
(osmg b=} T
Here n,>1.  Then all the quantities a, p, ¢, A, B, 7y, and 75, are known in terms of the orbital
elements ag, ¢, and .

If we assume that the orbital elements are to be determined by an iterated least-square
fitting of the solution to many revolutions in the orbit and not by initial conditions, there is a
better set of elements, introduced by Izsak [4]. These, viz, a, ¢, I=sin"'y, B, 8, andg,, al-
though not easily found from the initial conditions, result in immediate factoring of the quartics
F(p) and G(n). We therefore give the solution in terms of these quantities, with the under-
standing that they are to be determined either by the least-square fitting or from initial con-
ditions by numerical factoring of F(p).

Given g, ¢, and the elements «a, ¢, I, B8;, B, 83,

compute
no=sin I,
p=a(l—¢®),  D=(ap—¢)(ap—cni)+da*cni,  D'=D-+4a’c*(1—n),
A=—2act D~ (1—n2) (ap—c*n?), B=c>n:D~'D’,
b]_:—%A, bng%, —2a1:[1(d+bl>_1,
2
_%:aOPOZ—CQ(l—’?g) +apD~'D’, o= (—2a1)}(@y o) >0,
D
=0y cos 1 M2 2:W’ k=c/p?, q="n0/n2.
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Restrict considerations to the case b,/b;<1. Then
I.=I1<180°—1,,

where I,=1°54’, approximately. KEquatorial and almost equatorial orbits are thus ruled out.
Then compute

Alz<1—eZﬁpg(bz/p)"Pn<bl/b2>R,,_2[<1—e?)ﬂ,

A= (1= )i~ 3 (/) Pl b R (1— )],

where P,(z) is the Legendre polynomial of degree n and where R,(z)=z"P,(z~"), always a
polynomial of degree [n/2] in z*.

A3: (1—82)%p~3 i DmI{m+2[(1— 62)%];

m=0
where

Dyy=23(=1)""(c/p)* " (ba/p)*"Pon(b:/bs),
Dyir=25(=1)"""(e/p)™ =" (ba/p)*" ' Pan41(ba/b2),
Bi=2r"1¢q"*[K(q9)—E(q)], By=2r""K(q),
where K(q) and E(q) are the complete elliptic integrals of the first and second kinds lrespectively.

2m)! m=l (2n)!p2"
2ol F= ZE)P

By=1—(1—97— > vani®™, where n
m=2
(The above series all converge rapidly.)

3 ; . . ]
An=7 (1—e)ple(—2bbip+bY,  Au=ss p i (1—e)ibie?,

Ap=(1—e?)ip-te [bl pi+ (36— b pr—3 blb.‘;’<1+%2) p—3+§ B(4+-3¢?) p—4:|,

[Te2? ¢
Ap=(>01—e2)ip! Leg (Sbf—bﬁ)p‘z——g e?blbﬁp“’—{—%2 by(6er+e*)p* |»

3
An=(1—e)lp™'C (—bibip~+bip™9),
_3
256
Apg=1—e)ip % 24+bp™! (3+26)—p2 (3b3+e) (4+3¢?)],

2 s 4 ¢
Ap=(1—e?)ip=® [%-% bipler—p? (%——F%ez) (%bgﬂ?)],

Ay (=) U~

1 1 1
A— 2% n—3,3 —1_= =22 12 2
w=(1=e)1p7¢| T3hpT =g (2 b ")I’

1 S 1
A34=—3§(1—e2)7p S¢t <§b§+c2>;
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2= (—2a)(a+ b+ A1 +e3A, B By Y)Y
2my, = (ag—ad) ng " Ay By a+ b+ A +*nido Bi By 1) 71
The uniformising variables /7, », and ¢ are then given by E=M+F, v=M v, and
Y=y,+¢, If tis the time, their secular parts M, and ¢, are given exactly by
M =27y, (t+B1—*Boc; 9B By Y),
Ys=2mw[t + B+ B ' (@tb1+A41) A ]

Let the periodic parts be split as follows: E,=H+E 4L, v,=v,+v,+w, and
V=¥ Y1+, where, e.g., I contains terms of order £°, k, and k*, K, contains terms of order
I and &%, and E, contains only terms of order k*

Then £ is given by the Kepler equation

M+ Ey—e’ sin (M+ Ey))= M,,

where ¢/ =a(ae+b,)"'<e. The term 2, is then given by placing v=»M +», and K=M | FE; in
the anomaly connections

cos v=(cos ll—e) (1—e cos I)~! sin v=+4 (1—e*)}(1—e cos E) 'sin £

or equivalent relations. (Note that the e here is the original ¢ and not the ¢’ in the Kepler
equation.) Then
— P 2\ 1 - -
Vo= (—2a1) " (G—ai)tng ' Az By o,

The term £, is now given by

E,=[1—e’ cos (M;+Ey)] *M,—% ¢’ [1—e’ cos (M;+Ey)| 3 M? sin (M;+E,),
where

2
My=(a+b) ' [—(Ai+e2nAs By B, ™) DU—I—% (—2a1)? (a3—a3) ~ini sin (2¢s-+2¢0)].

The term », is then given by placing v=2»M +v,+v, and =M+ F,+ I, in the anomaly connec-
tions. Then

2
Yi=(—20) "} (B—a})} ng 1By [Ag1 A sin (M, +v,) + A, sin (2ﬂ18+200)]+%~13;1 sin(2ys-+2v¢)
Finally ]
E,=[1—¢’ cos (M;,+E,+E,)]| ! M,,
where

M,=—(a+b;) ™! [A11‘1+A11 sin (M;+vy) +Aip sin (2M+2v,)
A e 1 g 2,
+¢? (—2a1) (G—af) “H ) { Bl‘/’l'—é Y1 cos (2¢ +2¢0>—q§sm (2¢s+2¢o)+gjl sin (4, +4) }]
Then », is found by placing v=M,+v,+v,+v, and E=M,+ Fy+FE,+ E, in the anomaly con-
nections and

¢z=(—2a1)‘%(ai—a§)%n61BEI[A202+A21@1 cos (M;+vy)
+2A501 cos (2M+2v,) +Ass sin (BM+3v,) +Asy sin (4M+40,)]

PP
{251 sin (4¢8+4¢0)]'

¢’ S0
+Z B! I:‘h cos (2¢s+2%)+—8— sin (295 +2¢,) —

The spheroidal coordinates p and 7 are then given by
p=a(l—e cos Fl)=(1-4e¢ cos v)"'p, n=no sin ¥, where
E:An[s‘|‘Eo+E1+l’4‘2; U:Ms+00+01+’02, v=v,t%t i+
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The right ascension is

O T —1 —9\ —14 3 — .
=Pt az(a3—af) g [(1—773) 1—n3?) ’2X+B3‘l’+3_2 ngm; * sin 2‘»0:,

4
—CPo3(—20y) H I:Agv—{—z Ay, sin m':l-

n=1

Here x is an angle that equals ¢ whenever ¢ is a multiple of /2 and which also satisfies
tan x=(1—n3)? tan ¢. If ayis positive or negative, the orbit is respectively direct or retrograde.
The above solution gives secular terms of the intermediary orbit exactly and periodic

terms correctly through order A2

There are no long-period terms.

10. List of Symbols

We here list only the symbols that are most {requently used, giving for each a short defini-

tion or the number of the equation in which it first appears.

such number is the number of the section.

Symbol Definition or equation number
a—3.23; element of 2d set,
ay—3.3; element of 1st set,
A—3.11 (also 4.12),
A—5.31,
/12*5.36,
A;—5.32,

A;;—5.33,
Ay,i—5.37 through 5.40 for j=1, 2, 3, 4,
Ay—5.61,

A3i—5.62 through 5.65 for j=1, 2, 3, 4,
I)hbzf{).ﬁ,
B—3.11 (also 4.13)

By—6.40,
By—6.41,
By—6.65,

By, —6.64 (also 6.68)
¢—2.4 (fundamental distance in potential and
in definitions of coordinates),
d;—5.46,
D,—5.44 (also 5.50 and 5.53),
e—3.24; element of 2d set,
e—3.4; element of 1st set,
e'—8.32,
E—5.12; “eccentric anomaly,”
E—8.17; secular part of E(=M,),
E,—8.17; periodic part of E,
Ey, E,, E,—various terms of F,,
E(q)—complete elliptic integral of second kind,
modulus ¢,
E(y,q)—incomplete elliptic integral of second kind;
6.9 and 6.10,
J(e)—2.10,
F(p)—2.8,
F(y,q)—incomplete elliptic integral of the first kind;
6.9 and 6.10,
G(n)—2.9,
h—5.7,
1—3.5; element of 1st set,
[—4.7; element of 2d set,
I —value of I for which A=1,
Jo—2.4; coefficient of second zonal harmonic of
potential,

Note that the first digit in each

Symbol Definition or equation number
J1,J s, J 5—action variables; (7.1) through (7.3),
Jmin—1-8,
k—3.16; c2/p3,
k—4.17; c2/p2,
K (q)—6.15; complete elliptic integral of first kind,
modulus ¢,
Ly—6.46,
L,—6.45,
L,—6.49,
M —8.20; secular part of ‘‘mean anomaly,”
M, M,—8.37, 8.45; periodic parts of “mean anom-
aly,” of orders k and k2,
Ni,N;,N5—6.1 through 6.3; n-integrals,
po—ao(1—¢3),

p—a(l-¢),
P,—Legendre polynomial of degree n,
q—m0/2,

r—2.1 and 2.2; geocentric distance,
re—equatorial radius,
r,re—3.1, 3.2; zeros of f(p),
Ry, Ry, Rs—5.1 through 5.3; p-integrals,
Rm(2)—2mP,(271),
sgn az—sign of as,
1—time,
v—>5.12; “true anomaly,”
vs—8.17; secular part of v(=Mj)
v,—8.17; periodic part of »,
vo,01,0>—Vvarious terms of v,,
V,—2.3; the potential of this paper,
X,Y,Z—2.1 and 2.2; rectangular coordinates,
r—3.17; (1-e2)V2,
y—3.18; as/az=cos 1,
a—total energy, first Jacobi const, <0 for a
satellite orbit,
second Jacobi constant,
ag—Z-component of angular momentum,
third Jacobi constant,
B1,B2,8;—Jacobi 8's,

ay

y—S8.1d,
re—6.66,
6,—5.47,

e 6.81,
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Symbol Definition or equation number Symbol Definition or equation number

n—2.1 and 2.2; a spheroidal coordinate —sin # skl B
as r— o, y—6.4; a uniformizing variable analogous to

n0—3.33, 3.36, 3.39; during motion the argument of latitude,
—1=S—nSn=n =1, ¥—8.17; secular part of y,

72—3.33, 3.37, ;x> >1, ¥,—8.17; periodic part of ¢,

6—2.1 and 2.2; geocentric declination, Yo, ¥1,¥2—various terms of ¢,

A—>5.6; by/by, &—mean motion of p-perigee relative to the

y1,v2,v3—7.4 through 7.6, _ ascending node,

p—2.1 and 2.2; a spheroidal coordinate —r Q—mean motion of the ascending node relative

as r—o, to OX.

¢—2.1 and 2.2; geocentric right ascension; the
third spheroidal coordinate,
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