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Mean Motions In Conditionally Periodic Separable
Systems’
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A search of the literature failed to disclose any general statement or proof of a theorem

informally current among dynamical astronomers.
in any conditionally periodic separable system the mean fre-

theorem, which states that,

quency n of any separation coordinate ¢ is equal to v = Oa;/0J . ;
The proof is carried out for nonsingular Staeckel systems,

J . is the k'th action variable.

The present paper gives a proof of the

Here «; is the energy and

so that it is applicable to any nonpolar orbit of an artificial satellite, when the potential

leads to separability.

1. Introduction

Conditionally periodic separable systems are com-
monly illustrated in works on advanced dynamics by

the motion of a particle under the joint action of

harmonic oscillator forces at right angles. This
happens to be a very special case, for which each
rectangular coordinate ¢, has a (oml(mt fr oquonc\

equal to the corresponding “fundamental frequency”

v.=0a;/0J;, where a; is the energy and o/, the cor-
responding action variable.

In a more general system of this type, each gen-
eralized coordinate qr may have a variable frequency,
but it appears to be generally believed among dy-
namical astronomers that the mean frequency “of qx
must be equal to v, if the conditionally periodic
system is separable. Needing to refer to such a
theorem in solving a specific problem, I have
searched the literature but have found no explicit
statement or proof of it. The present paper is an
attempt to furnish such a reference, with a proof
sufficiently general to be applicable to all the sepa-
rable pl’()blcms that may arise in the gravitational
theory of the orbit of a satellite of an oblate planet.

Little of the analysis in this paper can claim to be
really new. Much of the pertinent material in the
literature, however, is discursive, relatively unavail-
able, and expressed in notations now unfamiliar to
most mathematical physicists. Some of it is inade-
quate, if not incorrect, (‘thciullv in the treatment of
the periodicity of the ¢’s as functions of the angle
variables. Moreover, none of it seems to have been
carried out in the shortest and most appropriate way
to prove the theorem in question. The present
paper attempts to give a concise and correct treat-
ment that will serve this purpose.

It is easy to see why such a theorem should have
escaped formal statement and proof. Physicists
have not been concerned with mean frequencies of
this kind. Dynamical astronomers have been, but
ordinarily for nonseparable systems. Until 1957
their only separable problems were the Kepler prob-

1 This work was supported by the U.S. Air Force, through the Office of Scien-
tific Research of the Air Research and Dovelopmont Command.
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lem [1]? for which the coordinate frequencies are
all equal to the constant value »,=v,=vs;, and the
problem of two centers, which has remained a
curiosity to be found in Charlier’s famous book [2],
but without application. Since 1957 various po-
tentials have been suggested, by Sterne [3], by Gar-
finkel [4], and by the author [.)] for the gravitational
field of an oblate planet, all of which lead to separa-
bility and to intermediary satellite orbits with
u1¢u>#vd Since the solution for these orbits is
greatly facilitated by knowledge of the mean coordi-
nate frequencies, it now becomes desirable to have
a formal and general proof of the theorem.

[t is here convenient to discuss briefly the general
plan of the paper, without definitions. The difficulty
in proving the theorem arises only when the funda-
mental frequencies »,, . . ., », are incommensurable.
If w, ..., w,are the angle variables, the plan is first
to show that for a conditionally periodic system
there exist infinitely many values of the time, with
no upper bound, at which the orbit in w-space passes
arbitrarily closely to points separated from the
initial point w, (0), w, (0) by integer intervals
Awp=my, k=1, ... n. This fact follows directly
from a theorem of Dirichlet, which is easy to under-
stand and to apply.

To convert this result to g-space, it is necessary to
know that ¢; is a single-valued, continuous, periodic
function of the w's. To show this the author re-
stricts considerations to nonsingular Staeckel sys-
tems, proving that for them each ¢, is a single-valued

differentiable function of »,= | dq;/p; and each v, of

rariables w,, . . ., w,. With a careful use of

the angle ‘
the periodic property then

the single-valuedness,
follows.

Application of these properties of the ¢'s as func-
tions of the w's shows that, at the values of the time
mentioned above, the orbit in g-space then passes
arbitrarily closely to points where each ¢, would have
gone through exactly m, cycles. The proof of the
theorem then follows

2 Figures in brackets indicate the literature references at the end of this paper,



2. Staeckel Systems

Ifq, ..., q.and py, ..., p,denote the generalized
coordinates and momenta of a dynamical system of
n degrees of freedom, the system is said to be of the
Staeckel type [2, 6, 7, 8, 9] if the Hamiltonman F is
given by

1 .
f]zj’;Ak((lly o ooy qn)[)}+V(g1, b5 Bh qn),

A >0, (k=1,...,n) (1)
and if there exist functions ¢,;(¢.),¥:(q.), 1,7=1, ...,
n, such that

A}\A:A/[k]/(](\t\ (d)f]'), (2)
:é Yi(qr) Ay, (3)

M;, being the cofactor of ¢41(¢g;) in the determinant
det (¢4).

Conditions (2) and (3) are necessary and sufficient
for the separability of a system with such a
Hamiltonian.

If we next define the domain ¢ of the ¢’s as the
totality of real values of ¢, . . . ¢, for which
P2 =0, k=1, ., n, we may then define a non-
singular Staeckel system as one for which ¢, (¢;) and
ori(qr), 1, k=1, . . ., n, exist and are single-valued
and for which det (¢;)##0 anywhere in . If we
put

D= (¢:,(q:)) (4)

for the Staeckel matrix, then ®~! exists and is single-
valued anywhere in ¢; in particular,

(@ V=4, (k=1 n) (5)
all exist anywhere in ¢. (This restriction thus rules
out polar orbits from consideration if the right
ascension ¢ is one of the coordinates, since Az then

becomes infinite on the polar axis.)
The momenta p; are then given by

:_le/k(QL)—}_z 51 ¢kl(q1c)az; <k:1: elsiely n); (6)

where the o’s are separation constants, «; being the
energy. (For satellite problems, where n=3, 2a,
and 2ay are usually denoted by o2 and o3.)

The Hamilton-Jacobi function W is then given by

W=>1

k=1 qp,

pl\d(lk

=1 .

) [ [~ S ewe] da, @

where the sign is + respectively as dg¢,=0.

3. Conditionally Periodic Staeckel Systems

We call a Staeckel system conditionally periodic
if each coordinate is either rotational or librational.
A coordinate ¢, is rotational if: (i) it is an angle,
(12) with pi=F)(q:) there exist positive real numbers
¢ and ¢y, such that co, = Fi(qr) = ¢, >0 for all real
values of ¢z, and (i2) if

Fi(g+2m)=Fy(q). (8)
Note that ¢, >0 rules out asymptotic motions and
that the periodicity implied by (8) may reduce to
simple constancy. The latter holds, e.g., when ¢,
is the right ascension ¢ of an artificial satellite, since
there does not exist any potential, depending on the
right ascension ¢, which both leads to separability
and remains finite on the polar axis® For such a
rotational coordinate ¢, either p,>cl/?* for all ¢, or
pr<—cii? for all ¢;.  In either case

)= f * dau/s ©)

is a single-valued function of ¢,, with derivative
dvy/dq, existing and differing from zero for all values
of ¢r. Thus ¢, is a single-valued differentiable *
function of vy.

A coordinate ¢; is librational if there exist real
numbers a; b, Cy;, and (5 and a real function
G(q;) such that

pi=(qi—a.)(b:i—q:)Gi(q), (10.1)

with
2 G (ﬁ{ )= 01 >0 (@;=q¢;:= b:) (10.2)

and
a;=q;(0)= by, (10.3)

¢:(0) being the initial value of ¢, If we again

define »; by (9), then

L)
ola)== [ lla—a) b—g)G(a)) 2dg,, (1)
a0
where the sign is + accordingly as d¢, =0, respec-
tively. Then
By .
pi:f G712 dE,, (12)
o

where the uniformizing variable /; is defined by
the equation

2Qi:(l/i+bi+ ((Lt_bi) cos I7; (13)
and the requirement that F; shall always increase
as ¢; varies. By (12) and (10.2) »; is then a single-

valued function of £, with denvatlvo existing and

3 See the tables in [9], pp. 656, 658, hhn
4 Hereafter abbreviated to ‘““s.v.d.’
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nonvanishing for all /£, so that /; must be a s.v.d.
function of »;. By (13), however, ¢; is a s.v.d. func-
tion of [, so that, finally, ¢; is a s.v.d. function of
;. Thus in a conditionally periodic Staeckel system
any coordinate ¢, is a s.v.d. function of the corre-
sponding »;.

4. The v;'s as Functions of the Angle-Varia-
bles wy,

If we now let an increase of 2x be one cycle of a

rotational coordinate and a single round trip from

a to by be one cycle of a librational coordinate, we
may define the action and angle variables ./, and

wy by )
szgh)kqu

w,=OW/deJ},

(14)

and

(15)

W]l(‘l e W is now to be considered a function of 1]10
¢’s and the J/’s, rather than of the ¢'s and the os.
It is well l\n()\\n [10, 11] that J, and w, are canoni-
cally conjugate, so that

A= D O =y (16)
If we also define the Jacobi variables B; by
B,=0W/da;, (17)
we obtain
; oWod, &
{._, § S Y W14 S
I ! =1 OJ)\ ()(X, k= lU)AwM' (]\)
where
Wi =0}/ 0a; (19)
Inerements dw,, ., dw, then lead to
dB;=> (dwy) w; (=0 o oy ) (20)
=1
But, by (7) and (17),
fo) nQpi
,usl._; P dg— %qu/m (21)
or
n
dBi:rzl Pri (Q/c) duy, (22)

by (21), (6), and (9). Also, by (19), (14), (6), and (9)

wki:¢¢ki(q1c)(h‘k~ (23)
If we now introduce the matrix &, the matrix
Q= (wy;), and the row matrices do=(dvy, . . ., dv,)

and dw=

(22)

(dwy, ., dw,), we find from (20) and

dvd=dux. (24)

For a nonsingular Staeckel system?® &, &' and
all exist at every point of ¢, so that

dv=dwQd! (25)
or

0;/0w, = (QP ")y (26)
Thus each derivative 0v;/0w, exists and is single-
valued everywhere in ¢. Now the J’s are all real,
by (14). Thus, by (7) and (15), if the p’s are all
real, then W and the w’s are all real; if some of the
p’s are nonreal, then W is nonreal and so are some
of the w’s. If all the w’s are real, it then follows that
all the p’s are real, else we should have a contradic-
tion. Thus the domain ¢, (011(\\])011(|in<r to the
totantv of all real values of the ¢’s for which the
p’s are all real, also corresponds exactly to the set
of all possible real values for all the w’s. It therefore
follows that each derivative 0v;/0w, exists and is
single-valued at any point in w-space. Thus each
v, must be a s.v.d. function of w,, ., w,. In sec-
tion 3, however, we showed that each ¢, 1s a s.v.d.
function of the corresponding »,. Thus for a condi-
tionally periodic nonsingular Staeckel system each

qr 18 a s.v.d. function f(w;, ., Wy).
5. Periodic Properties of ¢,=f,(w,, . . ., w,)
By (7) and (15)
- ) //_‘ a[)i .
dwy- TS?( o, dq;. (27)

[f now each coordinate ¢; goes through an integral
number m; of cycles, then by a familiar argument

Z_‘, m;

eAI"

A’ll,‘k;Z m; ? (()1)1'/0!]}\')(/(1[ —

P »(/q, —
(28)

Thus if each ¢, goes through exactly m, cycles, each
1 > . . )

wy increases by the integer m;. (Note, however,
that such simultaneous increases are not always

physically possible: this section is thus concerned
only with the mathematical properties of the func-
tions fi(w,, . . ., w,).)

But we are really interested in the inverse problem
where each w, has increased by an integer m; and
we ask what has happened to the ¢'s. Now the
¢’s are uniquely determined by the w’s, because of
the single-valued property. In the situation of the
preceding paragraph where each librational coor-
dinate returns to its initial value and each rotational
coordinate ¢; inereases by 2mm;, each angle variable
wy, increases by my. Since llm w’s (lolmmmo the
¢’s uniquely, this has the result that whenever Aw,=
my, k=1, ., m, each librational coordinate returns
to its initial value and each rotational coordinate
¢: increases by 2mwm;.

5 See appendix for examples.
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Thus, in the inverse problem, whenever we are
given Awy=my, k=1, ., n, we find that each ro-
tational coordinate ¢; must go through exactly m;
cycles and that each librational coordinate ¢; must
2o through some integral number of cycles, 7;, say.
By (28), however, we then find 7;=m;. Thus when-
ever the angle variables w, are all increased by
integer amounts Aw,=my;, each of the functions
qk:Ifk(wl, ..., w,) must go through exactly m,
cycles.

6. Mean Motions

If in a time interval 7" the number of complete
cycles passed through by any coordinate g is Ny,
the corresponding mean frequency n; is, by definition

li
m=g (NT),

(29)
if the limit exists. We shall now prove that
Ny=v;=0cy/0J;, k=1, ..., n, for any conditionally
periodic nonsingular Staeckel system.

To do so, note that if »,, . . ., », are all commen-
surable, there exist a positive », and positive in-
tegers my, . . ., m, such that

V=MV, (k=1, 5 ) (30)
where we may choose v, to be the greatest common
divisor of the »,’s. Then, from (16) and (30), during
the actual motion,

Wi ="wy(0) 4 m vt =1, o o o W) (31)
and in the time interval 7=1/y, we have
Awy=my (=1, L M) (32)

By section 5 each ¢, goes through exactly m, cycles
in this time, so that in this case the motion is truly
periodic, with period 1/y,. The mean frequency of
qr 1s thus
N =Myl T=mvy=vy. (B3)
If the frequencies », . .
mensurable, we may let

., v, are not all com-

EkEVk/VI (k:l, o) ’IL) (34)

and then at least one of the &s will be irrational.

Then by (16) and (34), during the actual motion

wr=wy(0) -+ Ext. (35)

We now use a theorem of Dirichlet [12], which states

that if the set of real numbers &, . . ., &, has at

least one irrational member, then the system of
inequalities

1L

l&i—my/P|<P™' ™" (k=1,..

has aninfinitenumber of integersolutions for Pand the

m’s. Note that the solutions for P have no upper
bound.

To apply this theorem, consider only those values
of the time interval 7 such that », T=PF, where P
1s an integer that satisfies (36). In this time each
wy Increases from its initial value w,(0) to a final
value given by

wi(T)=w(0)+ P&, (37)
by (35). But by (36)
1
Pfk:mk+ﬂk, |7Ik‘<P_; (38)
so that
?Uki(T):quk(O)+m/Aﬂ+nl'~ (39>

As »,T=P takes on those larger and larger integer
values corresponding to solutions of (36), each n;
approaches zero, by (38). Then, by (39), there
exist infinitely many values of 7', with no upper
bound, at which the orbit in w-space passes arbitrarily

closely to points where Aw,=m;, k=1, ., n, the
my’s being solutions of (36).

If the mitial ¢’s are given by

Qk(o) :fk[wl(o)) Oy wn(o)]y (}(’:1, L) n); (40)

then the values of the ¢’s at any of these times 7" are
given by

(lk(T):fk[wl(O)—l_Inl_l_nl’ G o wn(O)—f_,,nn—Jf_nn]

(h=1, Lon).  (41)
As we let 7= P/v; assume those larger and larger
values already referred to, the ¢’s then approach
arbitrarily closely to the values

qr (1) =Felw, (0)+my, . . ., w,(0)+m,]

o=l o o o e (52
This conclusion follows from (38) and the single-
valuedness and differentiability of the functions f.

Comparison of (40) and (42) then shows that the
values ¢¥(7) correspond to Awy=m;, k=1, n,
and are thus, by section 5, the values that "would be
reached after each qr had gone through exactly m,
cycles. Now, by the definition (29), it follows that
the mean frequency

= lim (my/T), (43)
T

But m/T=vm;/P and, as
Thus,

if the limit exists.
T— o, lim(m,/P)=E&;, by (36).

np=r1E=7y, (44)
by (43) and (34).

Thus, for each coordinate ¢; of a conditionally
perlodlc nonsingular Staeckel system, the mean
frequency ny is equal to the correspondlng funda-
mental frequency v,=0aq;/0J;.
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7. Appendix

For theories of satellite orbits, appropriate coor-
dinates are spherical or oblate spheroidal. The
corresponding Staeckel matrices and their inverses
are, if z=r sin 6 cos ¢, y=r sin 6 sin ¢, z=r cos 6:

Spherical

1 —r? 0 i 8 2 ey 0}
d=| 0 1 —csc? 6 e I=10 1 csc?
0 0 1 0 0 1

or,if a=c[(&+ 1)1 —n*)]"2cos ¢, y=c[(E#+1)(1—7*)]"*sin ¢, z=cén:

Oblate Spheroidal

e +1) !
P=| n*(1—n*)""

L 0
e (E 1) (E ) !
—n(E 1) (E )
0 0

Pl

For spherical coordinates ® is most easily written
down from the expressions for p? pj, and p? in the
Kepler problem [1], with replacement of o and o}
by 2a, and 2a;.  For oblate spheroidal coordinates
® may be found by comparing eqs (53) and (59.1) of
[5] with eq (6) of the present paper.

Note that ® or & could fail to exist only when
sin =0 or when n’=1. This could happen only
when the satellite goes over a pole and thus only in
a polar orbit.  Such a singularity in a polar orbit,
however, is to be expected, since nonsingularity of
a Staeckel system leads to the ¢’s being differentiable
functions of the w’s and thus of the time. In a
polar orbit, on the other hand, the right ascension
¢:=¢ 1s a discontinuous function of time, being
constant except at polar crossings, where it changes
by .

(Paper 65B2-52)
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