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In this paper a new rcpresentation formula for t he spherical co mponcnts of di spl accmcn t 
in the theory of elasticity is obtained. This formula may be lIsed to reducc mixcd bOll ndary 
value problems for the elastic sphere to standard problems in potential thcory. 

1. Introduction 

In treating boundary value problems in the theory o( elasticity it is frequ ently co nvenient 
to represent the compon ents of the eli placement vector in terlllS of harmonic functions, and 
thus to reduce the elas ticity problem to one in potential theory. Seventl such decompositions 
in terms of harmoni c fun ctions arc known , [7, p. 342- 3431,3 [1 , p. 231), [4], the most widely used, 
perhaps , being the Papkovitch-Neuber decomposition (see for instance [7, p. 33 1]) . 

HaH-space problems have been quite thoroughly trea ted from this point o( view, as in 
fact have the firs t and second boundary value problems for the sphere. However, in treating 
mixed boundary value problems for the sphere, the stan dard decompositions are not suitable . . 
Such mixed problems could be simplified considerably i( it were possibl e to obtain convenient 
representations for the spherical compon ents of displacement in terms of harmonic functions. 
We obtain such a representation in this paper and demonstra te how it yield in a 'simple man­
ner solutions to standard mixed bouneliLry value problems for the sphere. 

In th is pap er wh enever an inel ex is repeated in a single term, summation from 1 to 3 will 
be implied. Use o( t he symbolj'i to denote OJ/axi, where Xi is on e of the rectangular coordinates 
(X l, X2, X3), will be made throughou t. 

Let D be a three dimensional region which contains an open subset Q o( a spherical surface 
of radius a with center at the origin o( a spherical coordinate system (1', 0, <p). The region Dis 
assumed to be a portion of an isotropic homogeneous elastic medium. 

",Ve suppose that D does not contain the origin. Furthermore, we assume that every ray 
from the origin which in tersects D, in tersects it in a single line segment. 

In D the component of the displacement vector satisfies the equilibrium equ ations 

(1.1) 

where a involves the elastic constan ts (a=( 1- 2o-)-1 where (J is Poisson's ratio). As far as 0UI' 

representation formulas are concerned we need put no restrictions on the constant a other than 
that it be different from - 1. However, all physically interesting values of a lie in the interval 
1 3<a< co . 

I Tbis research was supported in part by the U.S. Ai r Force through the Air Force Offi ce of Scientific Researcb of tbe Air Researcb and De· 
velopment Comman d under Contract No . AF 49(638)-228. 

2 University of Maryland , College Park, Md. ~ 
3 Figures in brackets indi cate tbe literature references at t he en d of tbis paper. 
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In this paper we obtain the following representation for the spherical components of dis­
placement in D: 

(1.2) 

(1.3) 

where if; , G, and H are harmonic f1lllCtions in D. Consequently all terms in braces in (1.2) and 
(1.3) are also harmonic. In (1.3) € ijk is the p ermutation symbol 

We first rewrite (1.1) as 

if any two indices are equal 
if ijk is an even permutation of 1 2 3 
if ijk is an odd permutation of 1 2 3. 

2. Representation Formulas 

(1.4) 

(2.1) 

For a o;C- - 1 we~ see from (1.1) that U j,j is harmonic. It has been shown that the representation 

(2 .2) 

where G is harmonic, is valid in D (see for instance Bramble [2]). Equation (2.1) then may be 
integrated to give 

(2.3) 

where X is a harmonic function . We express X in D as 

(2.4) 

Thus U j is the component of a vector whose divergence is represented by (2.2) and whose curl 
is expressible by (2.3). The component Uj may clearly be expressed as the sum of a particular 
solution of (2.2) and (2.3) and the gradient of a harmonic function, i.e. , 

(2.5) 

where if; is harmonic in D. 
Using (2.5) we now form the expressions for XjUJ and € ijk X j Uk which are respectively the 

scalar product and the vector product of the radius vector and the displacement vector. 

? { oG 0 ( OG) } of x Uj = r- 2G+ (2-a) l' - -ar - l' -- +1' -
J or or or or (2.6) 

and 

(2.7) 
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Equation (2.6) is precisely the desired expression (1.2). In order to obtain (1.3) we substitute 
for <I> in D (see Bramble [2]) , 

(2.8) 

where H is harmonic. We then write 

Xl' O<I>=[x. { r oH +2r~ (r OH) } _r2(r oH) J+T2 ( 1' oTI) 
' 01' t 01' or 01' or . i 01' . i . 

(2.9) 

As noted previously, the term in square brackets is harmonic. Equ ations (2. 7), (2.8) and (2.9) 
yield immediately the desired representa tion (1.3) . 

In obtaining our decompositions we have frequently made use of the faeL that in the 

region in qu estion any harmonic function could be represented as (1 +aI1: ~.) (1 +a2r : 1') g 

where g is harmonic. We have used only representations in which al and a2 were non-n egative. 
Bramble [2] has shown that such a r epresen tation is valid in D regardless of th e sign of at and 
a2. However, for a t and a2 non-negative it is easily verified that such a represen tation is also 
valid in any region whose boundery is star-shaped wi th respect to the origin. Consequently 
(1.2) and (1.3) are valid in any such star shaped region. In the next section we use the repre­
senta tions (1.2) and (1.3) to solve cer tain bound ary value problems for the elastic sphere. 

If the elastic r egion is exterior to a surface 0 which is star-shap ed with r espect to the 
origin and if the componen ts of the displacement vector are 0 (1' -2) as 1' ----7 ex» i t can again be 
shown that the decompositions (1.2) and (1.3) are valid therein. 

3. Mixed Boundary Value Problems for the Sphere 

Let Ui satisfy (1.1 ) on the in terior of an clastic sphere. On the surface r = a let 

(3. 1) 

where Tij is the stress tensor, J.1 is theshearl11odulus, and where} and gi arc prescribed bound ary 
da ta. Equation s (3. 1) may be written equivalently as 

(3.2) 

on T= a. Using (1.2) and (1.3) we can actually obtain the following r epresen ta tion for the 
left hand side of (3. 1) in t erms of harmonic functions 

+ 2[(3a- l)al + az]G } +2at1' ~. ( 1' ~~)-(2at-a2)1' ~~ 

J.1 - lb lEijkTklX jXl+ b2EijkXJUk= 1'2 E;jkX j O~k { -2ab1 ( 1' ~.Y G-(bz+ 4b t)ar ~~ +[2b1-(2+ 3a) b2]G } 

_ 21'2 (bl r :1' +b2) (H +1' °oI;} ;-hiJkXJ O~k { 2b11' ~~ + (b2-2b1)if; } 

+(b1r ~.+b2-2bl){ Xi [ 1' o~I +21' :1' ( 1' O~~) J-1'2 ( 1' °o~I} i} ' (3.3) 
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From (3.3) we obtain expressions of the form 

(3.4) 

+{ Xi (2r :1'+1) (1' :1') (B6r °t-: +B7H )_1'2 [1' :1' (B6r °O~ +B7H)] ,} 

-a2 [(1 +1' ~) (B6r °t-: +B7H)] i=P(gi) 

valid throughout D. The constants A i and B t are determined immediately from (3.3) and 
P(j) and P(gi) denote Poisson integrals. 

Forming xiP(g,) we obtain the expression 

B { (I' ~)3 H+(r ~)2 H} +B7 { (I' ~)2 H+r OH } =XP(g;). 6 Or Or Or Or r2-a2 
(3.5) 

Under suitable conditions on B6 and B7 this expression may be integrated to give an expression 
for H. With H known throughout D , equations (3.4) give two identities in the two unknowns 
G and 1/;. The function 1/; can be eliminated by taking the proper combination of l' derivatives 
of the first of equations (3.4) and l' derivatives of the expression formed by operating on the 

second of equations (3.4) with ElmiX I d2-. This results in an equation involving a linear 
u X m 

combination of l' derivatives of G. If this equation can be solved for G then the insertion of 
G into the first of equations (3.4) yields the expression for 1/; which completely determines the 
displacement vector in D. It is a simple matter to obtain a formal solution for G, for we have 
an equation of the form 

N (O)t ~ at r ~ G=F. 
.=0 ur 

(3.6) 

We expand the known harmonic function F in terms of spherical harmonics, i.e., 

N (O)t '" n 
~ ai l' Or G=~ ~o rnPr;: (cos e) [Anm cos m¢+ B nm sin m¢]. (3.7) 

The solution to this equation is 

(3.8) 

provided 

(3.9) 

for n = O, 1, 2, . . . , or any positive integer. For a given a, (3.9) imposes certain restrictions 
on the constants aI, a2, bl , and b2• 

As a particular example consider the case in which a2 and bl in (3.1) are zero. The cons tan ts 
al and b2 can without loss be taken as unity. Thus equation (3.4) becomes 

a{ -2a(r:rY G+2(4a+ l)r~;+2(3a-l)G ]+2r:r (1':1'-1) 1/;=P(J) (3.10) 
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and 

where P(g i) and P(j) denote Poisson's integrals. If we take the scalar product of the radius 
vector and (3.11) we obtain the differential equation for H 

(3. 12) 

which yields the r esult 

1I=lT - 1 (r-p)xiP(g,) l 
p ( 2 2) G p. o p -a 

(3 .1 3 ) 

It is possible to add an arbitrary co nstant to the right hand side of (3 .13) but since only der'iva­
tives of H occur in (1.3) we may take the constant equal to zero. We now operate on (3 .11 ) 

with the operator € lmiXI >.0 to obtain the expression 
u Xm 

(3.14) 

which yields for >/; 

(3.15) 

Again we have set the arbitrary additive constant equal to zero in (3. 15) since only derivatives 
of >/; occur in (1.2) a nd (1.3). Substitution of (3. 15) into (3 .10) yields the result 

(r ~.-Cl) (1' ~.-C2) G= [4a2(a+ 1)] - IR (3. ]6) 

where 

(3. 17) 

and 

(3.18) 

For ex> 1/3 (which corresponds to the range of u which is of physical interest, i .e., - 1 < u< 1/2) 
CI and C2 have real part less than unity. Thus if we operate on (3 .16) by r%r we obtain 

(3.19) 

an expression which cn.n easily be integrated for G, giving 
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If the indicated integration is performed we obtain for Cl ~C2 the expression 

(3 .21) 

If Cl = C2 (which means that a satisfies the equation 17-22a- 23a2= 0) (3.20) yields upon 
integration 

(3. 22) 

The function f is now determin ed by insertion of (3.2 1) or (3.22) in (3. 15), and the problem is 
solved. 

4. Concluding Remarks 

In a recent paper 13], the au thors indicated how to obtain an explicit con tinuat ion across 
a spherical surface Q on which} and gi of (3.1) were zero. The decomposition (1.2), (1.3) could 
a lso be used to obtain tbis continuation formula. It is also possible to obtain in a straight­
forward way from (1.2) and (1.3) sphere theorems with various combinat ions of surface trac­
tions and displacemen ts vanishing on the surface of the sphere. 

If in (1.2) and (1.3) a is allowed to tend to infinity while at the same time aG tends to a 
harmonic function P, then these decompositions may be interpreted as representation formulas 
for the spherical components of the velocity vector in the slow motion of viscous fluids. (See 
for instance [6, p . 522].) 
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