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A New Decomposition Formula in the Theory
of Elasticity'

]. H. Bramble? and L. E. Payne*?
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In this paper a new representation formula for the spherical components of displacement
in the theory of elasticity is obtained. This formula may be used to reduce mixed boundary
value problems for the elastic sphere to standard problems in potential theory.

1. Introduction

In treating boundary value problems in the theory of elasticity it is frequently convenient
to represent the components of the displacement vector in terms of harmonie functions, and
thus to reduce the elasticity problem to one in potential theory. Several such decompositions
in terms of harmonic functions are known, [7, p. 342-343],° [1, p. 231], [4], the most widely used,
perhaps, being the Papkovitch-Neuber decomposition (see for instance [7, p. 331]).

Half-space problems have been quite thoroughly treated from this point of view, as in
fact have the first and second boundary value problems for the sphere. However, in treating
mixed boundary value problems for the sphere, the standard decompositions are not suitable.
Such mixed problems could be simplified considerably if it were possible to obtain convenient
representations for the spherical components of displacement in terms of harmonic functions.
We obtain such a representation in this paper and demonstrate how it yields in a simple man-
ner solutions to standard mixed boundary value problems for the sphere.

In this paper whenever an index is repeated in a single term, summation from 1 to 3 will
be implied. Use of the symbol f,; to denote of/dx;, where z;1s one of the rectangular coordinates
(21, Ty, x3), will be made throughout.

Let D be a three dimensional region which contains an open subset @ of a spherical surface
of radius a with center at the origin of a spherical coordinate system (r, 0, ¢). The region D is
assumed to be a portion of an isotropic homogeneous elastic medium.

We suppose that D does not contain the origin. Furthermore, we assume that every ray
from the origin which intersects 1), intersects it in a single line segment.

In D the component of the displacement vector satisfies the equilibrium equations

Wi, 5+ au; ;=0 (1.1)

where « involves the elastic constants (a=(1—20) ! where ¢ is Poisson’s ratio). As far as our
representation formulas are concerned we need put no restrictions on the constant o other than
that it be different from —1. However, all physically interesting values of « lie in the interval
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In this paper we obtain the following representation for the spherical components of dis-
placement in D:

T {QG—I—(‘Z*a)/’bG/Or ( >}+ (1.2)

ei]k;l?jukzl'2 {—(2—}—3a)e,-j,;1‘,j(;.k—al’§7 ei,-kx]G,k—(I{—Fr' %Irl‘> }

+{ [ aH+2 aa, MI)] [ aH] }+emwk o

where ¢, G, and H are harmonic functions in 7). Consequently all terms in braces in (1.2) and
(1.3) are also harmonic. In (1.3) € is the permutation symbol

0 if any two indices are equal
er—=1 1 if 4 1s an even permutation of 1 2 3 (1.4)
—1 if ;% 1s an odd permutation of 1 2 3.

2. Representation Formulas

We first rewrite (1.1) as

0
fuka €xim Uy, m+(a+1) Uy, 7L:0' (21)

For a # —1 we'see from (1.1) that u;,;is harmonic. It has been shown that the representation

u,,,—<1—|~r—>(6G+41 bG) (2.2)

where @ is harmonic, is valid in D (see for instance Bramble [2]). Equation (2.1) then may be
integrated to give

€ijk uj,;;:(a‘l—l) €k .I:]<6G+47'%g) k+X,1 (23)

where x is a harmonic function. We express x in D as

X= q>+raf (2.4)

Thus u; is the component of a vector whose divergence is represented by (2.2) and whose curl
is expressible by (2.3). The component u; may clearly be expressed as the sum of a particular
solution of (2.2) and (2.3) and the gradient of a harmonic function, i.e.,

—2w,l:G’—|—(a—|—2)r —-r2|:2(1+2a)Gj+ar G]+e,lkx, an 2 (2.5)

where ¢ is harmonic in D.
Using (2.5) we now form the expressions for zu, and e;;2;u; which are respectively the
scalar product and the vector product of the radius vector and the displacement vector.

ol =—r {2G+(2 Q7 ba(; a?‘% r%g)}—krglf (2.6)

and
G 0 od -
€igx Ly Up=T" —(2+32) fukWG,k—ara‘rGijM;G,r;—‘I’i +$i7'a +ein ¥ i (2.7
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Equation (2.6) is precisely the desired expression (1.2). In order to obtain (1.3) we substitute
for ® in D (see Bramble [2]),

S—I+2r DH (2.8)

where / is harmonic. We then write

a_q»_[ { all a, bll)}_,2< al]> ]+ (01/ (2.9)

As noted previously, the term in square brackets is harmonic. Equations (2.7), (2.8) and (2.9)
vield immediately the desired representation (1.3).
In obtaining our decompositions we have frequently made use of the fact that in the

s . : : ) 0
region in question any harmonic function could be represented as <1+(1,1r o 14a,r o) 9
r r

where ¢ is harmonic. We have used only representations in which @, and a; were non-negative.
Bramble [2] has shown that such a representation is valid in D regardless of the sign of a; and
a,. However, for a; and @, non-negative it is easily verified that such a representation is also
valid in any 1vg10n whose boundery is star-shaped with respect to the origin. Consequently
(1.2) and (1.3) are valid in any such star shaped region. In the next section we use the repre-
sentations (1.2) and (1.3) to solve certain boundary value problems for the elastic sphere.

If the elastic region is exterior to a surface € which is star-shaped with respect to the
origin and if the components of the displacement vector are O(r~?) as 7—> o, it can again be
shown that the decompositions (1.2) and (1.3) are valid therein.

3. Mixed Boundary Value Problems for the Sphere
Let u, satisfy (1.1) on the interior of an elastic sphere. On the surface r=a let

b lay Tyrtax;u;=1(6,)
(3.1)
w7y et boespau=9g:(0,0)

where 7, is the stress tensor, p is the shear modulus; and where f and g; are prescribed boundary
data. Equations (3.1) may be written equivalently as

0 .
a(a+1)r 3 (2; uj)‘+‘[al(a—:3)+azlﬁjuj+arl(a_ 1) e, % €in i Un=1(0, )
7
0
bﬂ"& ef,»k,lf]-uk—{- (bg_2b1)€ijk.tjuk+b1€[jkxj(fl;l ul),k:gi(ﬁ,(p) (32)

on r=a. Using (1.2) and (1.3) we can actually obtain the following representation for the
left hand side of (3.1) in terms of harmonic functions

3 2
#—1a,rijxixj—}—a2xjuj:r2{ — 2 <r —%) G—aa <7‘ %) G+ [2a:(4a—1)+ay(2—a)] » %
+2[(Ba—1)a:+a,|G@ } +2a,7 % <r %)— (2a;—as)r %’

ﬂ_lblfl'jkalxjxl—i_b2€ijk1l]uk:r25ijkxja£x};{ 2ah, (’“*)G (bo+4by)ar G +[2b:— (24 3a)b: (*}

oy (blr-+b><H+ b”) S ab {2[)11— -y )¢}
+(§1r§7+bz—2b1){x,« S e (rSH) - (OH)} (3.3)
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From (3.3) we obtain expressions of the form

A (r2) 6+ (r2) 6+ar S b+ ar 2 (r )+ ar S=r(p),

+{a(2r201) (-2) (e L it [ 2 (e L )] }
g [(1 Ly %) (Bsr %-FBJ{)]J:P(QJ

valid throughout D). The constants A, and B, are determined immediately from (3.3) and
P(f) and P(g;) denote Poisson integrals.
Forming z;P(g;) we obtain the expression

w{( ) me( 2 mpen {( 2 eyt s

Under suitable conditions on B and B; this expression may be integrated to give an expression
for [7. With H known throughout D, equations (3.4) give two identities in the two unknowns
G and ¢. The function ¢ can be eliminated by taking the proper combination of » derivatives
of the first of equations (3.4) and r derivatives of the expression formed by operating on the

second of equations (3.4) with €imiTiy This results in an equation involving a linear
m

combination of » derivatives of G. If this equation can be solved for G then the insertion of
@ into the first of equations (3.4) yields the expression for ¢ which completely determines the
displacement vector in ). It is a simple matter to obtain a formal solution for @, for we have
an equation of the form

> a,(r ) a=F
g a; <7" 5;) =/, (3.6)
We expand the known harmonic function F in terms of spherical harmonics, i.e.,
N O \? ® n .
S (r S s s8I A s cos o B i) (3.7)
i=0 or n=0 m=0

The solution to this equation is

® n N =
G=> I:Z aini] P (cos 0) [A,,, cos mo+ B, sin mg] (3.8)
n=0m=0Li=0

provided
N
>ant#0 (3.9)
i=0

for n=0, 1, 2, . . ., or any positive integer. For a given «, (3.9) imposes certain restrictions

on the constants a,, a,, b;, and b,.
As a particular example consider the case in which a. and b, in (3.1) are zero. The constants
a; and b, can without loss be taken as unity. Thus equation (3.4) becomes

e I:——Qa <r %)3 G+2(4at1) r¥+2(3a—— 1) G:I+2r% <r —%-1) V=P  (3.10)
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and

a? e”kij [ a?” (2+3a ]_' eukx]‘//k <H+7

+{ o[ B2 °)H] (3”)} —P(g)  (.11)

where P(g;) and P(f) denote Poisson’s integrals. 1If we take the scalar product of the radius
vector and (3.11) we obtain the differential equation for

o o z.(g:) Q 16
rarl:H—i—r Py (3.12)
which yields the result
I f o p)x (r—p)z:P(g.) dp. (3.13)
) RAIK

It is possible to add an arbitrary constant to the right hand side of (3.13) but since only deriva-
tives of I/ occur in (1.3) we may take the constant equal to zero. We now operate on (3.11)

with the operator e, z; Oi to obtain the expression
{ l:yb (2-F3a)a*G—a*ar *—:I} €kl =— 5 P((]L) (3.14)
which yields for ¢
2 b 0 .
=a?| (24 3«) +a1 ~— |—r" (r— p)e,,kl'lo P(gr)dp- (3.15)

Again we have set the arbitrary additive constant equal to zero in (3.15) since only derivatives
of Y occur in (1.2) and (1.3). Substitution of (3.15) into (3.10) yields the result

ro—a)(ro—a) 6=Haet IR (3.16)
where
a={(@—a)+[17—22a—230%"?}[4(a+1)]""
(3.17)
co={(B—a)—[17—22a—23a°]"2}[4(a+1)] !
and
R=P(f)+2 <r % —1) I:r“ fo o a% P(gk)dp:l. (3.18)

For «>1/3 (which corresponds to the range of ¢ which is of physical interest, i.e.,— 1< a<1/2)
¢, and ¢, have real part less than unity. Thus if we operate on (3.16) by 70/dr we obtain

<1’a >< 5 ¢ =[4a*(a+1)]” lrg (3.19)

an expression which can easily be integrated for @, giving

=40 (- 1)] " {H(O 0¢)+J m—xf e1—cg= lf' pret % dpzd,lndp}' (3.20)
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If the indicated integration is performed we obtain for ¢; #¢, the expression

G=[4a*(a+1)]"? {]1 (,,'19 ¢>)+( T I: flj — A‘l’p /»szrp,cz% (]p:lf (3.21)
€2 Jo p

If ¢,=¢, (which means that o satisfies the equation 17—22a—23a*’=0) (3.20) vields upon
integration

=[4a*ci(a+1)]7? {clrclj rp‘c1 log (7/p) %L; dp—r“J T OF Zp+]’} (3.22)
0

The function ¢ is now determined by insertion of (3.21) or (3.22) in (3.15), and the problem is
solved.

4. Concluding Remarks

In a recent paper [3], the authors indicated how to obtain an explicit continuation across
a spherical surface ¢ on which f and g; of (3.1) were zero. The decomposition (1.2), (1.3) could
also be used to obtain this continuation formula. It is also possible to obtain in a straight-
forward way from (1.2) and (1.3) sphere theorems with various combinations of surface trac-
tions and displacements vanishing on the surface of the sphere.

If in (1.2) and (1.3) « is allowed to tend to infinity while at the same time a@ tends to a
harmonic function F, then these decompositions may be interpreted as representation formulas
for the spherical components of the velocity vector in the slow motion of viscous fluids. (See
for instance [6, p. 522].)
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