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Explicit upper and lower bounds for the value F(u) of a linear functional £ applied to a
function u(z) defined on the interval 0<t<1 are given when u is prescribed at the N1

points z/N, ¢=0,. . .

, N, and a bound for the integral of «[#12 is known.

These bounds

are optimal in the sense that they are attained for functions satisfying the preseribed condi-

tions.
which means that N is permitted to be large

1. Introduction

Many problems in numerical analysis can be re-
duced to approximating the value F(u) of a given
linear functional / operating on an unknown element
u of a linear vector space. The approximation is to
be made in terms of a finite set of data concerning .
Thus, the values Fy(w), . . ., F,(u) of N linear
functionals acting on % may be given. For example,
the /;(u) may be values of the function % at certain
points z;. If F'(u)is the value of % at another point
£, we have the problem of linear interpolation. If
F'(u) is an integral of u, we have the problem of nu-
If ¥ (u)is the value of a deriv-
ative, we have numerical differentiation.

It was shown by M. Golomb and the author * that
in order to obtain a finite interval in which the value
F'(u) must lie, one must be given the value of at least
one nonlinear functional operating on #. The sim-
plest case is that in which one 1s given a bound for a
quadratic functional (u,u). In this case Golomb
and the author * showed how to obtain the exact
interval in which #(x) must lie when the values
Fy(w), . .., Fy(u), and (u,u) are given. That is,
upper and lower bounds for /'(u) which are attained
for some elements u satisfying the given conditions
are found. The construction of these bounds re-
quires the inversion of a matrix depending upon the
functionals #| I, , 'y, and (u,u).

In this paper we restrict our attention to a very
simple case. We deal with a function u(z) of a
single variable on the interval [0,1]. The given
functionals 7, are the values w(7/N) of u at the N-+1
equally spaced points /N, =0, ..., N. The
quadratic functional is taken to be the integral of the
square of the £™ derivative of u.

We think of the number of points N as large, while
the number £ of the derivative will usually be small,
say two or three. The matrix to be inverted is of
size N. By making use of the equal spacing of our
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Their computation involves the inversion of a matrix of size £—1 rather than N,

points, we shall reduce its inversion to that of a
(k—1)>X(k—1) matrix. Thus the problem of ob-
taining best formulas for interpolation, quadratures,
and numerical differentiation is made manageable
even when the number of points involved becomes
large.

When F(u)=

0
sases the best quadrature formulas of Sard ? for
k<3, N<6.

g
udzx, our results yield as special

2. Approximation Problem

Let the values of the unknown function % (z) be

given at the N1 evenly spaced points /N,
=0t . N. Let M? be a given bound for the

integral of the £th derivative of u.

(u,u) :J;I

We assume that N>2k £k>2.

Our problem is to approximate the value #(u) of a
certain linear functional /" applied to u. According
to the theory in footnote 2, this is possible if and
only if the functional /' is bounded in the norm (2.1)
for functions vanishing at the points 7/N. That is,
we must assume that there is a constant ¢ such that

wl2dr <M, (2.1)

1
Fv):< cf M2y (
0

for all £ times differentiable functions »(x) such that

Any linear combination of pointwise values or
integrals of » and its derivatives up to order k-1 will
satisfy this condition.

i=0,...,N. (2.3)

3 A, Sard, Best approximate integration formulas; best approximation formulas,
Am, J, Math. 71, 80-91 (1949).



To obtain a best estimate for F(u) we construct
an auxiliary function % defined by the properties

TEN ()= 0<z<1, Nzxz#01,...,.N (24)
and
(D@ =onn
M (0)=ul1(1)=0 =k, ... 2k—2. (2.5)

The function % and its first 2k-2 derivatives are
continuous, while %=1 is allowed to have jump
discontinuities at the points 7//N.

The Green’s function G(x; £) is defined by the
properties

%G |
W:O’ 0<az<1, Ne#Ng,0,1,... N,
q (TW g>:0, i=01,... N,
- > (2.6)
—DF:O’ at ©=0,1,l=k, . . . 2k—2,
0¥ 1G(EH+0;¢) *'G(E—0;8) !

Jr1 — Q1 =(=D*~

J

Again G and its first 2k-2 derivatives are continuous,
while the (2k—1)st derivative may have discon-
tinuities at 7/N. By integration by parts we find
that
— N 7
7= 0.0 (), (27)
i=0

where

g:(&)=(—1)*"1

0%1¢ (—j’v+0; s) o™l <%7—0; 5)

ax.?k—l aw%—l

(2.8)

Also by integration by parts we have
2] V4 5
u@ -7, (wn—am} D as. (29)
0 or
Applying the functional /' and using Schwarz’s

inequality, we find that

b"G(m "G (z;¢)

|F(w)— Fu)[2<JO ]um—um|2dxf }F o

= f |0 — T 2B (G )]}
(2.10)

(The symbol Fp [G (£; 7)] means that the functional
F is applied to G considered as a function of 5 for

fixed &.  F:{F,[G (¢£;7)]} means that F'is then applied
to the function /,[G]). We have used the property

|G ) FG ) 4

;)= 2.
G n)— | S5HH TCH (2.11)
which follows from integration by parts.
Another integration by parts shows that
1
J w™ { W —y "} dp=0. (2.12)
0
Hence, we can rewrite (2.10) as
rw—rmps{ =[5 LR
0
(2.13)

Once u and G are found, this inequality provides
2} P
upper and lower bounds for #'(u). These bounds are
sharp in the sense that we can construct functions u
satisfying (2.1) and having the given values u(i/N)
for which the bounds for /'(u) are attained.
We write % in the form

u(x)ﬁ Z aA2‘J7\ x—1|%L,

i=—k

(2.14)

The centered difference operator A% is defined by

e 3 (2 )

It is easily seen that A%|Nz—i/*! vanishes for
[Nz—i| >k. Hence the sum in (2.14) has at most
2k—1 nonzero terms.

Clearly the function (2.14) satisfies (2.4) and has
the required continuity properties.

The coefficients a; are to be determined by the
conditons (2.5). Thus we must have

(2.15)

Nk—1 o j _
. Z aiAQk’j—ijk—lzu <WT>’ —0NIPE N.
i=—k+1 4

(2.16)

In order to apply the last line of (2.5), we first use
partial summation to write

W(z)=(—1) Z D'a.D*| Nz

,l"2k—i,

(2.17)

where we have put a,=0 for i<—Fk, i>N-+k, and
where DF is the kth forward difference operator:

> (§) 1,

Since A*|Nz—1|*~1=0 for |[Nz—i|>k, (2.14) and
(2.17) are independent of the values of a; for 1 < —F,
1> N4k when 0<z<1. We note that D‘IZV — -1

D¥e,= (2.18)
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is a polynomial of degree k—1 for Ne<ior Ne>i+Fk.
Hence the last line of (2.5) will be satisfied if

i=—k+1,. . .,

| Dka, =0,
‘ —1, N—k+1,. ..

, N—1. (2.19)

The boundary value problem (2.5) is thus replaced
by the system (2.16), (2.19) of N-+42k—1 linear
equations in the N+2k—1 unknowns a,.

We turn to this problem of matrix inversion.
Remark: We have assumed that £>2. The case
k=1 is ecasily treated. Let % be the broken linear
function coinciding with % at the points 7/N and
having its breaks at these points. Let G(z;¢) be
the broken linear function with breaks at ¢ and the
two neighboring points of the form /N which
vanishes at the points 7/N, and whose derivative
decreases by —1 at & Then (2.13) gives optimal
bounds for /'(u) when £=1.

3. Matrix Inversion

We consider the system of linear equations (2.16),
(2.19). Since A%*|[7—1/*! depends only upon |j—1|
and vanishes for [j—i|>k, (2.16) is a finite dif-
ference equation or order 2k—2. We solve it by
means of a system of 2k—2 independent solutions
of the homogeneous equation. To find these solu-
tions, we note that for any number z

-1 o
N gAY j— | 1= — 2¢ U2 (g2—1)%
i=—Fk+1
d\Z1
(%‘) (=17 (3.1)

for 0<7<N.
We define the polynomial in ¢
I+1
Qer=2(— e (=1 (1) (1))
(3.2)

It is easily seen to be of degree [ with leading
coefficient 2.
The @, can be generated by the recursion

Qy)=Uy+1)Q1(y)—yy—1)Q:11(y),

Q)=2 (3.3)
The first few of these polynomials are
Qy)=2(y+1),
Q:(y)=2(y"+4y+1), (3.4)

Qs(y)=2( 4112411y +1),
Qs(y)=2(y*+26y°+66y°+26y+1).

The coefficients of Qu_, are the coeflicients of the
finite difference equation (2.16). It can be shown

by induction that they are symmetric in the sense
that

@ ()= e (1.5

This means that the zeros of ), occur in reciprocal
pairs.  When /is odd, one of the zerosis —1. When
l1s even, @) can be written as a polynomial in (y-+y~1).
Thus, the zeros of Qs> can be found by solving an
equation of degree £—1 and a quadratic equation.
It is shown by induction that the coeflicients of
@, are positive and that the zeros of @, are real and

negative. The zeros of @, separate thos of Q.
Let 1y <yo<l . <Ya—»<0 be the zeros of
o Ques(y)=0,  »=1, . . ., 2k—2. (3.6)

Then by (3.7)

y?k—l—v:iy' (3.7

Because of (3.1) and (3.2), the functions a,=v,
satisfy the homogeneous equations corresponding to

(2.16). We now define
0 1<k—2.
Y=< 2%=2 itk (3.8)
=t > =k]2
=1 Qo—o () - ’
It follows from the Lagrange interpolation

formula [4] that the two definitions of ¢, coincide for
—k+2<i<k—2. Using (3.1) and (3.2), we find
that

N+k—1

i:;—l llbl—pA?k[j_iPk_l:éjm j7p:0y RIS } N. (39)

The same equation is satisfied by ¢, , plus any
linear combination of the 7. We add a linear
combination such that the new function satisfies
(2.19). Since ¢, , vanishes for i <p-+k—2 these con-
ditions are already satisfied for i=—Fk-+1, . -, —2.
Therefore we add only functions which also satisfy
these conditions. The Lagrange interpolation for-
mula * shows that such linear combinations are
furnished by the functions 7,4, a=1, . . .k, where

2k—2 ,’/i+k—2 .
= — . 3.10
T 2 G ) () i)
Note that
D=y, 12 —k+2. (3.11)
We let
k
Fip:‘l’i—p—; Callita (3.12)

and determine the coefficients ¢, in such a way that

4J. F. Steffensen, Interpolation (Chelsea Press, New York, N. Y., 1950.
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Dir,,=0 for i=—1, N—k+1, , N—1. This
gives ¢;=dy,, and the equations
k=1
- Ca ¥ —ttats=D"Yn_x16-,
— d0p Y18, B=1,...,k—1. (3.13)

We let A, be the inverse of the symmetric
(k—1)>X (k—1) matrix Yy_j4atp so that °

o1
BzzlAaS ‘PN—k-H?-F‘Y:Ba‘YJ a;7:1} .o Jk_l
(3.14)
Then T';, is given by
k—1
Plp:‘pi—p_ él Aaﬁ Nita DF ‘)IlN—lc——p‘H;
"50p{ﬂi+k—2 Aaﬂ'ﬂi—i-a ¢N+/3}: 1=
—k+1,...,N+k—1, p=0,..,N. (3.15)
This function satisfies
N+tk—1 o )
Z Fip A2k{Z—][2k_1:51'1)7 .77]7:0: O o) ]V
=Tl
(3.16)
and
Dir,,=0, 1=—k+1,...,—1,
N—Fk+1,...,N—1; p=0,...,N. (3.17)
The solution of (2.16), (2.19) is given by
N p
>t u(L) (3.15)
p=0 4

Therefore I';, is the inverse matrix for the problem
(2.16), (2.19).

Our problem of matrix inversion has thus been
reduced to the solution of polynomial equations of
degree k—1 and two in order to find the 7, and the
inversion of the (k—1)-dimensional symmetric ma-
tTIX Vit ats-

Ezample: We consider the case k=
of Qx(y) are

The zeros

Yyi=—2—+3,
1=—2++3. (3.19)
The function ¢, defined by (3.10) is
ro0 1 <0,
e {% G-y iz0. O

) 5 The fact that Y y-k+et+s is nonsingular follows from the uniqueness of u de-
fined by (2.4), (2.5), and the linear mdcpendul(e of the functions A2« Nz —i[2k-1
and nita, a=1, . . ., k.

Since k—1=1, the matrix A, has the single element
s, \Iorcover

D%:“s Byr '~'—yith), >0,
DXy ==,
l /‘— =7 i-1
ﬂi:_ﬁ\3(?/1 —yi ). (3.21)
Thus (3.17) gives
r . .
V3(1—y2) (1 —y 2N P)yj=»
12(1—y; )
—1<i<p, 1<p<N—1
V(L —yr 2)(1—yi 22—
12(1—y; )
4 p<i<N+1, 1<p<N—1
T,=
A—y )yt~ AT _
12—y *) b=
(l_y;2(N—i))£ - B
12(1—3>) ==
4—3—(4+B)yr ™ {1:—1, p=0
12(1—y; ) 1=N+1, p=N
(3.22)

4. Bounds

We now return to the consideration of section 2.
The function % is given by

N+k—1
u(x)= Z @ A% Ne—i|*1, (4.1)
\Nz 11<L
with
Z I‘”u<7\v> (4.2)
Thus, we may write
p .
u(r)=29,() u(i>y (4.3)
J=0 N,
where
N{k—1 )
g;(@= 2. TyA¥ Ng—i[*! (4.4)
|IZ\72_—I;.{+%IIC

is the optimal approximation function corresponding
to w(i/N)=24;;.

In order to find the bounds (2.13) we need the
integral of u"W? and G(x,¢). Integrating by parts
we find that

1—[»1-]2 % s .7 7 [2k—1] r
1 do— (1 33 u (%) @1, (45)
Jo =
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where [ ],x denotes the discontinuity in the function

at j/N, with the convention uP~1(0—)=7k1
(14+)=0. Applying partial summation to (4.1),
we find that
Nk—1
U(r)= 25 |Nrx—1*"1A%q, (4.6)

Consequently,

1 N 5
f T8 dr— (— 1) 2N (2h—1)1 3 u <i> A,
0 i=0 N
:(__l)kgj\ﬂk—l(Qk_l)!

= <V> ( )A Ty, (47)

with the convention that

AT, =DFT, for =0, t=AN. (4.8)

We now construct the Green’s function G(r,£).
We begin with a function H(z,¢) having the proper
jump at z=¢ and satisfying the condition that the

derivatives of orders k, . . . 2k-2 vanish at the end

points. Let p be any integer satisfying
0<p< Ne<p+2k—1<N. (4.9)
Ntk—1 N
F(u)— Z Z‘,I‘”l'(.k"‘[’\* il
T
= 2%

{ FAF(H(z; ) —

where we again use the convention (4.8). If /' is
local in the sense that #'(z) only involves the values
of u in the neighborhood of a point, the sums in the
second term on the right involve at most 2k —1 values
of vand j. Frample: Letk=2. T is given by (3.22).
We find that

2{4— 6| Nz—i[*+3| Na—i[*}

M| Na—ifi=4 2{2—|No—i]’}
0
|Nz—i] <1
1< | Ne—i|<2
|Nz—i| >2. (4.15)

(— 1)’") {]\pﬂo(__l)w\m 1(2k—1)! Z A"I’,ju

k
i=—k

It follows from the Lagrange interpolation formula
(see footnote 4) that the function

2k—1
Hap)=lo—t='— 2 [1E—a™ 0(e), (410
where
el
pHw\TPEI L phy
<§ N .I—In E— N (4.11)
has the property
Hz&=0 for 2<%y 2”*1’;_‘- (4.12)
Therefore, the function
e =1)F T (e £ </>
(4.13)

has all the properties (2.6). Thus, it 1s the Green’s
function. We not that the sums in (4.4) and (4.13)
involve at most 2k—1 terms for each x and &.

The bounds (2.13) for F(u) are now given ex-
plicitly by

V(%) }

i,j=0

(4.14)

Thus the interpolation function g;(z) is given by

g:(x)=12(qg+1—Nzx)(Nx—q)[(¢+2—Nz)T ,;
+(Nx—i—1—g)l‘q+1, i +(Q+1_]\ )’;6(1))

+(Nx_q)360+1; 7 (416)
where the integer ¢ is defined by
< Nz<q+1. (4.17)

If 1<K NgZN—1, we let p be the integer such that

pHIK Ne<p+2. (4.18)

6Since Green’s function is uniquely defined by (2.6), it does not depend upon
the integer p used in the construction of 7. The function Hdoes depend upon p.
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Then we have

3N*H (x; £) _
NVe—p) (Vi—p— 1) (p+2—NO) (pT3—Np) )

If << N¢< 1, the definition (4.18) gives p=—1, so
that the function  defined by (4.19) does not vanish
at z=0. In this case we simply subtract the
function

L (Ng+1)7109| No—1P (4.20)

from the right-hand side of (4.19) with p=—1 to
obtain H(z, £). Similarly, if N—1<Ne<N, we
subtract

%(N+1—Ng)‘1A4{Nz—(N+1)|3 (4.21)

L p+3—N¢

0 Nz<p, Ne>p+3
— 3
%VV% p<Na<p+1
(Nz—p)* 3(Nr—p—1)° . .
Ne—p  Ne—p—1  PHISNesNE
(p+3—Nz)®* 3(p+2—Nz)® .. .
p+3—N¢ p-+2— Nt BB

/ £ 3
(p+3—Nay p+2< Na<p+3.

from the right-hand side of (4.19) with p=N—2.
Thus we can evaluate the bounds 4.14 explicitly.
In the special case of linear interpolation we have

F(u)=u(7). (4.22)
If

I= g Ni<grli=iN—1, (4.23)

we find

FIRHE - 3 25 TP @I No—i)F [ 1 (%5¢) ]

:N-3<N;—q>2<q+1—No2{4—%%;ﬂ | (e+2—Nera—yroa—yrre-o)

+2(¢+2— N (Ng— g+ D)1=y ) (L—yr * ¥ D)yt

_Jr_ (Nf'— q_}_1)2(1_y1~2(q+1)>(1_y1-2(N—q—l))]}} (4‘24)

where
I5Y
Y= —2—~/3:

The first factor on the right of (4.14) does not
approach zero as N— o unless M? happens to be the
exact value of the integral of 2, Thus the differ-
ence between the best upper and lower bounds in
the linear interpolation problem with N-1 equally

1
spaced points and with a given bound for | «'"dx

0
is of the order N=¥%. If a uniform bound for |u”’
is given, one can obtain bounds for u(¢) which
differ by a term of order N=2. This shows that a

bound for the square integral gives considerably
less information than a bound for the maximum.
The problem of finding best bounds when the maxi-
mum of |#™*1| is bounded is much more difficult than
the problem treated here.

The author wishes to thank W. Borsch-Supan for
a multitude of suggestions in connection with this
paper.
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