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Some Boundary Value Problems Involving Plasma
Media

James R. Wait!
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A plasma, consisting of a neutral mixture of electrons, ions and molecules, in the presence
of a constant magnetic field 71,, possesses a dielectric constant which is in the form of a tensor.
lixact solutions of boundary value problems involving such media are obtained for two-
dimensional configurations. Explicit results are given for the reflection coeflicients of
stratified plasma in planar and eylindrical geometry.

1. Introduction

A neutral mixture of positive (and negative) ions and electrons is often described as a
plasma. For example, flames, gaseous discharges, strong shock waves, and the ionosphere
are various kinds of plasma. The behavior of electromagnetic waves within and in the vicinity
of plasma is of great current interest.

Mainly because of the presence of the free electrons the plasma is a dielectric. The col-
lisions of electrons with the ions cause dissipation of energy and thus the dielectric is lossy.
A radio wave propagating through the plasma is thus expected to be attenuated. Furthermore,
in the presence of a steady magnetic field, the plasma becomes anisotropic so that the dielectric
constant is of tensor form and thus, in general, propagation is not reciprocal.

[t is the purpose of the present paper to consider the interaction of electromagnetic waves
and plasma for a special class of two-dimensional problems. The geometry is chosen so the
wave propagation is essentially transverse to the longitudinal axis. Such a restriction permits
exact solutions of a number of relevant boundary value problems to be obtained. Since radio
waves, particularly microwaves, are being currently employed as a diagnostic tool in probing
plasma, it appears that results given below can find application.

An excellent introduction to the theory of propagation of electromagnetic waves in plasma
has been given recently by Whitmer [1].2 A more comprehensive treatment is found in a
recent monograph by Ratcliffe [2]. The dielectric behavior and the molecular properties of
a plasma have been dealt with by a number of authors [3-6]. In particular, Spitzer [7], has
given a very thorough discussion for fully ionized gases.

2. Dielectric Properties of a Plasma

Since the problems to be discussed in the following sections deal with two-dimensional

geometry, it is desirable to take the z-axis of the Cartesian or the cylindrical coordinate system
-

in the direction of the applied magnetic field 77,. In this case the dielectric displacement

- -
D is related to the electric field /£ by the relation

D—(oF (1)

where (e) is the tensor dielectric constant. For an implied time factor exp (iwt), it has the form

e€—iq 0
(e)=(1q € 0 (2)
0 0 €’

1 This work was carried out while the author was on a visit to the Laboratory for Electromagnetic Theory at the Technical University of
Denmark.
2 Figures in brackets indicate the literature references at the end of this paper.
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The quantities € , ¢’’, and ¢ are functions of the density of the electrons and the ions and the
frequency of collisions between them. They also depend, of course, on the strength of the
applied magnetic field 7, (see appendix).

The case usually considered is where the electromagnetic forces only influence the elec-
trons. Furthermore, the motion of the ions is commonly neglected. For this situation, the
properties of the plasma can be approximately described in a macroscopic sense in terms of the
following quantities:

wo, the (electron) plasma frequency
wy, the (electron) gyro frequency
v, the effective collision frequency (for electrons).

The elements of the dielectric tensor are then given explicitly by

fi: 7(V+?w)w0/w

€ e +(v—|—7w)2 (3)
¢ —wrej/e

;_w%+(v—|—iw)2 (4)
! Twi

@ Ot )

The preceding can be generalized to include the influence of heavy ions by simply adding
a summation prefix to the ratios on the right-hand side of equations (3), (4), and (5). Then,
in each term, the appropriate value of «, », and wy must be employed. This approach is
valid for a weakly ionized medium and has been employed by Hines [8]. In the case of a
plasma consisting of a neutral mixture of electrons, one type of heavy ions and a relatively
large number of neutral molecules, the elements of the dielectric tensor have the form

e _ﬂ(v-}—?w)wo/w 1 (ri+iw) fwd/w 6)
eo_ wip~+ (v, +1w)? 2w§v+(vi—‘f—7'w)2)
q__ wr wj/w 2wrwh/w
G w%+(ve+iw)2+A2wT+(vl+lw) @)
e’ w3 i} ()

;21 — g . >
€ (v, tiww (vi+10)w
where
m, mass ol electron

A
F=m,”  mass of ion

and v, and »; are the collision frequencies of the electrons and the ions, respectively, with the

uncharged molecules. The effect of collisions between the electrons and the ions is neglected.-

wo and wy are the (electron) plasma and (electron) gyro frequencies. Since the charge of the

ions is equal and opposite to the electrons, it follows that fiw, and —fiw, are the (ion) plasma

and (ion) gyro frequencies, respectively.

It can be seen that if »,<<<w, the denominators in the second factors for ¢ and ¢ behave
as wi—w?  Thus, at frequencies near the (ion) gyro frequency, the influence of the ions
may be significant even though the mass ratio 4 is very small. However, when collisions are
not negligible, the effect of the ions is usually quite small. In particular, if v, > > and v, > >w,
this fact can be demonstrated by rewriting the elements of the dielectric tensor in the form

¢ _eifel i wr+vé]

fﬂﬁ‘l w2T+ ve |:1+ a2 7tvi (9)
L wrwo/w[ 1 —p2 “’T‘I'VP :l 10
€0 Wi+ 3 M w’r+ Vi ( )



—L=1—i—°ﬁ|:1+ﬁ ,:] (11)
€ V,w v;
since the ratio (wf-+v?) /(%% +vi) is of the order of unity in most cases of practical interest.
The square bracket terms may be replaced by unity since £ is of the order of 107*.

When the plasma becomes strongly ionized, the situation is more complicated. The
formalism is given in the appendix where the relative number of ions and electronsis unrestricted
However, in the case of a fully ionized plasma the elements of the dielectric tensor are given by
[9, 10]

:T::1+wg(1+ﬁ)[w2—ﬁXT—-iwv(l—}—ﬁ)] -
2(A9
%Zgﬂ%gLﬁ (13)
€ wi(l+h)
o  wlo—iv(1+5)] (14)

where
A=wwi(1—f)?—[w— hwi—iwr(144)]2

As before, & is the ratio of the masses of the electron and the ion. Also, w, and w; are the
(electron) plasma and (electron) gyro frequencies, respectively. In this case, however, » is the
collision frequency between the electrons and the ions which have equal and opposite charge.

It can be immediately seen that if 2 is set equal to zero, these expressions reduce to the
form of equations (3), (4), and (5), which are derived under somewhat different conditions. It
an also be seen that equations (12), (13), and (14) have the same form as (6), (7), and (8) if
v=v,—v,—0. However, when collisions are non-negligible there is a fundamental difference
between a weakly and a fully ionized plasma. This is a consequence of the coupling between
the equations of motion for the electrons and the ions (see appendix).

Under the very reasonable approximation that 144 can be replaced by 1, it readily follows
that eqs (12), (13), and (14) can be written in the form

e 1(v+1w)wd fw

R e "
g erwje .
PR R (16)
6”__ Tw?
6_3_1_(V%—2'w)w 40

A2

- . b .#wrl
where 7=y—ifiw}jw=v (1 —7,—5>~
vw

The quantity 7 could be described as an effective (complex) collision frequency. It should be
noted that only the elements ¢ and ¢ of the dielectric tensor involve »; the remaining element
€'’ 1s not changed.

It is now evident that the motion of the ions, for a fully ionized gas, can be neglected only if

fofLvw.

For low frequencies and/or low collision frequencies this condition may well be violated.
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3. Field Equations

Maxwell’s equations in a source free region with a (tensor) dielectric constant (¢) and a
(scalar) magnetic permeability u are given by

i(e)eE—=curl H (18)
and
—i;uwf]zcurl E’ (19)

It is desirable to write the first of these in the form
o -
?wE:(e‘l) curl H,
where (e7!) is the inverse of the dielectric tensor. It is not difficult to show that

M —iK 0 1
ele )= 1K M 0 , (20)
O O Go/e, 4 J

where

’

and e

. €€
M=p—p (€)—¢?

This formula is quite general. The only restriction is that the z-axis is to be taken in the
direction of the impressed magnetic field. In the following it is assumed that the fields do
not vary in the z-direction. In terms of Cartesian coordinates, Maxwell’s equations are
then written

DII bll

e, — (21)
il =i %L aa’i (22)
1w, = (ef€’’) [DH O[] (23)
— oM, = N 2L (24)
oy
— iy, = — N ag (25)
[OE, OF,
— it =N [ L Fy] (26)

where N=u/u.
It is a relatively simple matter to eliminate the transverse component of the fields from
the preceding six equations. Thus

e 2 +MN:| et (27)
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and

02 0 k2T
T+@+T] E,—0, (28)

where k= (eu)"/? w=2r/wavelength. These latter two equations are valid only if the magnetic
permeability and the elements of the dielectric tensor are constant for at least a given region.

The fact that A, and £, individually satisfy a wave equation means that any solution to
our problem can be regarded as the linear combination of two partial solutions. In the
first of these, /£,=0 and in the second, H/,=0. Thus without any subsequent loss of generality,
attention can be restricted to these cases. It should be emphasized that this decomposition
into independent partial fields is valid only when the derivatives with respect to z are zero.
As we shall see, the solution for /7,=0 is relatively trivial since the constant magnetic field 77,
then has no influence (at least within the limits of magneto-ionic theory).

4. Reflection Coefficient for a Plane Boundary Between Free Space and Plasma

With respect to the Cartesian coordinate system, a homogeneous plasma occupies the
space ¥ >0 and while <0 corresponds to free space, the constant and uniform magnetic field
is parallel to the z-axis. A plane wave with harmonic time dependence (i.e., exp (iwt)) is
incident from below as indicated in figure 1.

Y
&
N
g
&
3
Q
Ficure 1. The coordinate system for reflection at a plane
interface between a homogeneous plasma (y>0) and free
space (y<0).
The constant magnetic field Zfo is along the direction of the positive z-axis
(out of the paper).
o/ 0 X%
N Fo T\
o ©
A
& <
S o
%
$ &

The angle of incidence is 6 (measured to the negative y-axis) and the wave is polarized
such that its magnetic field has only a component in the z-direction, denoted F/*°. 'Thus,

e e ) e

where C=cos 0, S=sin 6 and A, is a constant.
Since the reflected field 75" is a solution of the free-space wave equation and is to have the
same dependence with z as the incident wave, it must be of the form

Het=hy R exp (ik Cy) exp (— ik S z), (30)

where R is by definition the reflection coefficient.
With similar reasoning, the solution for the plasma (i.e., ¥ >0) must have the form

H,=f(y) exp (— ik S @), (31)
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where f(y) is some function of y. Furthermore, since /1, is to satisfy eq (27), it follows that f(y)
must satisfy

[§%+4¢(K%v—s§]f@y:u (32)

exp [+ ik [(MN)™'—S8)]"2y]. (33)

Solutions are of the form
Since the plasma extends to y=- =, the solution corresponding to the negative sign in the
exponent is pertinent. Therefore, the transmitted wave has the form

H,=hy T exp [—ik [(MN)'—8%Y2%] exp (—ik S ), (34)

where 7'is by definition a transmission coefficient.
The boundary conditions are that the tangential components of the fields in the free
space and in the plasma are to be continuous at y=0. Continuity of I, leads to

e (35)

and continuity of £, by virtue of eq (21), leads to

C (1—R)=T [[(MN)'—8%V* M+iKS]. (36)
Thus,
O—A 20
RZO—%—A andT*(,_%_A , (37)
where
A=M [(MN)*—8?"24+iKS. (38)

For an electron plasma where the motions of the ions are neglected, it is possible to write
A in the following form:
14+4L T2 . ‘ .
2 e P N e
I:O +?f i (tL— L*—~2)—1iyS
(I—HL)Z—'Y ’

(39)

where L= (v}+iw) w/wi, and r=wr w/wi. We have also set N=1 (i.e., u=p,) although a plasma
may be slightly diamagnetic.

The reflection coefficient, essentially in this form, was derived by Barber and Crombie [11]
where the homogeneous electron plasma was to be an idealized representation for the ionosphere.
Because of the assumption of a purely transverse magnetic field H;, the horizontal direction
of propagation is along the magnetic equator. For propagation from -east-to-west, S is
positive, while for propagation from west-to-east S is negative. v is then a positive real
quantity.

For applications at low and very low radio frequencies, »>>">w so that to a good approxi-
mation

L>~w/w, where r—wa/ v

Some numerical results based on eq (37) are available [12].

5. Reflection from a Stratified Plasma

We shall now undertake to generalize the previous result to a plasma medium which is
stratified in layers all parallel to the free-space interface at y=0. The situation is shown in
figure 2, where P parallel layers are indicated. The pth layer from the bottom is of thickness
[, and its electrical properties are described by M,, N,, and K,. The index p ranges from 1
to . It should also be noted that [p,= .
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£; Fraure 2. Reflection from a stratified plasma.

Again taking the incident wave to be polarized with its magnetic vector parallel to the
z-axis, it is seen that the field for <0 has the form

H.=h, [exp (—ik Cy)+R exp (ik Cy)] exp (—ik Sk). (40)

The problem is to find an expression for /2 which involves the properties of the individual
layers. It is possible, of course, to formally extend the results for the semi-infinite case by
writing the solution in each layer as a linear combination of the two elementary forms given
by (33). The two unknown coefficients for each layer are then found from the two boundary
conditions at each plane interface. The resulting 2N linear equations may then be solved in
a straightforward but a very tedious manner for any specified but finite value of N. The
resultant solution can be found in a more systematic way if the analogy with Schelkunoff’s
[13] theory of nonuniform transmission lines is exploited. We use this method here.
The wave impedances for the pth layer are defined by

. 1B 7 _ E; (414a)
+ z ¢ —=—=.
K, i and K, i (41b)

The superseript + signifies that the fields vary with y according to the factor exp [—18,y]
where

ﬁp:k [(J[P Np) ~1_S2]l/2’

whereas the superseript — signifies that the fields vary with  according to the factor exp
[iB, yl. In the present case, the superseript + signifies a wave traveling in the positive y-
direction (i.e., away from the interface) and the — signifies a wave traveling in the negative
y-direction.

From eqs (41a) and (41b) it readily follows that the wave impedances are

K =n (M, B,+1 K, S) (42)
and

K;=mn, (M, 8,—t K, S) (43)

where no=(uo/e)"?=120 #. The index p ranges from 1 to P. Because of the quantity K,
it is seen that K- and K are not equal as they would be in an isotropic medium.?

The reflection coefficients at the interface between the (2—1)th and the Pth layer are
now defined by
H; D
1, and rp1=7n (44)

=l )
g3 E;

L

¥ No confusion should arise between the symbols K; and Kp and K, since the superscripted quantities are used only for the wave impedances.
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where the field components are evaluated within the (P—1)th layer. Thus,

K}F)q*K}
Kz ,+K%

VR —YK}
Pi]_l/K;uH‘l/K;

e — and

(45)

The reflection coefficients at the interface between the (P—2)th and (P—1)th layer are then

1/Kb—s—1/Zp_s

R _{{Jlr’fZ*‘ZP—l A
P Ko H ] Zp

lpos=—3>—— 5 and
. Ky s t+Zp_: )

(46)
where Z,—, is the impedance seen at the (”—1)th interface. From analogy with transmission
line theory
. 14rp_1 exp (—12Bp_1lp_
Zp1=Kb_, P p ( Br_1lp_1)

1"‘]{]3,1 exp (—’iZBpfllpﬁl), (47)
where rp_, and Ip_; are given explicitly by eq (44). Now, in general,
. 1+r, exp (—128,(,)
— i v P D
Zo=K3 11 R oxp (—i28, 1) (48)
so that the process may be continued until p=1, whence
> 7K1+_ZZ
. Ill_Kf+Z2 (49)
Finally, for the bottom interface
, Ki—7 -
S A (50
which may be rewritten
C—A _

where A=Z,/n, since Ki=Kg=n, C.
For the special case of a two-layered plasma (i.e., l,== =), the explicit expression for A

becomes

1-+riexp (—i26: L)

A=(M, Bi+1K: S) T R; exp (—: 26, ll)’ (52)
with _ )
R :(M151+7K18)_(A’wzﬁz‘*“?KzS) (53)
, ! (M8, — 1K1 S)+ (M,yBy41K,8)
and

V(M8 S) =1/ (M, 4K S).
(M Bi— K, S)+1/ (Mt iK,S)

(54)

The limiting case of a homogeneous plasma is recovered by letting /,— « , whence
A=M; B;+1 K, S,

which is identical to eq (38) after dropping the subseript 1.

6. Scattering from a Cylindrical Plasma Column

In certain applications the plasma may be in the form of a cylindrical column. Examples
are the ionization associated with meteor trails in the upper atmosphere and the ionization
associated with the shock wave emanating from an exploding wire. In this section expres-
sions for the reflected or scattered fields are derived under the assumption that the ionized
column is infinite in length. First, the column is assumed to be homogeneous, but later the
solution is generalized to allow for variation of the plasma properties in the radial direction.

Choosing a conventional cylindrical coordinate system (p, ¢, z), a homogeneous plasma
column occupies the space p<a. A constant magnetic field, H,, exists through the plasma
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(p, )

Fieure 3. A magnetic line source al (po, ¢o) in the presence

of a homogeneous cylindrical plasma column. * )

The constant magnetic field 77y is directed along the positive z-axis (out of
the paper).

column and it is directed along the z-axis. The medium surrounding the cylinder, p>a, is
taken to be free space. The source of the field is taken to be a line source located at p=p, and
¢=¢, and running parallel to the z-axis and the plasma column. The line source radiates a
cylindrical wave polarized so that its magnetic field has only a z-component.

The adoption of a line source rather than a plane wave source has the advantage of
obtaining a more general solution. When py— o, the incident wave has a plane front but in
most practical applications the incident wave front is curved corresponding to a finite value
of po.

The primary or incident field is given by [14]

e“w[

Hire— 12 (kD) (55)

where 7 is the strength of the line source (actually, it 1s the magnetic current), and where /§?
is the Hankel function of order zero of the second kind, and

:[Po‘i"P —2p po cos (¢— ¢n)]1/2

Employing an additional theorem for ' (kp), this can be written

el EZ (.,) DS -
Hy="22 33 H (kpo) Julko) e~ (56)

for p<py, where IH? and J,, are Hankel and Bessel functions of order m, respectively.  When
p>py,  kpois to be interchanged with kp. The ¢-component of the primary magnetic field is
then given by

G2 HP (kpo) ke (kp) ==, (57)

where the prime indicates a differentiation with respect to the argument kp
Since the scattered or reflected field Z75 outside the column is a solution of the wave equa-
tion, it can be written in the form [14]

Hsi_u_il Z B, H? (kpo) H? (kp) ¢~ ms=s0 (58)

where B, is an undetermined coefficient. The ¢ component of the scattered electric field is then

i +
BT S5 B (o kH hp) 60, (59)

For the region p<Za, the magnetic field 71, satisfies
l®w ©, 1 e, e
|:;) 3" 554—;2 5¢>5+AWN H,=0, (60)

which is just the wave equation. Therefore, we may write

4o
w0l S A HD (ko) m(Bo)e ™ (-50) (61)

H="F .2,
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where 8=k(MN)™!, and A,, is an undetermined coefficient. Since

0H, 0H,
750@F¢—7K a; M ap7 (62)
it follows that
.
Bt S5 AT (ko) | =55 T80+ MBTalBp) | (oo, (63)
The boundary conditions at the surface of the plasma cylinder may be written
H:nc+Hs} —a (64)
E¢_Einc+E8
Application of these leads readily to
_ Julka)+ B, H;? (ka) .
A= g Ga) )
and
(’\4)1/2 I Ba)_ﬂl_{_Jﬁn,(ka)
Bm:—‘ Jm(ﬁa) k(l Jm(ka') Jm(ka’) (66)

(u V2 J(Ba) mK HP'(ka) | HP (ka)
N) J,.Ba) ka HP(ka)

This is the exact solution of the problem. If the constant magnetic field #, is removed the
results are identical to that of a dielectric eylinder in the presence of a line source [15]. In
this limiting case, K=0, M=¢/e and N=p,/p.

7. Scattering from a Cylindrically Stratified Plasma

The preceding results are now generalized to a cylindrical column of ionization which
consists of P concentric layers. The situation is illustrated in figure 4. The incident cylin-
drical wave again emanates from a line source at (py, ¢) and the field is to be observed at (p, ¢.)
The wave impedances may now be defined by

/B
HZm

Esn

ah i
Km,p_‘_' _Hz—.m’

and IKS

(67)

where +and—refer to the two independent wave solutions, proportional to .J,(8,p) and
H? (B,p) in the pth layer. In view of the equation

o, OH
teqwEy=1K ,—— 200 —M, == o -5 (68)
it follows that
1/2 7’
Ki,—i mK, (M,N\"?J,(8,p) (69)
kp N,/ Ju(Byp)
(p:¢) (P )
Ficure 4. A line source in the presence of a cylin-
drically stratified plasma column.
P ¢=0
P=0 P—I
5t
2
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and

K’;.p:—

"(%>/ i ((5,,5))] 70

The index p ranges from 1 to P to signify the appropriate concentric region in the plasma.
The reflection coefficients at the interface between the pth and the (p—1)th layer are then

_Hz_m_K; D —I_Zm. b
Bno =gt =K. T 70, 1)

and
r __E‘;,m l/sz) 1 1/Zm,71
m,p—l_E‘;.'m l/Km.p—l+1/Zm,p)

(72)

where Z,,, is the impedance at the interface between the pth and the (p—1)th layer. Z, ,
may be expressed in terms of the reflection coefficients R, , and 7, , by again making use of
Schelkunoft’s nonuniform transmission line theory [13]. Thus,

é K+ 1+rm,])Xr-‘n—,e((I/])y av+l)xnj,c(ap+ly a/p) o (7-5)
i e 1+I‘)IIL,7)XIJ;,h(apy an+1)xl;.h(a/p+1y (Lp)
ES w(@y1)
Xnt,c(a/m a/p‘f-l):%’ (74)
m\Wp

Ed:, m (a 1))

X;l,e(awHy ap) :[p(; ((L +l)’ (75)
~“p,.m y4
[{2 m
Xm h(a'p} a/p+1) [14- (((Ip+)1) (76)
z,m\Wp
II m (I 4
X/;, h <a'1)+ly a’p) ]I —(f(gﬁilv) (77)
z,m\Wp

The x’s are clearly transmission factors which deseribe the fractional change of a wave as it
propagates from one interface to the other within a layer. The numerator in eq (73) is thus a
measure of the electric field at the pth interface taking into account the transmission through
the layer, reflection at the (p-1)th layer and transmission back again to the pth layer. The
denominator of eq (73) corresponds, in a similar manner, to the magnetic field.

The specific form of the transmission factors is

M 54 m(Bpa/p+l) mKﬂJ (Bl’a’”'l’l)/a‘"ﬂ )
X, o(@p, Qpt1)= pj\; 2B m(Bp,) —mK ], (B,a,)/a, )

MpoHf(n?) ! (Bpap) — prHf,?) (Bl)ap)/a’ﬂ

N q — == . ~9

Xm' (a/z)‘l'l)ap) MpoH;Z) (Bpa’erl)—prHr(rLZ)(Bpap+1)/a]I+1’ (I )
J (B, +1)

-+ = m D ()

Xt (@yy @pt1) o , (80)
and

- HY (B,a,) .

Ko (s ) =i 4, 25 ey
Then starting with the reflection coefficients 2,,,_; and 7,,,_, given by
g K+ 1K p_1—1/K;;

Rm m, R—1 m, P llIld P 1= Moot I m, P 82
P Kir T Kix VR p V1R "2
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we may obtain R, ,_, and 7,,,_» which in turn enables us to obtain R, »_; and 7,,»_5. The
o my my my my
process 1s continued until the outermost interface is reached, whence

7 S ;rt ():7{11:_1 . ., ]/Km 0 I/Zm,l ¢
Bn=g= 77 M SRS D7) (83)
where
. o (kp)
+ g 8
I m, 07— v J,,L(k‘p) Mo <54)
and
_ Jf,f”(kp) .
m 0 [im)) (IC ) Mo ((S.’))
If the scattered field 775 is written in the form
. E(](JJ] 2
H:= Z B, H (kpo)H,? (kp) e~im@—40), (86)
it follows that
e Jm(k(L) S
Bm: _Ilm,ﬂ W' (‘S/>

It may be readily verified that R,,, for the special case of a homogeneous plasma column
(i. e., set a;=0) is identical to the square bracket term on the right-hand side of eq (66).

For purposes of computation it is convenient to locate the line source at a great distance
from the cylindrical column in terms of wavelength. The Hankel functions of argument kp
and kp, may then be replaced by the first term of their asymptotic expansions since kp and

kpy>>1. Thus,

Z]mc ) —ik; (88)
7rkp
and
s o el . &= - 2) L o
Hie " et 25 Bue™PHP (kp)e—im@=2o. (89)
7rk‘p0 m=—ow

This form of the solution would have been obtained directly if plane wave incidence was as-
sumed at the outset. It should be noted that the factor preceding the summation in eq (89)
is just the value of H™ evaluated at the center of the cylinder.

8. A Note on the Other Polarization

The results derived in the preceding sections are valid when the magnetic vector of the
incident wave is parallel to the eylinder. The derivation for the other polarization, namely,
that when the electric vector is parallel to the cylinder, is relatively trivial since the constant
magnetic field H, has no influence. The dielectric constant is now simply a scalar and is equal
to €’’. The explicit results for E-parallel polarization may be obtained from those of I/-parallel
polarization by making the following transforms:

H,—E,

E,—-—H,
E¢ —>_H¢
E,—~—H,
E——H,
M— ZV
N—» M

Also, of course, K=0 and now M= (e¢/e’’).
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9. Appendix

In this appendix a rather approximate theory of electric currents in a partially ionized
gas 1s given. The gas 1s supposed to consist of electrons of mass m, and of charge —e¢; and
positive ions of mass m; and charge e¢. Since the gas must be, to a close approximation, elec-
trically neutral, the number of electrons and positive ions per unit volume is the same; each is
taken equal to NV,. There are also N, neutral atoms or molecules per unit volume with mass M,
indistinguishable from the positive ions. The electrons, positive ions and neutral atoms are
regarded as three gases moving independently. The interaction between the electron and the
ion gases is supposed to be smoothed into a continuous force. In fact only those forces are
considered which result from macroscopic electromagnetic effects on charge and from friction-
like action and reaction between the free charges and the uncharged background. Only mean
velocities and forces are employed, and non-linearities are avoided by a perturbation treatment.

Further assumptions, adopted here, are that the velocity of the gas as a whole is zero,
and that the gradients of the electron and ion pressures are zero. The removal of these latter
restrictions would require that the problem be treated on the basis of magneto hydrodynamics
[8, 16]. Such an approach has been given by Spitzer [7] for a wholly ionized gas and Cowling
for a partially ionized gas [17].

The mean velocities of the electron gas, positive ion gas, and neutral gas are denoted by
> o -
v,, U5, and v,, respectively. Since m,<m; the electrons lose, on the average, a quantity of

- -

momentum equal to their mean momentum m,(s,—»;) at each collision with the charged ions. If
the mean time between successive collisions is »;!, then the momentum lost by electrons in

-
collision with positive ions per unit volume is Nym,(»,—v;)v,. Similarly, the momentum lost
J )

by electrons in collision with neutral atoms per unit volume is ]\"0171(,(2—7‘;)1»,1 where », ' is the
mean time between successive collisions of electrons with neutral atoms. Remembering that
the momentum of the mass as a whole is zero, and since the mass of the electrons is negligible,
it follows that

- -
Nymw+ N, mp,=0, (90)
- -
and thus v,=—av; where a= Ny/N,,.
- - o -

Now the electromagnetic forces acting on an electron are —e(f£ -+ ugv, X I,) where I is the

(=)

=
electric field of the wave and H; is the constant magnetic field superimposed on the system.
- -

(It is assumed that 77, is much greater than the magnetic field / associated with the wave.)

The equation of motion for the electron gas may then be written

- - -

- L > -5 o -
M Ae/dt =m AV, = — e[ E+ g, X Ho|— m (0, —0;) — M, (0,+aw;). (91)
The equation of motion for the positive ions can be obtained in an equally simple fashion.

In this case, the momentum lost by the positive ions in collision with the electrons is

- -
— Nome(v,—v:)v,,

being equal and opposite to the quantity appearing above. The positive ions, in collision with
the neutral atoms of the same mass, lose half their momentum relative to the neutral gas.

Specifically, the momentum lost is %¥Nymw;(1+«)v; where v, is the mean time between suc-
cessive collisions of positive ions with neutral atoms. Therefore, the desired equation is

e Lo - > o - o -
M Jdt = m 100, = e[ I+ pev, X H |+ mevo(0,—v;) — my vy 0:(14a) /2. (92)
- - >
Equations (91) and (92) may be solved for », and »; in terms of £ and other known quan-
tities. The current density resulting from motion of the electrons and the ions is then equal

- . = =
to Nee(v;—1,). Noting that the displacement current is iewfl and the total current is i(e)w/,
it is seen that the dielectric tensor (e) can be obtained from the relation
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. = — S
1(e) w E=1¢yw E+ Nye(v,—v,). (93)

=
Choosing H, to be directed along the z-axis, the dielectric tensor is found to have the form

(]

©=lig ¢ oL

Lo o o)

The quantities €, ¢/, and ¢ are functions of m,, m;, v,, v;, v, No, N,, and H,. Explicit results

for certain special cases are given in the body of the paper. To simplify the notation there,
the results are expressed in terms of the positive real quantities w, and wy, which are defined by

(94)

w?):Noe?/eomg <95)
and
wp=—uHoe/m, (96)

Also, in discussing certain special cases in the text, the subscript on » is dropped.
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