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Let {X ()} be a continuous-time, continuous-in-the-mean, real, strictly stationary
random process. If z is a given nnmber, denote by pr(x) the proportion of the time X (/)
exceeds x, 0<t<7T. The covariance of pr(x,) and pr(z;) is obtained. An approximate
solution for the variance of a sample quantile is also given. The general results are special-
ized for Gaussian and x? processes.

1. Introduction

The proportion-of-time distribution plays a very important role in the statistical analysis
of time series data. The practice is to plot p(x), the proportion of the time the record, X(¢),
exceeds z, against @ [e.g., 1,2]."  In general, if X(¢) is a wide-sense stationary process and a
sample over 0 ¢ < 7'is available, an estimate, p,(x), of the probability that X(#) =z is obtained
from the sample. In this paper we will derive the covariance of pr(x,) and prp(x,). An ap-
proximate solution for the variance of a sample quantile will also be given. The general results
will be specialized for Gaussian and x? processes. The Rayleigh process is a special case of the
x® process; however, due to its wide applications, the result for this particular case will also be
stated.

2. Some Properties of Time Averages

Let {X,(1),X,(t)}, teRY, be a wide-sense stationary, real, continuous-parameter, con-

tinuous-in-the-mean, vector process. ¢ will be called time and R will be taken to be a real
line.

For i=1, 2. and for all ¢ and s, let
X () =my,
X, () X:i(t+s)—mi=R,(s), (2.1)
EX () Xo(t+s) —mymo=Ri5(s),

where X denotes the mathematical expectation of the random variable X. It will be assumed
that all quantities in (2.1) are finite.

When statements are made which apply to either of the processes, or when the properties
of a single process are considered, the process will be referred to as {X(#)}, and the subscripts
will be omitted, e.g., EX(t)=m, EX({)X({-+s)—m*=R(s).

Let T be a positive number, N a positive integer, d=T/N, and denote X,;(kd) by X, (k).
Ri(kd) by R(k), etc., since there will be little danger of confusion. {X,(k), Xo(k)}, k=0,
+1,+2 . . . ,is, then, a wide-sense stationary, real, discrete-parameter, vector process.

We may consider the discrete-time process and extend the results to the continuous-time
process by taking the limit as N—>w, 7 fixed; or, we may consider the continuous-time process
and obtain results for the discrete-time process by replacing integrals by appropriate summa-
tions. In general, we will pursue the latter procedure.

1 Figures in brackets indicate the literature references at the end of this paper.
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Let ¢y, t, be arbitrary numbers, and 7', 75 arbitrary positive numbers. Define

. 1 e

()= | ‘Xtydt, i=12. (2.2)

ir .
1

It will be assumed that the subseripts on X are so chosen that 7,= 7.
For the discrete-time case, we take k;, k. arbitrary integers; N;, N, arbitrary positive in-
tegers, choosing the subscripts on X so that N,=N;; and define

Nithi

X i, (k)= \' A_Z Xi(k), =12, (2.2%)

Now
E:—Y_iTi(ti):mi, i:1)2; (2'3)

and

= = Ti+ty Totiy
cov{Xir,(t1), Xory(t,) } =(Th T-.))‘lEft f[ [(X1(t") — mu] [X,(8) — my] dit dt”
1 2

i fith Tatty 5 , ’
—(T\T)) f, f Roa(t—t")dt i’ (2.4)
1 2

The interchange of operations of expectation and integration in (2.3) and (2.4) is justified
as EXi()< o, 1=1,2.

We now make the transformation u=t—t’, »=t’. The Jacobian of the transformation is
unity. The limits of % and » are given by

to—t—ThSusto—t+ 15,
max (t, ta—u) <0o= min (T1+t, Tot-to—u).

Hence (2.4) becomes

Tots
(TlTQ)—lf S (T 7, Dok ) —Tre (5 T o) Boale) it

—T-ks

where s=t,—t;. Now

rT1+t1, when u< s+715,—
min (7t Tﬁtg—u):{

L Tot-to—u, otherwise;

max (¢;,t,—w) (2.5)

t,;—u, when u<s,
t1, otherwise.

Replacing ¢, by t, we obtain, for arbitrary ¢ and s,

cov {Xur (1), )_(2T2(t—i—s)}:(T1T2)‘1[ f 71 | (Bimstn) Rus(u)duct T, f BT g () du

8

+J'T2“ (T2+s—u)1f,2(u)(1u]- (2.6)

Ty—T;+s

Remark 1. Setting X;(t)=X,()=X() in (2.6), we obtain

cov {XTl(t) X (t48)}=(T1Tx)~ l[f Ty —s+u) R(w)du

Tls

17 J R e (T2+s—u)R(u)du:I~ 2.7)

To—T;+s
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Remark 2. It Ti=1,=T,
cov {Xr(t), Xo(t-+s) }:Tﬂ[ J * s R dut J ”"(7‘+s—u)zz(u)du:]- (2.8)
—T+s s
Remark 3.  Setting s=0 in (2.8), we have
= e |
var Xp(t)=T-! (1—T>B(u)du. (2.9)
-

From (2.3) to (2.9) we deduce that, for fixed 7 and 7}, {_’ml(l‘), 1T7_77v2(t)} is a wide-sense
stationary continuous-time and continuous-in-the-mean process.

For the discrete-time case, we will state only the results corresponding to (2.6) and (2.9).
When translating a sum of integrals, such as

J+);

into a Riemann sum, we should be careful to note that, whereas b appears twice in the limits
of the integrals, the corresponding quantity will appear only once in the sum of two summations.
Thus, for arbitrary integers k& and s,

cov { Xy, (), Xay, (k+5)} = (NN~ [ :_é\iwl (Ni—s+u) Rua(w)

-
)

3—

—}— Z \I.lo(u)—i— Z+ (N-F6~2L)1117(ll):|

u=8+ u=N;—N1+s+
Similarly,

var Xy(k)= !{&\‘wa b 1—2) R(u). (2.97)

u=1
The results (2.9) and (2.9”) are well known [3, p. 80].
3. Empirical Distribution Function

It will be assumed further that { X(#)} is a strictly stationary process so that the probability

distribution of X(t,-+h), . . ., X(t,+h) is the same as that of X(), . . ., X(t,) for every
selection of n, ¢, . . ., t,, and A.
Define
1,if X(t)=z,
R &)

L 0, otherwise.

Then

T(x):% J;T])(t; 2)dt (3.2)

is the proportion of the time z is exceeded by X(¢) in the time interval (0, 7'), i.e., Tpyp(z) 1s the
Lebesgue measure of the set S,={t: X()=z, 0=t=<T}. We note the following:

(1) p(; — =)=1 for all ¢; hence pr(— = )=1;
(2) p(t; +«)=0 for all ¢; hence pr(+ = )=0
(3) If 2, >, then X(f) =2, implies X(¢) =u,.

S;, is, therefore, a subset of S, , and hence
pr(a) Epr(@,).
Properties (1) to (3) imply that ¢,(z)=1—ps(2) is a distribution function. ¢z () will be called
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the empirical univariate distribution function of the process {X(¢)}. We will, however, consider
pr(&) rather than ¢, (x).
Suppressing @ from p(¢; &) for the time being, we have

Pripti+h)=1, ..., ptrth)=1, plt+h)=0,..., p(t,+h)=0]

=Pr [ X(tLi+h)=zx, ..., XGFh)2e, XGath)<ez, ..., X({E,+Hh)<z]

=Pr(X(t)zz, ..., Xt)ze, X@Ea)<lz, ..., X(E)<zl

:Pl‘[]’)(tl):L s ey p(tk)zly p(tk+l>:0; ) p(trI):O]; (33)
for every selection of k, n, #,, . . . . tee . . ., 1y, and k. Hence, for a given x, {p(t;z)} is a
strictly stationary binomial random process. In fact, it can be shown that, for a given set of
values, @, . . . @, {pE; @), . . ., pt; x,)} is a strictly stationary vector process.

Writing
P(x)=Pr(X(t)zx), (3.4)

we have
187 =1, =0l % o o o
var p(t; 2)=P(2)[1—P(z)],
A(s; ) =cov {p(t; ), p(t+s; 7)}
—Pr{X(0)2 7, X(s) 2 2} —P(2). }
Let @ =u;; then
A(s; @, ) =cov {p(t; @), p(t+s; 2,) }
=Ep(t; x1) p(t4-s; 1) —P () P(2)
—Pr{X(t)2 21, X(t-+8)2 2,}—P(2)P()
=Pr{X(0)zz;, X(s)Z %} —P(21) P(a3). (3.6)
We note the following:
Epq(x)=P(x)
Als; z, 2)=A(s; ),
A(0; 21, 22) =P () [1—P(1)].
Using (2.6) with s=0, T1=7,=T, we have

7 3

C(21, 2) =cov {PT(xl),PT(Iz)}:% f_T< —'%J) A(s; xy, a,)ds, k
(3.7)

CO(x, x)=var pT(x)z% f (1—%) Als; z)ds. J

For the discrete-time case,
Pe@)=N" 32 p(l; ),
cov {pn(a1), p () } = N"'P(2)[1—P(2,)|+2N* Ng_: (1—=s/N)A(s; z1, @), (3.7")
var py(z)=N"'P(x)[1—P(x)]+2N1 NZ_: (1—s/N)A(s; ).
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To estimate A(s; @y, @) and A(s; z), define

Lif X(t)z @, X(t+s)Z

0 otherwise;

p(t, t+s; 2, x2>:{
and use
1 R=—8
Pr(s; @, Ig):T“ f p(t, t+s; 1, 2,)dt
s J,
to estimate Pr{X(#) =z, X(t+s) =i,}.

4. Variance of a Quantile

Given &, pp(a) 1s a random variable. In the preceding section we obtained the variance of
pr(z), and the covariance of p,(i;) and prp(x:). In this section we will obtain an approximation
to the variance of a quantile of the empirical distribution function. We suppose that a number
q, 0<¢<1, is specified. If U7 denotes the number such that

pr(U)=yq, (4.1)

then U is a random variable. Let £ be the number such that
P(§)=q, (4.2)

1. e., £is the gth quantile of the univariate distribution function of the process [X(#)].

In what follows the primes will denote differentiation with respect to the indicated argu-
ment. Furthermore, it will be assumed that 7(¢) and pr(¢) have derivatives.

Now

P(&)=pr(U)=pr (&) +(U—E)pz(8),
where=means “approximately equal to;” hence,
pr(§) —P(8)=—U—8)pz(£); (4.3)
0=—EU—8[pr&)—P (&P () EU—¥).
Now

])T(E_l'h)'"pT(E):hln ])<E+h)—P(E)= I),(E)

ERCSTIE S e

therefore
cov (U,pr(§) = —P' () EU—¥).
As a first approximation we suppose that
EU=¢, (4.4)
cov(U,pz(£))=0. (4.5)

so that

As a further approximation suppose that 7 and p7(£) are independent. Writing dy=y— Ey,
where 7 is a random variable, we have

8pr(&)=—pr(£)oU,

var pr(&) =varUEp*(§). (4.6)
Now
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7,12 (e . prE+h)—pqr(§) prE+k)—pr(€)
L (=B lim (P75 jl(ess )

ZEhlikIEO (hke) M opr(&-+h) =opr(&)+ P (E+h) —PE)][6pr(E+k) —opr(§) +P(E+E)—P(&)]
:P’Q(E)Jrhliglo (hke) ' [C(E+h, E+k)—C(E+h, £)—C(&, £ +k)+C (¢, 8)]

020 (&1, &>
0£108,

=Pr(p)+ 2 Eutd

SIS s=t

var Ui[P,2(E)+62(Y (‘Ely EZ) I

aglagz 51:£2:Ej|_ Varz)T(E)y (47>

and var pr(¢) is given by (3.7). The result (4.7) assumes the existence of various derivatives
appearing in the equation. In applying this result it is necessary to look into various approxi-
mating assumptions which are used in arriving at (4.7). The approximation (4.5) seems fairly
reasonable; but the assumption of independence of U and p,(§) needs careful examination
in each individual case.

From (3.7)

0*C (zy,a5) 1 (__| f <_Ma_lw \,
bxla:bz T axlaxz f—T 1 >A(8 xl’ x’)dé_ T _r axlaxz d'/ (48)

in case the interchange of the integration and the partial differentiation is justified. If

0’4

ffm 00X, 0% | 7y =1,=¢ d8< .
then
02C 1\.
axlax;?.fl:%:‘é:() <T>,
and therefore
var U=var py(£)/P"*(&)[1+0(T")] (4.9)

5. Applications

5.1. Gaussian Process
If {X(¢)} is Gaussian, write
R0)=e* Y@)=[X({t)—m]lc  p(t)=E(1)/s.

It is known [4, pp. 355-6] that

Pr{Y(®)zy,” Y(t+9)Zy.}=(2m) [1—p*s)]" ‘”J f C\P{ =l ”L‘z} dz,dz,

2[1—p*(s)]
_1/1+!/§
:P(yl)P(yzH—]é p’(s) Hj’l(‘m)h;;—]}!(?/z)e ’
:P(yl)P(y2)+é p?(8)7;(y1)7,(372). (5.1)
Here
P@=n [ "z
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I, (z) is the Hermite polynomial of degree r given by

IJT (x>:€r2/2(_([/d1')T e—1%/2— T_% v + ( 1)(‘])2_2'2) (’ _ ;) C

and

H, . —z2/2
)= e

is known as the tetrachoric function of order », and its tables are available [5].
Thus

A(S; Ly, x_>>:.i Pj(S)’rj <x1_ ’/YL> . <£I?_)— 7)’L>’
j=1 @ ”

As; x):é ol(s)? (‘”;m .

‘|
f (5.2)
)

Ingerting these values in (3.7), we have, since p(—s)=p(s),

N e (T r—m\ , )
O, 12)2'77 J(. (1 _"’/T)Jg p’(8)7; <r1 = ','f> Tj<r- p m)‘l"‘;

Y 2 (" N g o T— M
((x,x)zTJO (1—3/1>j=zlpf(.g)r§< - )m.

5.2. Variance of a Quantile
Note that:

TAD _ (o) (1)1 djd |2 H, 1 ()= — G127 1a2),
Differentiating the first equation in (5.3) with respect to z; and z,, we get the formal
g 1 g
expression

22 () 2 T RN ; E—m B}
Seou st |, U—T) 35 (G4 1)p6) rhea (57 ) ds. (5.4)

If the integral converges, we can evaluate it, and using (4.7) obtain the variance of the sample

quantile U.
A special case.  1f x=m,

D)= fOT(l—-s/T) g p(s) 72 (0) ds.

Now
TZj(O):Oy j:1)2)"')
_ (=1)7 (2! -
nmO=gymamie+ope =0
Hence
varpy (m)= i} Wﬁ%—l)f (1—s/T") p¥*1 (s) ds. (5.5)
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If Uis the sample median, then ¢=m, and

0r(C (" CY sy g
0 = 10 [ (=D 0 i

— (re?T)"! LT (1—s/T) [{1—p? ()} V2—1] ds. (5.6)

in case the integral converges. We note that, for large value of j

(2J)‘ O
2712 ()
Hence the series (5.5) will always converge. A sufficient condition for the convergence of the

integral in (5.6) is that
lim s°{1—p2(s) }~%/2
$-0

exists for some 5,0 5<_1. If the limit is nonzero for some b>1 then the integral diverges.
Erample 1. If p(s)=p(—s)=e¢,A>0,s=0,

& . 1 1 . .
— ) —JAS — —1,—\T
J; (I—s/T)e=? ds~j)\ jQ)\QT—I—O(T e~ N7, j=1,2,....

Therefore
= (@) = @) L
v ()= 2 T e 2 T e O
=0.35/(NT)—0.33/(NT)>+O(T e 7).
Also

o0 2! @)
01003l —s,m o™l 25 PI(j)2(25) NG 2T2] ()27

A-O(T-1e )

In2 0.17
T eyt 0T e

Hence, if U is the sample median,

var U~ i 0.17 var pp(m)
271'0 T)\O’ZT T2 arprim
2[n2 0.347]71
=2mra? var py(m) [1—}— n 7|
82

Erample 2. 1f p(s):e_ﬁ, a similar calculation shows that

var pp(m)=0.47a/T—0.35a%/ T2+ 0 (T‘ S

The integral (5.6) does not converge and we fail in evaluating the variance of the sample
median by this method. In fact, an examination of the assumptions leading to the equation
(4.7) shows that, in this case, £p7?(£) does not exist so that p,(£) is not differentiable.

Frample 3. let p(s)=cos (ws/k). Instead of using (5.5) to evaluate var pr(m), we
proceed somewhat differently. Note that [6, p. 290]

Pr (Y(£)20, Y (t45)20} = f—zicob o(s), 0=cos~!p(s)=r.
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Hence
varpT(m):%,J;T (1—%) ds—ﬁ,f: (1—-%) cos™ ! p(s)ds.
Now
%(8—2]%), if 2k < s<(2j+ Dk, j=0,1, ...,
—’i (s—27k), if (2j—Dk=s<2k, j7=1,2,....

cos lp(s)=

Let T=k+T,, =0, 0=T,<k. We have

var pp(m)= 4 j=0 I— kaT " < T) cos p(s)ds,
where
1 [ @+Dk < ) I 2
’2f=“/7ff2.k (“%) (s—24)ds=—y 75+ g
J s ~

1 (o SN oo kR
Igj_l—ﬁj(zj—nk(l—yv (== 2T 3T2+T2'

Thus, after some simplification, we obtain

I?—]I,é <3——2-¢>: if /is even

2T

var pr(m)=
12T2<k2 3724 k) if 7 is odd.

Obviously var ps(m)=0 whenever 77=0, [ even, i.e., whenever 7"is a multiple of 2k, the period
of the process, and also var py(m)—0 as T—> .
5.3. x* Process

Let {X;(t)},1=1, 2, ..., n, be independent stationary Gaussian processes with the same
variance, ¢2, and the same autocorrelation function

p(8)=[EX,;(t) X (t+s)— mi] /o>
Define

Y(t)=ié o= X o(8)— ma)2.

{Y(t)} will be called a x? process as the univariate distribution of Y(¢) is a x* distribution with n
degrees of freedom which has the density function

g(2; n[2)=[2"2T (n/2)]"'e~*/2"2~1, for 2>>0,
=0 otherwise.

It is easy to verify that { Y(¢)} is strictly stationary.
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The characteristic function, ¢(u,v), of [Y(¢),Y (t+s)] is easily evaluated to be
d)(u; U):EeiuY(t)+iz'Y(l+s)

=[1—2iu—2iv—4un(1—p¥(s))] =2

e - 40%(s) =P
— _ n/2 DY) n/2
=(1—2iu) (1—2w) l 14+——F 7o) l

(l—ow)(l—
e (CUT@2) (2l -
T & TwR)T(G+1) (1—20u) "2+ (1—2ip) "3+ ’
as
4up 4|up|

(1—24u) (1—2iv) :[(1+4u2)(1+4L‘2)J1/2<]’

the binomial expansion is uniformly convergent.

For a full discussion of the distribution of [Y(#), Y (£+4s)] the reader is referred to [7]. A
technique of obtaining the probability density function of [Y(#),Y (t+s)] will be presented here,
which is also applicable to other distributions which can be expanded in a series of orthogonal
polynomials.

Note the following:

© (,——iuz
(1) g(z;n/2)= f ) (deu,

" (—qu)dem vz

ij gz /‘?)—L e o du
a2 I M e ) =20y ¢

(2) It is easy to verify from the definition of Laguerre polynomials [8, Ch. 5] that, for a >0,
jéa_ 1:

& T'(j+1)T'(a -

o 9633 ) =g(e; a—g) T LRI pjeimo apa),

where

N
L (2) g (j’_*‘i‘ %,

is the generalized Laguerre polynomial of degree ;.
Hence, if n=2—n=1 may be reduced to the Gaussian case discussed in 5.1—, by the
inversion of (5.7). the probability density function, ¢(z,,2.; n/2), of [Y(¢), Y (t-+s)] is given by

[20() T (n/2+j) &’
e, 225 m/D =23 T(n/2)T(G+1) dz

ol .
g(z1; n/2+7) e g(22; nf2+7)

r(j+Hrm/2)

Tt POLTT @)L (=), (5.8)

_g(~1: 71/2)g(~2, 7?//2) ;0
Now, using the first equation in (5.8), we obtain
Pr{Y(t)zy, Y (t+s)= f j g(21; 29;m/2) d 2, d 2y

[2 127 g=il . dit X
=Py P+ 35 BEOL D S gpimia) o= sin/2-+9)

=Pp) Py2) +9yi;n/2+1)g(y2;n/241) Z 2nr(‘3>§(%/;iyg)p2]( .

LD n/2) LiP (y2/2), (5.9)
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where
P(y):f g(z; n/2)dz. (5.10)
v
From (3.6) and (5.9), the covariance of p(¢;71) and p(t-+s;1.),

A(s;y1,y2) =9 yi;n/24-1) g (y2;n/2+1) ZIMFUJ)FP(S%%;;)F) = LMD (1/2) LY (312/2).

Inserting this value in (3.7), we obtain an expression for the covariance of pr(y) and
p2(ys).  The variance is given by setting yi=y.=y.

A special case. n=2 gives a X* process with two degrees of freedom, i.e., the Rayleigh
process.  We find

=

cov {pr(),pr(ye) } = TJ(y1v2)g(y>,~ i

L@ [ (1= ) s, G.11)

The author thanks Dr. E. L. Crow for his helpful discussions during the preparation of
this paper.
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