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A pl as ma, co nsist ing of a neut ral mixture of elec t ro ns, ions and mo lecules, in t hc prcsc nce 
of a constan t mag netic fi e ld Ho, possesses a dielectric constant which is in t he form of a te nso r. 
Exact so lu t ions of bOllnda ry value problems invo lving such media a re obtai ncd for t wo
dime nsiona l con figurations. Exp li cit resul ts a re g iven for t he re fl ectio n coc ffi cien ts of 
strat ifi ed p las ma in p la na r and cylindrical geo metry. 

1. Introduction 

A neuLral mixture of positive (and negative) ions and electrons i often described as a 
plasma. For example, flames , gaseous discharges, strong shock waves, and t he ionosphere 
;lre various kinds of pIa rna. The behavior of electromagnetic waves within and in t he vicinit.y 
of plasma is of great current in terest. 

Mainly because of t he pre ence of the fr ee electrons the plasma is a dielectric. Th e col
lis ions of electrons with the ions cause diss ipation of energy and thus the dielectric is lossy. 
A radio wave propagating t hrough the plasma is thus expected to be attenuated. Furth ermore, 
in the presence of a steady magnetic field, the plasma becomes anisotropi c so that t he dielectri c 
constant is of tensor form and t hus, in general, propagation is not rec iprocal. 

It is the purpose of the present paper to co nsider t he intenLCtion of electromagnetic waves 
and plasma for a special elass of two-dimensional problems. The geometry is chosen so the 
wave propagation is essentially transverse to the longitudinal axis. Snell a resLri ction permi ts 
exact solutions of a number of relevant boundary value problems to be obLain ed. Sin ce radio 
waves, particularly microwaves, are being currently employed as H, diagnostic tool in probing 
plasma, it appears that results given below ca n find applicllt ion. 

An excellent in troduction to the theory of propagation of electromagnetic waves in p]llsma 
has been given recently by 'Whitmer [1).2 A more comprehensive t reaLment is found in 11, 

recent monograph by H,atcliffe [2] . The dielectric behavior and t lte molecuhl,l' proper t ies of 
a plasma have been deal t with by II number of autbors [3- 6]. In particullll' , Spitzcr [7], has 
given a very thorough discussion for fully ionized gases. 

2 . Dielectric Properties of a Plasma 

Since the problems to be discussed in the following sections deal with two-dimensional 
geometry, it is desirable to take the z-axis of the Cartesian or the cylindrical coordinate system 

-t 

in the direction of tbe applied magnetic field Flo. In this case the dielectric displacem ent 
-t -t 

D is related to the electric field E by the relation 

(1) 

where (€) is the tensor dielectric constant. For an implied t ime factor exp (iwt ), it has Lhe form 

(2) 

1 This work was carried out while the author was on a visit to t he Laboratory for Electromagnetic Theory at the T echnical University of 
Denmark. 

, Figures ill brackets indicate the literatlll'e references at Ule end of this paper. 
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The quantities €' , €" , and q are functions of the density of the electrons and the ions and the 
freq uency of collisions between them. They also depend, of course, on the strength of the 
appli ed magnetic field Ho (see appendix). 

The case usually considered is where the electromagnetic forces only influence the elec
trons . Furthermore, the mo tion of the ions is commonly neglected . For this sit uation, the 
proper ties of the plasma can be approximately described in a macroscopic sense in terms of the 
following quan tities: 

wo, t he (electron) plasma frequency 

WT, the (electron) gyro frequency 

v, the effective collision frequency (for electrons). 

The elemen ts of the dielectric tensor ar e t hen givfll1 explici tly by 

{= 1- i(v+iw) ~5 /w 
€ o w~+ (v+~w F 

(3) 

q -WTW~/W 

~ w5,+ (v+ iwF 
(4) 

" • ? 

~=1- ~Wii 
EO (v+ iw)w 

(5) 

The preceding can be generalized to include the influence of heavy ions by simply adding 
a summation prefix to the r atios on the righ t-hand side of equations (3), (4), and (5). Then, 
in each term , the appropriate value of Wo, v, and WT must be employed. This approach is 
valid for a weakly ionized medium and has been employed by Hines [8]. In the case of a 
plasma consisting of a neu tral mix ture of electrons, one type of heavy ions and a r elatively 
large number of neu tral molecules, t he elements of the dielectric tensor have the form 

where 

~= 1- i(v+ iw)w6/w 
EO Wf + (Ve+ i W)2 

II • 2 
_E - -1- ~w o 

EO - (ve+ iw)w 

i (Vt+iw) ~w6/w 
~ 2w~+ (v i+ i w)2' 

' A ? 
~ !.!wo 

(vi+ i w)w' 

A me mass of elec tron 
!.! = m i= mass of ion 

(6) 

(7) 

(8) 

and Ve and Vi are the collision frequencies of the elec trons and the ions, respectively, with the 
uncharged molecules. The effect of collisions b etween the electrons and the ions is neglected .· 
Wo and WT are the (electron) plasma and (electron) gyro frequencies. Since the charge of the 
ions is equal and opposi te to the electrons, it follows that Awo and - ~WT are the (ion) plasma 
and (ion) gyro frequencies, respectively. 

It can be seen that if Vi< < w, the denominators in t he second factors for E' and q b ehave 
as ~2Wj. _ W2. Thus, at frequencies near the (ion) gyro frequency, the influence of the ions 
m ay b e significan t even though the mass ratio ~ is very small . However, when collisions are 
not negligible, the effect of the ions is usually qui te small . In par ticular , if Vt> > w and ve> > w, 
this fact can be demonstrated by rewri ting the elements of the dielectri c tensor in tb e form 

, . 2/ [ 2 + 2 ] ~= 1 - ~VeWO W l +~ A Wr Ve 
2+2 !.!A2 2 +2 

Eo W T Ve Ve !.! W T Vi 
(9) 

(10) 
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" 2 [ ] f - 1 . Wo 1 + Ve " ._- -t - - J.I. 
fO VeW Vi 

(1 1 ) 

since the ratio (w~+v~) / (~2w~,+ vD is of the order of unity in most cases of practical interest. 
The square bracket terms may be r eplaced by unity since ~ is of the order of 10- 4 . 

When the plasma b ecomes strongly ionized, the situation is more eo mplicated. The 
formalism is given in t he appendix where the relative number of ions and electrons is unrestricted 
However, in the case of a fully ionized plasma the elements of the dieleetric tensor are given by 
[9 , 10] 

wher e 

~= 1+ WW+ A)[w2_~WT-iwv(1+~)] 
fO Ll 

R=WWTW5(~2-1) 
f O Ll 

" _f_=1 
f O W lw-iv(l + A) ] 

(12) 

(13) 

(14) 

As b efore, ~ is the ratio of the mfl,sses of the electron and the ion. Also, Wo fl,nd WT fl,l'e the 
(electron) plasma a nd (electron) gyro frequencies , respectively. In this case, however, v is the 
collision fr equency between the electrons and the ions which hfl,ve equal and opposite charge. 

It can b e immediately seen that if 4 is set equal to zero, these express ions r educe to the 
form of equations (3), (4), and (5), whieh arc derived under somewhat different conditions. It 
can also be seen that equations (12), (13), and (14) h ave t he same form as (6), (7) , and (8) if 
v= ve= v;= O. However , when collisions are non-negligible there is a fundamental difference 
b etween a weakly a nd a fully ionized plasma. This is a consequence of the coupling between 
t he equ ations of moLion for t he electrons and t he ions (see app endix). 

Under the very reasonable approximation that 1 ± ~ can be r eplaced by 1, i t r eadily follows 
t hat eqs (12) , (13) , and (14) can be written in the form 

- .,,? .J.l.WT ( "2) where v= v-tJ.l.Wf/W= v 1-t vw . 

~= 1- i( jj + iw)w6/w 
f O w~+ (v +iwF 

R = _ wJ'w5/w 
f O wj,+ (JJ +iw)2 

II • 2 
!'....--1- two 

f J - (v + iw)w 

(15) 

(16) 

(17) 

The quantity jj could be described as an effective (complex) collision frequency. It should be 
noted that only the elements f' a nd q of the dielectric tensor involve j,; t he r emaining clement 
f" is not ch anged. 

It is now evident that tLte motion of t llC iOllS , for a fully ionized gas, can be neglected only if 

For low frequencies and/or low collision frequencies this condition may well be violated. 
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3. Field Equations 

Maxwell's equations in a source free region with a (tensor) dielectric constant (t) and a 
(scalar) magnetic permeability J.l are given by 

--) --) 

i(t)wE= curl H 
and 

--) --) 

- iJ.lwH= curl E. 

It is desirable to write the first of these in the form 

--) --) 

iwE= (t- 1) curl H, 

where (t - 1) is the inverse of the dielectric tensor. It is not difficult to show that 

where 

- if{ 

M 

o 

and 

: l 
tolt" J 

(18) 

(19) 

(20) 

This formula is quite general. The only restriction is that the z-axis is to be taken in the 
direction of the impressed magnetic field. In the following it is assumed that th e fields do 
not vary in the z-direction. In t erms of Cartesian coordinates, Maxwell's equations are 
then written 

. E - ]y[ ol-Iz+ 'f{ oHz 
1fow x- ° '/, ° Y x 

(21) 

ifowE = if{ oHz_M .oHz 
y oy ox (22) 

. E - ( / ") [ MIv MIx] 1tJW z- to t - - - --ox oy 
(23) 

-iJ.lowHx= N °o~z (24) 

-iJ.loWH = _N oEz 
Y ox (25) 

-iJ.lowHz= N [OEy - OEx] 
ox oy 

(26) 

where N = J.lo/p,. 
It is a relatively simple matter to eliminate the transverse component of the fields from 

the preceding six equations. Thus 

(27) 



and 

(28) 

where k= (eo/-lo) 112 w= 2·n-/wavelength. These latter two equations are valid only if the magnetic 
permeability and the elements of the dielectric tensor are constant for at least a given region. 

The fact that Hz and E z individually satisfy a wave equation means that any solution to 
our problem can be regarded as the linear combination of two partial solu tions. In the 
first of these, E z= O and in the second, H z= O. Thus without any subsequent loss of generality, 
attention can be restricted to these cases . It should be emphasized that this decomposition 
into independent p artial fields is valid only when the derivatives wi th respect to z are zcro . 
As we shall see, the solution for H z= O is relatively trivial since the constant magnetic field Ho 
then has no influence (at least within the limits of magneto-ionic theory). 

4. Reflection Coefficient for a Plane Boundary Between Free Space and Plasma 

IVith respect to the Cartesian coordinate system , a homogeneous plasma occupies the 
space y> O and while y< O corresponds to free spaco, the constan t and uniform magnetic field 
is parallel to the z-axis. A plane wave with harmonic time depondence (i .e., exp (iwt)) is 
incident from below as indicated in figure 1. 

y 

FIGURE 1. Th e coordinate system Jor reflection at a plane 
intel/ace between a homogenem,s plasma (y > O) and fr ee 
space (y < O) . 

--) 

'rhe constant magnetic fi eld 110 is along ihe d ireciion of t110 positi ve z-axis 
(out of t he paper). 

The angle of incidence is 8 (measured to the negative y-axis) and the wave is polarized 
such that its magnetie field has only a component in the z-direction , denoted I·Ji~o . Thus, 

Hi~C= ho exp (-ikCy) exp (-ikSx), (29 ) 

where C= cos 8, S = sin 8 and ho is a constant. 
Since the reflected field H~ef is a solu tion of the free-space wave equation and is to have tho 

same dependence 'with x as the incident wave, it must be of the form 

H~Cf= ho R exp (ilc C y) exp (- i lc S x), 

where R is by definition the reflection coefficient. 
With similar r easoning, the solution for the plasma (i.e., y> O) must have the form 

H z fey) exp (- i lc S x) , 
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wherej(y) is some function of y. Furthermore, since Hz is to satisfy eq (27), it follows thatj(y) 
must satisfy 

[~+k2(_1 -S2)J j(y)= o oy2 MN . (32) 

Solutions are of the form 
(33) 

Since the plasma extends to y= + (Xl, the solution corresponding to the negative sign in the 
exponent is pertinent. Therefore, the transmitted wave has the form 

(34) 

where T is by definition a transmission coefficient. 
The boundary conditions are that the tangential components of the fields III the free 

space and in the plasma are to be continuous at y= O. Continuity of Hz leads to 

and continuity of Ex, by virtue of eq (21), leads to 

Thus, 

where 

0-!:1 
R =O+ !:1 

20 
and T =O+!:1' 

(35) 

(36) 

(37) 

(38) 

For an electron plasma where the motions of the ions are neglected, it is possible to write 
!:1 in the following form: 

(39) 

where L= (v + iw) w/w5, and v= WTw/w5. We have also setN= 1 (i .e., J.I. = J.l.o) although a plasma 
may be slightly diamagnetic. 

The reflection coefficient, essentially in this form, was derived by Barber and Crombie [11] 
where the homogeneous electron plasma was to be an idealized representation for the ionosphere. 
Because of the assumption of a purely transverse magnetic field H o, the horizontal direction 
of propagation is along the magnetic equator. For propagation from east-to-west, S is 
positive, while for propagation from west-to-east S is negative. 'Y is then a positive real 
quantity. 

For applications at low and very low radio frequencies, v> >w so that to a good approxi
mation 

where W r = w5!V. 

Some numerical r esults based on eq (37) are available [12]. 

5. Reflection from a Stratified Plasma 

We shall now undertake to generalize the previous result to a plasma medium which is 
stratified in layers all parallel to the free-space interface at y= O. The situation is shown in 
figure 2, where P parallel layers are indicated. The pth layer from the bottom is of thickness 
lp and its electrical properties are described by M p, N p, and K p. The index p ranges from 1 
to P. It should also be noted that lp= (Xl. 
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P 

P -I 

P-2 

FIGURE 2. R efl ection from a stratified 1Jlasma. 

Again taking the inciden t wave to be polarized with its magnetic vee tor parallel to the 
z-axis, it is seen th at the field for y < O has the form 

H ,=ho [exp (-ilc Cy)+ R exp (i lc Cy )] exp (-ilc Sx). (40) 

The problem is to find an expre sion for R which involves th e proper ties of the individual 
layers. It is possible, of course, to formally extend th e res ul ts for the semi-infinite case by 
writing the solution in each layer as a lineal' combination of th e two elementary forms given 
by (33) . The two unknown cocfFicien ts for each layer are then found from the two boundary 
condi tions a t each plane in terface. The resul ting 2N linear equH,tions may then b e solved in 
a straigh tforward bu t a very tediou s manner for any specifi ed bu t fini te valu e of N. The 
resul tan t solution can b e found in a more systematic way if Lhe analogy with Schelkul1off's 
[13] theory of nonuniform transmission lines is exploi ted. W e li se this method here. 

The wave impedances for the ptll layer are defin ed by 

and 
(41 a) 
(41b) 

The superscrip t + significs t hat the fi elds vary wi th y according to th e Ltctor cxp [-tI31JY] 
where 

whereas th e superscrip t - signifies that the fields vary wi th y according to t hc facLor exp 
[i l3 p y ]. In the presen t case, the superscript + signifies a wave traveling in the po itive y
direction (j .e., away from the in terface) and the - signifies a wave traveling in the negative 
y-direction . 

From eqs (41 a) and (41b) it readily follows that the wave impedances ar e 

(42) 
and 

(43) 

where 170= ( J.tO/~0)1/2~ 1 20 7r . The index p ran ges from 1 to P. Because of the quanLi Ly K p 
it is seen tha t Kt and K; are no t equal as t hey would be in an isotropic medium.3 

The l·efl ection coefficien ts at the in terface b etween the (P - 1)th and t he Pth layer ar e 
now defined by 

and (44) 

3 r..; 0 confnsion shonld arise between the symbols K~ and K; and K •• sin ce the superscripted quantities are used only [or the wave impedances. 
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where the field components are evalu a ted -within the (P - l )th lay er . Thus, 

R K t'-l-K -+;' 
P - l = T7 - + K + 

Ll . P - l P 
and , _ I II-n _I- l /K -+;, 

1 P- l - 1IK p_1 + I /K -+;" (45) 

The reflection coefficients a t th e interfttCe between the (P - 2) th and (P - l ) th layer are then 

1/K -+;'_2- I /Z p _ I 

I /K p_2+ l /Z p_ / ( 46) 

where Zp-l is the impedance seen at the (P - l ) t lt interface. From analogy wi th transmission 
lin e t heory 

Z - K + 1 + 1'p- I exp (-i2{3p_1lp _l) 
'--' P - I - P - l I+ R p_1 exp (-i2{3p- 1l p- l)' 

where 1'p- I and Rp- 1 are given explicitly by eq (44). Now, in general , 

Z = K + 1+ 1'v exp (-i2 {3,} I v) 
I} P I + 11 v exp (-i2{31) I ,,)' 

so that the process m ay be continued until p = 1, whence 

Finally, for the bottom interface 

which may be rewritten 

where f1 = Zd YJo since K S= K o= YJo C. 

R K t-Z2 
l= Kl + Z z' 

R = C- f1 
C+ f1 

(47) 

(48) 

(49) 

(50) 

(51) 

For the special case of a two-layered plasma (i .e., 12= (X) ), the explicit expression for f1 
becomes 

wi th 

and 

(M 1{31+ iK 1S )-(M 2{3z+ i K 2 S) 
(M 1{31 -iK 1S ) + (M 2{3z+ iK 2 S) 

1/Ul!JdJ1 +iK 1S)- I/ (M z(3z+iK 2S ) 
1'1 = 1/ (M 1(31-iK 1S ) + 1/(M 2(32+ iK zS )' 

The limiting case of a homogeneous plasma is recover'ed by letting 11 --) 00 , whence 

which is identical to eq (38) a fter dropping th e subscript 1. 

6 . Scattering from a Cylindrical Plasma Column 

(52) 

(53) 

(54) 

In cer tain applications the plasma may be in the form of a cylindrical column. Examples 
are the ionization associated with meteor trails in the upper a tmosphel'e and the ionization 
associated with the shock wave emanating from an exploding wire. In this section expres
sions for th e reflec ted or scattered fields ar e derived under the assump tion that the ionized 
column is infinite in length . First, the column is assumed to be homogen eous, bu t later the 
solution is generalized to allow for variation of the plasma properties in the radial direction. 

Choosing a conventional cylindrical coordina te sys tem (p, ¢ , z), a homogeneous plasma 
column occupies the space p< a. A constan t magnetic field , HQ, exists through the plasma 
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FIGURE 3. A magnetic line source at (po, <Po) in the presence 
of a homogeneous cylindrical plasma column. 

'rho constant magnetic field N o is directed along the positive z-axis (out of 
the paper) . 

column and it is directed along the z-axis. The medium surrounding the cylinder, p> a, is 
taken to b e free space. The source of the field is taken to be a line source located f1t p= Po and 
¢ = ¢o and running parallel to the z-axis and the plasma column. The line source radiates a 
cylindrical wave polarized so that its magnetic field has only a z-component. 

The adoption of a line source rather than a plane wave source has the advantage of 
obtaining a more general solution. When PO--7 ro, the incident wave has a plane front but in 
most practical applications the incident wave front is curved corresponding to a finite valu e 
of Po. 

The primary or incident field is given by [14] 

I-l ~nc= ~n:l 11J2) (lc'p ) (55) 

where 1 is the strength of the line source (ac tu ally, it is the magnetic curren t), and wh ere H J2) 
I S the Hankel function of order zero of the second kind, and 

Employing an additional theorem for HJ2) (lcp ) , this can be written 

(56) 

for P< Po, where H ,;;) and J rn are H ankel and Bessel fun ctions of order m, r especlively. vVlten 
P> Po, lcpo is to be interchanged with lcp . The ¢-component of the primary magnetic fi eld is 
then given by 

i l +'" Eiuc=_ :8 H (2) (lcp) lcJ' (lcp ) e- i1n (</>-</>o) 
~ cp 4 7n = _ co til 0 1n , 

(57) 

where the prime indicates a differentiation with respect Lo the argument !cp. 
Since the scattered or reflected fi eld H~ outside the column is a solution of the wave equa

tion, it can be written in the form [14] 

1 + '" 
H 8= f 'lw ~ B E!(2)(!cp)E!(2)(lcp )e - i m(</>- </>o) 

z 4 m=-=oo 'In mOm 
(58) 

where Bm is an undetermined coefficient. The ¢ component of the scattered electric field is then 

(59) 

For the region p< a, the magnetic field Hz satisfies 

(60) 

which is just the wave equation. Ther efore, we I11fty write 

(61) 
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where (3=k(MN)-l, and A m is an undetermined coefficient. Since 

it follows that 

The boundary conditions at the surface of the plasma cylinder may be written 

Application of these leads readily to 

and 

J m(ka) + B mH;J ) (ka) 
J m((3a) 

(62) 

(63) 

(64) 

(65) 

(66) 

This is the exact solution of the problem. If the constant magnetic field Ho is removed the 
results are identical to that of a dielectric cylinder in the presence of a line source [15]. In 
this limiting case, l{= O, M= ~o/ ~ and N=p.,o/p.,. 

7 . Scattering from a Cylindrically Stratified Plasma 

The preceding results are now generalized to a cylindrical column of ionization which 
consists of P concentric layers. The situation is illustrated in figure 4. The incident cylin
drical wave again emanates from a line source at (Po, <Po) and the field is to be observed at (p, <p.) 
The wave impedances may now be defined by 

E + 
l{+ =-~ 

m.p H + 
z,m 

and 
E -

T? - ""m .D.. m . p= T] _ , 
[:1 Z.1n 

(67) 

where + and -refer to the two independent wave solutions, proportional to J m((3p p) and 
H;;P ((31)P) in the pth layer. In view of the equation 

it follows that 

p=o , 

P =°2 

. E ' T? oHz M oHz 
t ~ow ",=t.n .. --- --, 

p po¢ p Up 
(68) 

(69) 

FIGURE 4. A line SOUl'ce in the presence of a cyl-in
drically stratified plasma column. 
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and 

K - = _' [ mKp_(Alp)l! 2 H Ml/((3 pp)J ' 
m,p '/, k N H (2l ((3) P pm pP 

(70) 

The index p ranges from 1 to P to signify the appropriate concentric region in the plasma, 
The reflection coefficients at the interface b etween the pth and the (p- l )th layer are then 

and 

r m, p- l 
E ;'m 
E t. m 

K ;',p- l-Z,n,p 
K m,p - 1+ Zm,p 

11K ;',,, -1-l/Z m, p 

11K ;;.,,, -1+ l/Zm,v' 

(71) 

(72) 

where Z m,p is the impedance at the interface between the pth and the (p-l)th layer. Z m,p 
may be expressed in terms of the refl ection coefficients Em. p and rm, p by again making use of 
Schelkunoff's nonuniform transmission lin e theory [13] . Thus, 

E t.m(ap+') 
E t. '" (a 1,)' 

Hi,m (a l,+I) 
H i,rn(a p ) , 

H ;:",(a p ) 

H z, m(ap+l) 

(73) 

(74) 

(75) 

(76) 

(77) 

Th.e x's arc clearly tl'anSllllSSJOll factors ""'hich describe t he fraction al ch.ange of a wave as it 
propagates from one in terface Lo the other within a layer. The numerator in eq (73) is th us a 
measure of th e electric field at th e lJth interface taking in to acco unt the transmission through 
the layer, reflection at the (p + l)th layer and transmission back: again to the pth layer . The 
denomin ator of eq (73 ) corresponds, in a similar manner, to the magnetic field. 

and 

The specific form of the transmission factors is 

M p(3pJ ;,.((3pap+l)- mKpJ m((3pap+l)lap+l 
lVlp(3pJ;n((3pa p) - mK1,J ",((3pap )lap , 

H,~;l ((3pa 1,) 

If.,~?l ((3 pal' + I) 

Then starting with the reflection coeffi cien ts R ""P_ l and 1'". ,P - l , given by 

E m• p - 1 
K,~. P - l -K,;;. P 
K ,t, P- l+ K ,;;, p 

and r m.p-l 
1 I K :', P - 1 - 1 I K ;'. P 

11K :'. p - j + 11K ,:. / 
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we may obtain R ""F - 2 ftnd 1'""F-2 which in turn enftbles us to obtain R ""F -3 and T nll P-3 . The 
process is continued until the outermost interface is reached , w'hence 

where 

and 

K ;i;, o- Z "" l 
K "', O+ Z m, l 

ftnd 

K+ _ _ . J~, (kp ) 
m,O- ~ J (k ) fJ o 

'In P 

If the scat tered field H~ is written in the form 

it follows that 
B R J ",(ka) 

m= - m,O H,~)(ka) 

l/ K:', o- l /Z m, l 

l/K;;',o+ l /Zm,t' 
(83) 

(84) 

(85) 

(86) 

(87) 

It may be readily verified tlmt R""o for the special case of a homogeneous plasma column 
(i. e., set a2 = O) is identical to the square bracket term on the right-hand sid e of eq (66). 

For purposes of computfttion it is convenient to locate the line source at a great distance 
from the cylindricftl column in terms of wavelength . The H ankel functions of argument kt; 
and kpo may then be replaced by the first term of their asymptotic expansions since kp and 
kpo> > 1. Thus, 

(88) 

and 

(89) 

This form of the solution would have been obtftined directly if plane wave incidence was as
sumed at the outset. It should be noted that the factor preceding the summation in eq (89) 
is just the value of H~nc evaluated at the center of the cylinder. 

8 . A Note on the Other Polarization 

The resul ts derived in the preceding sections are valid when the magnetic vector of the 
incident wave is parallel to the cylinder. The derivation for the other polarization , namely, 
that when the electric vector is parallel to the cylinder , is relatively trivial since the constant 
magnetic field Ho has no influence. The dielectric constant is now simply a scalar and is equal 
to t". The explicit results for E -parallel polarization may be obtained from those of H-parallel 
polarization by making the followin g transforms: 

Also, of course, K = O and now M = (to/t" ). 

Hz--'7E z 
Ex-,,- Hx 
E",--'7- H", 
Ey-" - Hy 
Ep--'7- H p 
M --'7 N 
N --'7 M 
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9. Appendix 
In this appendix a rather approximate theory of electric currents in a partially ionized 

gas is given. The gas is supposed to consist of electrons of mass me a nd of charge - e; and 
positive ions of mass m t and chargc e. Since the gas must be, to a close approximation , elec
trically neutral , the number of electrons and positive ions per unit volume is the same; cftch is 
taken equal to N o. There are also Na neutral atoms or molecules pel' unit volume wiLh lllftSS l\.1i 

indistinguishable from the positive ions. The electrons, positive ions and neutral atoms ftre 
regarded as three gases moving independently. The interaetion betwee n Lhe elecLron and the 
ion gases is supposed to be smoothed into a continuous force. In fact only Lhose forces are 
considered which result from macroscopic electromagnetic effects on charge n,ncl fron1. frict ion
like action and reaction between the free charges and the uncharged background . Only m eiln 
velocit.ies and forces are employed, and non-linearities are avoided by a perturba tion treatmen t. 

Further assumptions, adopted h ere, are that the velocity of the gas as a whole is zero , 
and that the gradients of the electron and ion pressures arc zero. The removal of these latter 
restrictions would require that the problem be treated on the basis of mngneto hydl'od~Tnami cs 

[8, 16] . Such ftn approach has been given by SpiLzer [7] for a wholly ionized gftS a nd Cowling 
for a partially ionized gas [17]. 

The mean velocit ies of the elecLron gas, positive ion gas, a nd neutml gn,s are denoted by 
~ ~ ~ 

Ve, Vi, and Va, respectively. Since me«m i' Lhe electrons lose, on the average, a quantity of 
--) --) 

momentum equ al to their mean momentum m.(ve- vi) at each collision with the ch itrged ions. If 
the mean t ime between successive collisions is VO l, then the momentum 10sL by electrons in 

~ ~ 

collision with positive ions per unit volume is NomC(vC- vi)VO' Similarly, th e i1l.omentum lost 
--) ~ 

by electrons in collision with neutral atoms per unit volume is Nome(ve-va) ve where V,- l is the 
mean time between successive collisions of electrons with neuLral atoms . R emember ing that 
the momentum of Lhe mass as a whole is zero, and since th e mass of the electrons is negligibl e, 
it follows that 

~ ~ 

NOmiVt+ N am iv.= O, (90) 
~ 

and thus Va= -aVi wh er e a= No/N a. 
~ ~ ~ ~ 

Now the electromagnetic forces acting on a,n elec tron. are -e(E+ J.loveX IIo) wh ere E is the 

electric field of the wave and H o is the constftnt magn eLic field superimposed on the system . 
~ 

(It is assumed that H o is much greater than the magnetic field H associated with the wave.) 
The equa tion of motion for the electron gas may then be written 

-7 -7 -7 -t~ -7-7 -7-7 

medve/dt = mei wve= -e[E+ J.loVeX HO] - mevo(ve-v;) - meve(ve+av;). (91) 

The equ ation of motion for the positive ions can be obtained in an equally simple fashion. 
In this case, the momentum lost by the positive ions in collision with the electrons is 

~ 

- Nome(Ve-Vi)VO, 

being equal and opposite to the quantity appearing above. The positive ions, in collision with 
the neutral atoms of the same mass, lose half their momentum relative to the neutral gas . 
Specifically , the momentum lost is }~Nomivi ( l + a) v i where Vj- l is the mean time between suc
cessive collisions of positive ions with neutral atoms. Therefore, the desired equ aLion is 

--) --) --) --) ~ --) 

midv;jdt = miiwVi= e[E+ l-Lov;X H o] + mevo(ve - vi )- m t Vi Vi (1 + 0'.) /2. (92) 
~ ~ ~ 

Equations (91 ) and (92) may be solved for Ve and Vi in terms of E and other known quan-
tities. The current density resul ting from motion of the elcctrons and thc ions is then equal 

~ --) ~ 

to NOe(vi-Ve). :Noting that the displacement current is i €owE and the total current is i(€)wE, 
it is seen that the dielectric tensor (e) can be ob tained from the relation 
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~ -7 ~ ~ 

i(e) wE=ieowE+ Noe(vi-ve). (93) 
-7 

Choosing Ho to be directed along the z-aXIS, the dielectric tensor is found to have the form 

e' (94) 

o 

The quantities e' , e", and q are functions of m e, mi , v., Vi, V, No, N a , and lIo. Explicit results 
for certain special cases are given in the body of the paper. To simplify the notation there, 
the results are expressed in terms of the positive real quantities Wo and WT which are defined by 

and 

Also, in discussing certain special cases in the text, the subscript on V is dropped. 

(95) 

(96) 
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