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Let {X (t) I be a con t inuous-t ime, cont inuous-i n-t he-mean, real, stri cLly sLatio nar.v 
r andom process . If x is a given number, denote by PT (X) t he proport ion of t he t ime X(t) 
exceeds x, 0 5, t5, T . The covari ance of PT(Xj) and PT (X2) is obtained. An approx imate 
soLut ion for t he va ri a nce of a samp le quantile is a lso g iven. The genera l resul ts are specia l­
ized fo r Gaussian a nd x2 processes . 

1. Introduction 

The propor tion-oI- time distribu tion plays a very impor tant role in the st ttistical analys is 
of t im e series data. The pmctice is to plot p(x), the propor t ion of the t ime the record, X(t ), 
exceeds x, against x [e.g., l ,2J.I In geneml, if X(t) is a wide-sense stationary process a nd a 
sample over 0 ;;;:; t;;;:; T is available, nn estimate, P7'(x), of t he probnbili ty that X(t) ~x is ob tain ed 
from t he snmple. In this paper we will derive the covariance of PT(X j ) and P7'(X?) . An ap­
proximate solution for the variance of a snmple quan tile will nlso be given. The gener a1 resul ts 
will be specialized for Gaussian nnd x2 processes. The R ayleigh proce s is n sp ecial cnse of t he 
x2 process; however, due to its wide applications, t he r es ul t for this p articular case will also be 
stated . 

2. Some Properties of Time Averages 

Let {X 1(t ),X2 (t)), t ~ R(I), be a 
t inuous-in-the-mean , vector process . 
line. 

wide-sense stationary, real, con tinuous-parameter, co n­
t will be called t ime and R (I) will be taken to be a real 

For i = l. 2. and for all t and s, let 

EX,(t )= m" } 

EX,(t )X,(t + s) -m;= R ,(s), 

EX) (t )X 2 (t + s) - m)m2= R)2(S), 

(2. 1) 

where E X deno tes tbe mathematical expectation of the random variable X . I t will be assumed 
that all quan tities in (2 .1) are finite. 

W'hen statemen ts are made which apply to either of the processes, or when the prop er ties 
of a single process are considered, the process will be r eferred to as { X( t ) } , and tbe subscrip ts 
will be omitted, e.g., EX(t )= m, E X (t )X(t + s)-m2= R (s) . 

Let T be a positive number , N a posit ive in teger , d= TIN, and denote X i (kd) by Xj(k). 
R j(kd) by R j(k ), etc., since there will be little danger of co nfusion. { X )(k ), X 2 (k ) ), k = O, 
± I , ± 2, . . . , is, then, a wide-sense stationnry, real, discrete-parameter, vector process. 

, Ve may consider the discrete-t ime process nnd extend t he resul ts to the con tinuous-time 
process by taking the limit as N 00 , T fixed ; or, we m ay consider the con tinuous-t ime process 
and obtain resul ts for the discr ete-time process by replacing integrals by appropriate summa­
tions. In general, we will pursue the Intter procedure. 

j Figures in brackets iudicate the li terature references at the end of this paper. 
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Let t l , t 2 be arbitrary numbers, and T I , Tz arbitrary posi tive numbers. Define 

i = 1,2. (2.2) 

It will be assumed that the subscripts on X are so chosen that T2 i;;. TI . 

For the discrete-time case, we take kl' k2 arbitrary integers; N I , N2 arbitrary positive in­
tegers, choosing the subscripts on X so that N z i;;. N I ; and define 

i = 1,2. (2.2') 

Now 

i= 1,2, (2.3) 

and 

(2.4) 

The interchange of operations of expectation and integration in (2.3) and (2.4) is justified 
asEX1(t )< ro , i = 1,2. 

We now make the t.ransformation u = t - t', v= t'. The Jacobian of the transformation is 
unity. The limits of u and v arc given by 

Hence (2.4) becomes 

. (t t _ )_ { t2 - u, when u~ s , max 1, 2 U - . 
t l , otherwIse. 

(2.5) 

Replacing t l by t, we obtain, for arbitrary t and s, 

(2.6) 

Remark 1. Setting XI (t ) = X z(t ) =-, X (t) in (2.6), we obtain 

eov {XT j( t) , X T2(t +S) }=(T1T2)-1 [J s (T1 -s+u)R(u)du 
-Tj+s 

(2.7 ) 
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Remark 3. Se tting 8= 0 in (2.S), we have 

(2.9) 

From (2.3) to (2.9 ) we deduce th fL t , for fixed TI and T2 , { X IT/t), X27'2(t )} is a wide-sense 
ta tionary con t inuous-time a nd continuous-in-the-mean process. 

For the discr ete-time case, we will s t a te only the results corresponding Lo (2 .6) and (2.9). 
IVhen transla ting a sum of integrals, s uch as 

into a Riem m1l1 sum, we should be car eful to no Le tha t, wh ereas b fLppefLrs twice in the limi ts 
of the in tegr als, the cOlTesponding qu an t ity will appeal' only once in Lh e sum of Lwo summa tions. 
Thus, for arbiLl' al'Y in tegers Ie a nd 8, 

(2 .6') 

imil fLrly, 

(2 .9' ) 

The results (2.9 ) and (2.9 ' ) are well known [3, p. SO] . 

3. Empirical Distribution Function 

It will be assllmed furL iter that {X (t )} is a s tricLly sLationary process 0 that Lhe p robabili ty 
distribution of X (tr + h), ... , X(tn+ h) is t he sam e as that of X(tr ), . . . , X(t n ) for every 
election of n, tl , ... , t n, a nd h. 

D efine 

Jl , if X(t)~x, 
p (t ;X)= 1 (3. 1) 

I... 0, otherwise . 

Then 
1 ( T 

PT(X) = 'f Jo pe t ; x)dt (3.2) 

is the propor tion of Lhe time x is exceeded by X (t ) in t he time in terval (0, T ), i .e., TpT(X) is the 
L ebesgue meas ure of the se t 8 x= { t : X(t) ~ x, ° ~t ~ T } . W e note t he following: 

(1) p et; - ro )= 1 for ,1ll t; he nce lJT( - ro )= 1; 
(2) p et; + ro )=0 for all t; he nce PTe + ro )= 0; 
(3) 1£ X2 >xI , th en X(t ) ~ X2 implies X (t ) ~ Xl' 

8 xz is, th er efor e, a s ubset of 8 X 1, a nd he ll ce 

PT(X2) ~h(XI)' 

Prop erties (1) t o (3) imply tha t qT(X) = 1- heX) is a distribu tion function. qT(X) will b e called 
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the empirical univariate distribution function of the process {X(t) }. We will, however, consider 
PTeX) rather than qT(X), 

Suppressing x from pet , x) for the time being, we have 

PI' [p(tl + h) = l, .. . , p(tk + h) = l, P(tH I+ h) = O, ... , p(tn+ h) = O] 

= Pr [X(ti + h) ~ x, .. . , X(tk+ h) ~ x, X(tH I + h)<x, . .. , X(t ,,+h) < x] 

=Pr[X(tl)~X, ... , X(tk)~X, X(tH l)<X, ... , X (tn)<x] 

(3.3) 

for every selection of k, n, tl, .... tk , ••• , tn, and h. Hence, for a given x, {pet; x) } is a. 
strictly stationary binomial random process. In fact, it can be shown that, for a given set of 
values, Xl, ... ,Xm , {pet; Xl), ... ,p(t; Xm)} is a strictly stationary vector process. 

Writing 

P(x) = Pr(X(t) ~ x), 

we have 

EpT(t; x)=P(x), 1'= 1,2, ... , 1 
val' pet; x)=P(x)[l-P(x)], 

A(s; x) =cov {pet; x), p(t + s; x) } J 
= Pr{X(O) ~ x, Xes) ~ X }-P2(X). 

(3.5) 

Let X2 ~ Xl; then 

A(s; Xl, X2)=COV {pet; Xl),P(t+s; Xz) } 

= Ep(t; Xl)P(t +S; X2)-P(Xl)P(X2) 

= Pr{X(t) ~ Xl, X(t +s) ~ XZ}-P(Xl)P(X2) 

= Pr{X(O) ~ Xl, Xes) ~ xd -P(Xl)P(X2). 

We note the following: 

EpT(X) = P(X) 

A(s; x, x)=A(s; x), 

A(O; Xl, x2)=P(x2)[1-P(Xl)]. 

Using (2.6) with s=O, T l= T2= T, we have 

2 f7' ( S) G(x, x) = var PT(X) ='1' 0 1-'1' A(s; x)ds. 

For the discrete-time case, 

} (3.7) 

PN(x)=N-l f p(k; x), 1 
k= l 

N-l 

cov {PN(Xl),PN(XZ)}=N- lP(X2)[1-P(xl)1 + 2N-l ~ (l-s jN)A(s; Xl, X2), (3.7 ' ) 

val' PN(x) = N-lP(X)[1-P(x)]+2N-l ~l (l-s jN)A(s; x). J 
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To estimate A(s; Xl, X2) and A(s; x) , define 

(t t + · . )_{ lifX(t)~XI,X(t +S)~X2 p , S, Xl, X2 - . o otherwIse; 

and use 

to estimate Pr { X(t) ~ Xl' X(t+s) ~ xd . 

4 . Variance of a Quantile 

Given x, PT(X) is a random variable. In the preceding section we obtained the variance of 
Ih'(X), and the covariance of P1'(XI ) and PT(X2)' In this section we will obtain all approximation 
to the variance of a quantile of the empirical distribution function. We suppose that a number 
q, 0< q< 1, is specified. If U denotes the number such that 

(4.1 } 

then U is a random variable. Let ~ be the number s llch that 

PW = q, (4.2) 

i. c. , ~ is the qth quantile of the univariate distribution function of the proce s (X(t)]. 
In what follows the primes will denote differentiation with respect to the indicated argu­

ment. Fmthermol'e, it will be assumed that P(~) and PTW have derivatives. 
Now 

whel'e=means "approximately equal to ;" h ence, 

PTW -PW= -(U- ~)p~W ; (4.3) 

0= -E(U-mp~W-p'W]-P'(~)E(U- ~). 

Now 

E1A,(O = Elim PT(~+h)-7JT(O lim PC~+h) -P(~) P'(~); 
h--70 h h--70 h 

therefore 

cov (U,p~W = -P'WE(U - ~). 

As a first approximation we suppose that 

(4.4) 
so that 

cov(U,p~C~)) = O. (4.5) 

As a further approximation suppose that U and P~W are independent. Writing oy=y-Ey, 
where y is a random variable, we have 

Now 

OP1'CO = -p~(OoU, 
val' PTW=varUEp~2m . 
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=P!2 (~ ) + lim (hk) - I[C(~+h, ~+ k) - C(~+h, O-C(~, ~+k) + C(~, OJ 
h, k--,>O 

( 4.7) 

and val' PT(O is given by (3 .7 ). The result (4.7) assumes the existence of various derivatives 
appearing in the equation. In applying this result it is necessary to look into various approxi­
mating assumptions which are used in arriving at (4 .7). The approximation (4 .5) seems fairly 
r easonable; but the assumption of independence of U and PT(~ ) needs careful examination 
in each individual case. 

From (3. 7) 

02C(Xl, X2) 

OXI OX2 

in case the interchange of the integra tion and the partial differentiation is justified. If 

then 

and therefore 

val' U =val' PT(~) /P!2(O[1 + O(T- l) 1 

5. Applications 

5.1. Gaussian Process 

If {X(t) } is Gaussian, write 

Y(t ) = [X(t) - mJ/CT 

It is known [4, pp . 355- 6J that 

(4.8) 

(4.9) 

PI' {Y(t) ~ ylJ ..... Y(t+s) ~yz} = (27r) - 1[1- p2(S)] - 112 J'oo ( 00 exp ~ - zi-9~~~) ~(z)t z~ ~ dZ1 clz2 
YI J Y2 I... ~ P S ) 

H ere 

00 
= P(Yl )P(Y2) + ~ pj(s)r j(Yl)r j(Yz). 

j= 1 

P(Y) = (27r) - 112iOO e- z2 /2 dz; 
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H ,(x) is the Hermite polynomial of degree r given by 

H () '? fO( ll l )' 'I? , 1'(1'- 1) , _2+1'(I'- J)(1'- 2)(1'-3) , - 4 , x = ex-"-GGX e -x- "=x-~x 222! x - .. . , 

and 

is known as the tetrachoric function of order r, and its tables are available [5]. 
Thus 

(5 .2) 

InsCl'ting these values in (3.7), we have, since p( - s) = p(s), 

(5.3) 

5.2. Variance of a Quantile 

Note that: 

Differentiating the first equation in (5.3) with respect to Xl and X2, we get the formal 
expreSSiOn 

(5.4) 

If the integral converges, we can evaluate it, and using (4.7) obtain the variance of the sample 
quantile U. 

A special case . If x= m, 

( T 00 

varpT( m) = 2T-l J 0 (I -siT) j~ pies) T; (0) ds. 

Now 

j = 1,2, . .. , 

(- 1)i(2j) ! 
j= O, 1, .... 

Hence 

'. ()_~ ~ (2j) ! ( T (1- IT) 21+ 1 ( ) l 
valpT m -7rTf~7f22j (j !) 2(2j+ l) J o s p s GS. 

(5.5) 
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If U is the sample median, then ~ = m, and 

in case the integral converges. We note that, for large value of j 

(2j)! 1 
22j(j!)2~ Crrj) 1/2' 

Hence the series (5.5) will always converge. A sufficien t condition for the convergence of the 
integral in (5 .6 ) is that 

lim sb {1- p2(S)}-1/2 
8-70 

exists for some b,O < b< 1. If the limit is nonzero for some b ~ 1 then the integral diverges . 
Example 1. If p (s) = p(-s) =e-M , A>O,S~ O , 

i T (1- IT) -JMd _~ _ _ l _ +O(T - I -JA7') s, e s- )\ ' 2A2T e, 
o .1 J 

j = 1,2, . . .. 

Therefore 

( 1 ~ (2j)! 1 ~ (2j)! +O(T - I - AT) 
val' PT m) = 7rAT ~ 22J(j!)2(2j + 1)2 7rA2T2 ~ 221( j! )2(2j+ 1)3 e 

== 0.35/ (AT)-0.33/ (AT)2+ O(T - Ie- AT) . 

Also 

H ence, if U is the sample median, 

Example 2. If p(s)=e 2a2
, a similar calcul ation shows that 

The integral (5.6) does not converge and we fail in evaluating the variance of the sample 
m edi an by this method. In fact, an examination of the assump tions leading to the equation 
(4. 7) shows that, in this case, Ep~~m does not exist so that PTm is not differentiable. 

E xample 3 . Let p(s)=cos (7rs/k) . Insteac1 of using (5 .5) to evaluate val' p7,(m ), we 
proceed somewhat differently. Note that [6, p. 290] 

1 1 
PI' { Y(t)~ O , Y(t +s)~O } =2-27r cos - I pes), 
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Hence 

1 J1'( S) 1 JT( S) val' PT(m) = 2T 0 1-'1' dS-7rT 0 1-'1' cos - 1 p(s)ds . 

Now 

_ { ~(S-2jk), if 2jk~s« 2j+ I)k, 
cos 1p(S)= 

-~ (s-2jk), if (2j- I)k~ s<2jk, 

j = O, 1, .. . , 

j = I, 2, .... 

where 

Thus, after some simplification, we obtain 

Obviously val' PT(m )=O whenever 1\= 0, l even, i.e., whenever Ti a multiple of 2lc, the period 
of the process, and also val' lh,(m) --70 as T --7 oo. 

5.3. X2 Process 

Let { X t(t) }, i = l, 2, . . . , n, be independent stationary Gaussian processes with the same 
variance, (]'2, and the same autocorrelation function 

p(s) = [EXt (t)Xt(t + s) - m7J /(]'2. 
Define 

{ Y (t )} will be called a x2 process as the univariate distribution of y et ) is a x2 distribution with n 
degrees of freedom which has the density function 

= 0 otherwise. 

It is easy to verify that { Y(t) } is strictly stationary. 
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The characteristic function, ¢(u, v), of [Y(t ), Y(t +s) ] is easily evaluated to be 

¢( U, v) = EeiU Y (t)+iv ¥ Ct+s) 

= [1-2iu-2iv-4uv(1- p2(s))]-n/2 

= (1-2iu) -n/2(l-2iv) -nI 2 1+ ~- s uv. -[ 4 "( ) ] -nl ? 

(1- 2w)( 1- 2w) 

00 (-l) ir (n/2+ j ) {2p (s)PJuJvJ . 
= ~ r (n/2)r(j + 1) (1-2iu)nl2+J(1-2iv)nl2+J' (5 .7) 

as 

I 4uv I 41uvi 
(l-2iu) (1- 2iv) = [( 1 + 4u2) (1 + 4V2) FF< l, 

the binomial expansion is uniformly convergent. 
For a full discussion of the distribution of [Y(t ), Y(t + s) ] the r eader is referred to [7]. A 

technique of obtaining the probability density function of [Y(t ), Y(t + s) ] will be presented here, 
which is also applicable to other distributions which can be expanded in a ser ies of orthogonal 
polynomials. 

Note the following: 

(1) 1 f oo e- iuZ 

g( z; n /2) = 27f -00 (1- 2iu) n/2 elu, 

(2) It is easy to verify from the definition of Laguerre polynomials [8, Ch. 5] that, for a>O, 
j~a- 1 , 

eli . r( '+ l)r(a- .) . 
- g( z , a)= g(z, a-J) .7 . J L ~a - ' - I ) ( z/2) 
elzi ' , 2Jr(a) 1 , 

where 

is the generalized Laguerre polynomial of degree j. 
Hence, if n~2-n= 1 may be reduced to the Gaussian case discussed in 5.1- , by the 

inversion of (5.7) the probability density function, 9(zIA ; n /2), of [Yet ), Y (t +s)] is given by 

• _ 00 [2p(s)j2Jr(n/2+ j).E!.... . . .E!.... . ') . 
g( ZI' Z2, n/2) -~ r(n/2)r(j+ l ) clz{ g( ZI, n /2+ J) clz~ g( Z2 , n/~+J) 

=g(ZI; n/2)g(z2; n /2) i: r(ft~;~1~{2) p2J(s) L ,<n/2- 1) (zd2)L,<n/2-i «Z2/2) . (5.8) 
}=o n - J 

Now, using the first equation in (5.8), we obtain 

00 [2p(s)j2Jr (n/2+ j) cl j-l . . elJ- 1 . . 
= P (Yl)P(yZ)+ ~ r(n/2) r (j+ 1) cly( - l g(Yl, n/2+ J) cly~-l g(Yz, n/2+ J) 

= P(Yl)P(Y2)+g(Yl;n/2+ 1)g(yz;n/2+ 1) :t 2nr(j:; r::: \)p2J(S) 
'= 1 J n J 

L i':..?) (Yd2)Ll"-'12) (yd2) , (5.9) 
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I 

l 

'where 

P(y)= 1'" g( z; n/2)clz . (5.10) 

From (3.6) and (5.9), thc covariance of P(t;YI) and p(t+S;Y2), 

A( ) ( /2+ 1) ( /2+ 1) ~ 2nr(j) r(n/ 2+ 1)p2j (s) L (n/2) ( /2)L(n,?)( / ) 
S;YI,Y2 = g YI;n g Y2;n ?-J 'r( /2+ ') i - I YI i - i Yz 2 . 

J= I J n J 

Inserting this value in (3.7), we obtain an expression for the covariance of P1'(Yl) and 
PT(Y2)' The variance is given by setting Yl=Y2 = Y' 

A special case. n= 2 gives a X2 process with two degrees of frcedom, i. e., the Rayleigh 
process. We find 

cov {Pr(Yl) ,PT(YZ) }=-T8 g(Yl;2)g(Y2;2) ::t ~ L f1}, 1 (Yl/2)L jlJ. 1 (Y2/2) ( T (1- -TS) p2i( )ds. (5.11) 
J= lJ Jo 

The author thanks Dr. E. L . Orow for his helpful di sc ussions during the pl'epfU'ation of 
this paper. 
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