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Optimal Approximation for Functions Prescribed 
at Equally Spaced Points 

H. F. Weinberger 1 

(February 10, 1961) 

Expl icit upper a nd lo\\"er bounds for the valuc F (1,) of a linear func t ional F applied Lo a 
funct ion u(x) defined on the in terval 0 ::;1; ::; 1 arc given when u is prescribed at the N + l 
points i fN , i = O, .. . ,N, a nd a bound for the integral of U[k]2 is known. These bounds 
a re optimal in the sense that they a re attained for functions satisfying the prescri bed condi­
t ion s. Their computation invol ves the in version of a matrix of s ize k- l ra ther t han N , 
\\"hieh means that N is permi tted Lo be large. 

1. Introduction 

Many problems in numerical analysis can be re­
duced to approximating the value F (u ) of a given 
linear functional F operating on an unknown clement 
u of a linear vector space. The approximfl tion is to 
be made in terms of a finite se t of data concerning u. 
Thus, the values F 1(u ), .. . , F n(u) of N lin ear 
functionals acting on u may be given. For example, 
the F i (u ) may be values of the function u n t certain 
points X;. If F(u ) is the value of u at another point 
~, lVe have the problem of linear interpolation. If 
F (u ) is an integral of u , we have the problem of nu­
merical quadraturcs. Jf F (u) is the value of a deriv­
ative, we have numerical differentiation. 

It wns shown by 11. Golomb and the author 2 that 
in order to obtain a finite interval in which the value 
F (u ) must lie, one must be given the value of at least 
one nonlin ear functional operating on u. The sim­
plest case is tha t in which one is given a bound for a 
quadratic functional (u ,u ). In this case Golomb 

I and the author 2 showed how to obtain the exact 
interval in which F(u) must lie when the values 
F1(u), . . . , FN(U ) , and (u ,u ) are given. That is, 
upper and lolVer bounds for F (u) which are attained 
for some elements u satisfying the given conditions 
are found. The construction of these bounds re-

I 
quire~ the inversion of a matrix depending upon the 
functlOnals F, F 1, • •• , FN , and (u,u) . 

, In this paper we restrict om attention to a very 
simple case. We deal with a function u(x) of a 
single variable on the interval [0,1]. The given 

! functionals F i are the values u (i/N) of u at the N + 1 
equally spaced poin ts i /N , i = O, . .. , N . The 
quadratic functional is taken to be the integral of the 
square of the ktll derivative of u. 

I . We think of the number of points N as large, while 
the number k of the derivative will usually be small, 

I say two or tluee. The matrix to be inverted is of 
size N . By making use of the equal spacing of om 

1 Present address: University of Mi nnesota, Minneapolis. :Minn . 
' .\1. Golomb a ncl II . F . Weinberger, Optimal approxima tions and error bounds. 

Symp. on Numer. Approx. (Uni v. Wisconsin Press, M adison, Wis. , 1959). 
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points, we shall reduce its inversion to that of a 
(lc - l ) X (lc - l ) maLrix. Thus the problem of ob­
taining best formulas for interpolaLion, quaclratures, 
and numerical differentiation is made manageable 
even when the number of points involved becomes 
large. 

When F ( u) =.r udx, om results yield as special 

cases the bes t q uach'ature formulas of Sard 3 for 
lc :5:. 3, N :5:. 6. 

2. Approximation Problem 

Let the values of the unknown function u (x) be 
given at th e N + 1 evenly spaced poinLs i /N , 
i = O, ... , N. Let j1([2 b e a given bound for the 
integral of the lctb derivative of u . 

(2.1) 

We assume that N ? 2lc, lc ? 2. 
Our problem is to approximate the value F (u ) of a 

certain linear functional F applied to u. According 
to the theory in footnote 2, this is possible if and 
only if the functional F is bounded in the norm (2.1) 
for functions vanishing at the points i/N. That is, 
we m ust assume that there is a constant c such that 

(2.2) 

for all k times differentiable function vex) such that 

v (t )=o, i=O, ... , N. (2.3) 

Any linear combination of pointwise values or 
integrals of v and its derivatives up to order lc-l will 
satisfy this condition. 

3 A. Sard, Best approximate integrat ion [ormnias; best approximation formulas 
Am. J . Matb. 71 , 80-91 (1 949). ' 



To obtain a best estimate for F(u) we construct 
an auxiliary function u defined by the properties 

U[2k l (x) = 0, O< x<l, Nx~O,l, ... , N (2.4) 

and 

u(~)=u(~) i = O, l , .. . , N, 

U [!l (O)=u Pl (1) = 0 l= k, ... , 2k- 2. (2.5) 

The fun ction u and its first 2k-2 derivatives are 
continuous, while U[2k- ll is allowed to have jump 
discontinuities a t the points i /N. 

The Green's function G(x; ~) is defined by the 
properties 

G (~; ~)=o, 

o2k- IG(~+ 0 ; ~) 

OX2k I 

") 

O: X<I' Nx7'N" 0,1, . .. N, l 
'/, - 0,1 , ... , N, 

(2.6) 

at x= O,l, l= k, .. . 2k-2, j 
oZk- IG(I:_O,· 1:) 

<; <; (_l) k. 
OX2k I 

Again G and its first 2k-2 derivittives are continuous, 
while the (2k - 1)st derivative may have discon­
tinuities at i /N. By integration by parts we find 
that 

(2.7) 

where 

02k-IG (-~-o; ~) } . 
OX2k- 1 

(2.8) 

Also by integration by parts we have 

(2.9) 

Applying the functional F and usmg Schwarz's 
inequality, we find that 

jF(u)-F(u) [2::; 11 Iu[kl_U[kl I2dx f: IF{Ok~~~; ~)JrdX 

= 11 I u[kl-U[kl I 2dxFd F~[G(~; 1) )]l . 

(2 .10) 

(The symbol Frt [G (~; 1))] means that the functional 
F is applied to G considered as a function of rt for 

fixed~. Fd F~[G (~; rt)]} means that Fis then applied 
to the function F~[G]) . We have used the property 

(2.11) 

which follows from integration by parts. 
Anotber integration by parts shows that 

11 U[kl {U[kl_U[kl jdx= O. (2.12) 

Hence, we can rewrite (2.10) as 

jF(u)- F(u )J2::; { M2_11 U[kl 2dx }Fd F~[G(~; rt )]} . 

(2.13) 

Once u and G are found, this inequality provides 
upper and lower bounds for F(l.J). These bounds are 
shitrp in the sense that we can construct functions u 
satisfying (2.1) and having the given values u(i/N) 
for which the bounds for F (u) are attained. 

vVe write u in the form 

(2.14) 

The centered difference opera tor t:,.2k is defined by 

' 2k = ~ ( 2k ) (-l)k+! . 
Ll C, l~k k+ l C,+! (2.15) 

It is easily seen that t:,.2kINx-i I2k- l vanishes for 
INx-i l ? k. Hence the sum in (2.14) has at most 
2k- 1 nonzero terms. 

Clearly the function (2.14) satisfies (2.4) and has 
the required continuity properties. 

The coefficients ai are to be determined by the 
conditons (2.5). Thus we must have 

j = O,l, ... , N. 

(2 .16) 

In order to apply the last line of (2.5), we first use 
partial summation to write 

'" u(x) = (-l)k ~ Dka,DkINx-i I2k-' , (2.17) 
i=- oo 

where we have put ai= O for i::; - k , i?N+ k, and I 

where Dk is the kth forward difference operator : 

(2.18) 

Since t:,. 2k INx-i I2k- I= 0 for INx-i l ?k, (2. 14) and 
(2.17) are independent of the values of ai for i::; - k , 
i?N+ kwhen O::;x::;l. We note that DkINx-i I2k- 1 
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is a polynomial of degree lc- 1 for Nx:;'i or Nx ?.i+ lc. 
Hence the last line of (2.5) will be atisfied if 

i=-k + 1, ... , 
- 1, N-lc + 1, . . . ,N-l. (2. 19) 

The boundary value problem (2.5) is thus replaced 
by the system (2.16), (2.19) of N + 2lc - l lineal' 
equations in the N + 2lc - l unknowns ai' 

We turn to this problem of matrix inversion. 
Remarlc: "Ve have assumed that lc >2. The case 
lc = 1 is easily treated. Let 11 be the broken linear 
function coinciding with 11 at the points i /N [md 
having its breaks at these points. Let G(x;~) be 
the broken linear function with breaks at ~ and the 
two neighboring points of the form i /N which 
vanishes at the points i /N, and whose <'Ierivative 

( decrea ses by - 1 at~. Then (2.13 ) gives optimal 
r bounds for F(u) when k = 1. 

3 . Matrix Inversion 

We consider the system of linear equations (2 .16), 
I (2.19). Since 6.?k lj _i I2k- 1 depends only upon Ij - i l 
I and vanishes Jor Ij - i l ?. lc , (2.16) is a fll1ite dif­

ference equation or order 2k - 2. We solve it by 
means of a system of 2lc - 2 independent solutions 
of the hOlllogeneous equation. To find these solu­
tions, we note that for any number z 

( l)2k- 1 lz [(eZ-l) - l] (3. 1) 

, for ° :;'j :;. N. 
We define the polynomial in eZ 

QI(e Z ) =2( -1) l+le - Z (e Z- l ) 1+2 (i~) 1+1 [(e Z - l) -I ] 

(3.2) 

It is easily seen to be of degree l with leading 
coefficient 2. 

The Qz can be generated by the recursion 

I QI(Y)= (ly+ I )QI_I(y) - y(y - l )QI_I(y), 

Qo(y)=2 (3.3) 

The first few of these polynomials are 

The coefficients of Q2k-2 are the coefficients of the 
finite difference equation (2.16). It can be shown 

by induction that they arc symmetric in the sense 
that 

(3.5) 

This means that the zero of Ql occur in reciprocal 
pairs. When l is odd, one of the zeros is - l. 'V"hen 
l is even, Q can be written as a polynomial in (y + y-I). 
Thus, the zeros of Q2k- 2 can be found by solving an 
equation of degree lc - 1 allel a quadratic equation. 

It is shown by ineluctionLhat the coefficients of 
QI are posi tive and that the zeros of Ql arc real and 
negative. The zeros of Ql separate thos of Ql+l . 

Let YI < Yz< . . . < Y2k- 2<0 be the zeros of 
Q2k- 2: 

Then by (3.7) 

v= l , . .. , 2lc - 2. (3.6) 

1 
YZk-l-v= - ' 

Yv 
(3.7) 

Because of (3. 1) and (3.2), the functions ai=Y' 
satisfy the homogeneous equations corresponding to 
(2 .16). We now define 

i:;' lc- 2. 

i?. -lc+2, 
(3.8) 

It follows from the Lagrange interpolation 
forJllula [4] that the two definitions of if; i coincide for 
- lc + 2 :;'i:;' lc - 2. Using (3.1) fl,nd (3.2), we find 
that 

N+k- l 
" .1, 6.2kIJ'-iI2k-l= O. L..J 'l' l-p JP ' j,p = o, .. '1 N. (3.9) 

i=-k- l 

The same equation is satisfied by if;i- P plus any 
linear combin ation of the y;. We add fI, lin ear 
combination such that the new fun ction satisfies 
(2. 19). Since if;i- P vanishes for i:;'p + lc - 2 these con­
ditions are alnady satisfied for i = - lc + 1, . . ., - 2. 
Therefore we add only functions which also satisfy 
these conditions. The Lagrange interpolation for­
mula 4 shows that such lin ear combin ations are 
furnished by the functions 7) i+<>, a= l , ., lc, where 

2k-2 y;+k-2 
7) i== ~ k , • 

v=l (y,- l ) Q2k-2(Yv) 
(3 .10) 

Note that 
(3. 11 ) 

k 

r ip=if;i-P-~ Ca 7) Ha (3 .12) 
0' = 1 

and determine the coefficients Ca in such a way that 

• J . F. Steffenson, Interpolation (Chelsea Press, New York, N. Y., 1950. 
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D t r iP= o for i=- l , N-k+ l, ... , N- l. This 
gives Ck= OOl)' and the equations 

k- l 

~ Caif;N-k+ aH= D k if;N-k+fJ - P 
0< =1 

i3 = 1, .. . ,k- l. (3 .1 3) 

We let AafJ be the inverse of the symmetric 
(k- 1)X (k- 1) matrix if;N-Ha+fJ so that 5 

k-l 

Since k- I = 1, the matrix AafJ has the single element 
f ,y I. Moreover, 

D2if;i= -~ .J3(y j i- l_ y;+ I), i?, O, 

D"" . 1 
-'i" - 1 ~ 2' 

_ 1 f'53( I -i i- I) 
'fJ i- - 72 ,/0 YI - YI . (3 .21 ) 

~ AafJ if;N-kH+ -y= Oa -y , 
8=1 

a,-y= l , ... , k- l. Thus (3. 17) gives 

(3. 14) .J3(l -YI- 2i ) (l -YI2(N- v))y; - P 
Then r i P is given by 

- k+ l , ... , N + k- 1, p = O, .. . ,N. (3 .15) 

This function satisfi es 

N+k- l 
'" r 6,2k/ i-J' /2k- 1= O' L..J ip J P' j,p= o, . . . ,N 

i= -"+1 

(3 .16) 
and 

i = - k+ I , .. . ,- 1, 

N-lc+ I , ... , N-I; p= O, ... ,N. (3. 17) 

The solution of (2.16), (2.19) is given by 

N (p) ai=~ r ip u lV . (3. 18) 

Therefore r iP is the inverse 111.atrix for the problem 
(2.16), (2.19). 

Our problem of matrix inversion has thus been 
reduced to the solution of polynomial equations of 
degree k- I and t wo in order to find the Yv and the 
inversion of thc (k- I )-dimension al symmetric ma­
trix if;N-Ha+{J . 

Example: 'Ve consider the case lc= 2. The zeros 
of Q2(Y) are 

YI= -2-.J3, 

Yz= -2+ y'3. 

The function if; i defined by (3. 10) is 

(3.19) 

12(1 - YI 2N) 

-1 .:::; i :::;p, 1 :::; P :::; N-I 

.J3(l - YI 2P ) (l -YI 2(N-il )y j -i 
12 (1- YI2.<V) 

p:::;i:::;N+ l, l:::;p :::;N- l 

(1- YI 2i)y; - N 

12(1 - YI ZN) 

(I - YI 2(N-il )Yl i 

12(l - Y1 2N) 

4-.J3- (4+ l3)YI 2N 

12(1 - YI 2N) 

4 . Bounds 

i:::;N, p = N 

i = O, p= o 

(3.22) 

We now return to the consideration of section 2. 
The function u is given by 

with 

N ( j) ai=~ f ij u - . 
j =O N 

(4.2) 

Thus, we may write 

u (X) =ffio gj (x) u(t} (4.3) 

where 

(4.4) 

is the optimal approximation function corresponding 
to u(i/N) = oij' 

r ° i:::; O, 

if;i= { Y; (Yli- yi) i 2: 0. 

In order to find the bounds (2.13) we need the 
(3.20) integral of U[k]2 and G(x,O. Integrating by parts 

we find that 

t 5 rrhe fact that 1/IX -HCI!+$ is nonsingular follows from the uniqueness of it de­
fined by (2.4) , (2.5), and t he linear independence of the fun ctions A"I Nx- il'k-I 
and '7] i'+a, a = l , .. 0' k. 
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wher e [ l JlN denotes th e discontinuity in the function 
at j /N, wi th the convention U[2k- IJ(0- )= U[2k-lJ 
(1+ ) = 0. Applying partial slUl1J11 a tion to (4.1 ), 
we find that 

Consequ ently, 

= (- 1)k2N2k-l(2k- 1)! 

l~o u (~) u (lv) fl 2jk r j1 (4.7) 

with the convention that 

fo r i = O, i = N. 

WOe now construct the Green 's [unction G(x,O . 
W e b egin with a function H(x,~) having the proper 
jump at x=~ and satisfyin g the condition tlmt the 

, derivatives of orders lc , . .. 2lc-2 vanish at th e end 
points. Let p b e any integer sa tisfying 

wher e we again use the convention (4.8) . If F is 
local in the sense that F(u) only involves the values 
of u in the neighborhood of a point, the sums in the 
second term on the right involve at most 2k- 1 values 

\ of i andj. Example: Letk= 2. r i1 is given by (3. 22). 
W e find that 

{ 
2{ 4- 6/Nx-i /2+3 /Nx-i /3 } 

fl4/Nx-i /3= 2{2- /Nx-i/3 } 

o 

INx-il::=;l 
1 ::=; INx-il::=;2 

/ Nx-i / ~2 . ( 4.15) 

It follows from the Lagran ge interpolation formula 
(see footnote 4) that th e function 

H(X;O= / X_~ / 2k-l- ~T)t!.! _XI2k
-

1 bl'W, (4.10) 

where 

(_ 1)1'+ 1 N2k-l (2k- l) 
(2k-1)! f..I. 

( p+!.!) -l 2k-[ ( p+v) 
~- -- II c _ _ 

N v=o " N 
(1. 11) 

has the property 

H(x;~)= O > p+ 2k- l x . - N (4. 12) 

Therefore, t he function 

(4. 13) 

has all the properties (2 .6). Thus, i t is the Gref'n's 
function. 6 W e no t that th e sums in (4.4) and (4.13) 
involve at most 2k- 1 terms 1'or each x and ~. 

The bounds (2 .13 ) for F (u) a re now given ex­
plicitly by 

(4.14) 

Thus the interpolation function gj(x) is g iven by 

gj(x) = 12 (q+ 1- Nx) (Nx-q)[(q+ 2-Nx) r oj 

+(Nx + 1- q)r o+1, il+(q+ 1-Nx)30qj ) 

wher e the in teger q is defin ed by 

(4. 16) 

(4 .17) 

If 1< N~<N- 1 , we let p be the in teger such that 

p+ 1< N~<p+2 . (4.18) 

6 Sin ce Green's function is uniq uely defiJ1 ed by (2.6), it docs not depelld upon 
the integer p used in tbe construction of If. The function Hdoes depend UJlon p. 
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Thcn we have 

(N~-p)(N~-p-1)(p+2-N~)(p+3-NO 

IfO< N~< l , the definition (4. 18) givesp = -l, so 
that the function l-I defined by (4.19) does not vanish 
at x= O. In this case wc simply subtract the 
function 

from the right-hand side of (4.19) with p= -1 to 
obtain l-I('J.:, ~). Similarly, if N-1<N~< N, we 
subtract 

(4.21) 

o 
(NX-p)3 
N~-p 

(NX-p)3 3(Nx-p-1)3 
N~-p N~-p-l 

(p+ 3-Nx)3 
p+3-N~ 

(4.19) 

from the right-hand side of (4.19) with p= N - 2. 
Thus we can evaluate the bounds 4.14 explicitly . 

In the special case of linear interpolation we have 

F(u) = uC.\). (4.22) 

If 

we find 

Fx[F~(l-I(x; ~))l-i~ ~ r ijF(t,4 INx-ij3)F [ l-I (t; ~) ] 

= N -3(N.\-q)2(Q+ 1-Nsy{ 4 3(1~1 2N) [ (q+ 2-N'\)2(l-Y1 2q ) (1 _ YI- 2(N-q) ) 

+ 2(q+ 2-N.\) (N.\- q+ 1) (I-Y1 2Q ) (1-Y1 2 (N -Q-I))Yl l 

where 

+ (N.\- q+ 1)2(I - Y1 2(H I)) (I-Y1 2 (N-Q - I)) J}' (4.24) 

bound for the square integral gives considerably 
less information than a bound for the maximum. 

The first factor on the right of (4.14) does not 
approach zero as N--7 OJ unless M 2 happens to be the 
exact value of the integral of U[k]2. Thus Lhe differ­
ence between the best upper and lower bounds in 
t he Ii near interpolation pro b1em with N + 1 eq u ally 

j 'l 

spaced points and with a given bound for 0 u"2clx 

is of the order N- 3/2. If a uniform bound for lu" I 
is given, one can obtain bounds for u(.\) which 
differ by a term of order N-2. This shows that a 

The problem of finding best bounds when tbe maxi­
mum of IU[k] 1 is bounded is much more difficult than 
the probiem treated bere. 

The author wishes to thank W . Eorsch-Supan for 
a multitude of suggestions in connection with this < 
paper. 
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