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Several theorems are proved that give necessary and sufficient

be positive semidefinite Hermitian.

conditions for A-B to

The conditions are in terms of the comparison of

elementary symmetric functions of the characteristic roots of A-+X and B+ X as X varies

over positive definite Hermitian matrices.

1. Introduction

In a recent paper [4]2 M. Stone obtained the fol-
lowing result in reproving certain theorems of
Ehrenfeld [1]: if F and G are positive definite n-square
Hermitian matrices, then

d(I+AF)>d(I+AG) (1)

for all positive definite n-square Hermitian matrices A
if and only if F'—G is positive semidefinite Hermitian.
Here d denotes determinant and henceforth A >0
(>0) will signify that A is positive (positive semi-
definite) Hermitian. F>@ (I'>@) will mean F'— G
>0 (F—G>0). Note that since A >0 if and only if
A71>0 the condition (1) is the same as saying

d(A+F)>d(A+6) (2)

for all A>0. Tt is in the form (2) that we investi-
gate what happens when we replace d by some other
elementary symmetric function of the characteristic
roots. To be specific, suppose £, (r,, . . ., z,)
denotes the 7 elementary sy mmetuc function oi the
indicated variables:

.
Er('rly"'yxn): Hwit-
1<ii<. . .<i:<n t=1
For a fixed r, 1<r<n, let £,(A) denote F£,(N\(A),
- )\,Z(A)) where \;(A), i=1, . . ., n, are the
characteristic roots of A It the \, (A) are real we
will choose our notation so that )\I(A)> R
M(A). Then the problem we pose is to find con-
ditions on the characteristic roots of /' and @ such
that

E.(A+F)>E,(A+G) for all A>0.

We have

TuaeoreEM 1. Assume FF'>0, >0, and 1 <r<n.

1 This research was supported in part by the Office of Naval Research.
2 Figures in brackets indicate the literature references at the end for this paper.
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(|
at follows that
E.(A+F) > E.(A+G) for all A>0. 4)

In case G=1, (3) becomes

IL‘r‘p()‘n(l'v)y" 11+1<ﬁ)>>< ]1))>7 7):07"'7"_]7
(5)

which is both necessary and sufficient for
E.(A+F)>E.(A+1I) for all A>0. (6)

We remark that for r=n the second part of
theorem 1 simply becomes: \,(#)>1 if and only if
A(A+F)>d(A+1) for all A>0. Now in (1)
multiply both sides by d(A'R*R) where R is a non-
singular matrix satisfying R*GR=1, R*FR=K
and we find that

d(R*AT'R+K) >d(R*A'R+1).

Now as A runs over all positive definite matrices so
does R*A7'R and from the above remark we con-
clude that \,(K)>1. The characteristic roots of K
are just the characeristic roots of G='/ and thus

G FG > F>a,
and the result in [4] follows. A somewhat stronger
multiplicative analogue of theorem 1 is available.

THEOREM 2.
Then

Assume F'>0, G>0, and 1<r<n.

L.(AF) > E,(AG) for all A>0 (7)
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.
if and only if I\ (F'@)<1. (8)
j=1
In order to prove these results we use some results
concerning compound matrices and Grassmann prod-
ucts [2]. We give the coordinate definition of these
items and list several of their properties. TIf
., &, are vectors in the unitary space of n-tuples,
= @qa, ..., Tm), 1r<n, then x; A ... A x,1s the

n .
(r>—tuplc whose coordinates are the r-square sub-

determinants of the r><Xn matrix (x), i=1, . . ., r,
=1, ., n arranged in lexicographic order. 1If A

1s an n-square matrix, then C,(A) is the <r>-squaro

matrix whose entries are the r-square subdetermi-
nants of A arranged in doubly lexicographic order
according to the row and column indices of A. That
is, if 1<, < <4, <n and 1<5,< <7,<n
are two increasing sets of r integers then the (7,

« o o 4), Gy, - . ., Jr) element of (’ .(A) is the deter-
minant of the matrix Algy, . . ., 0 ’jl, . . ., 7, whose
(s, t) entry is a;y,. If 2,=j;, s=1, ., 7 we denote

the omrespondmo principal submatrix by Alz, . . .,
7). If A>0 then C,(4A) 20; C,(A)x A ... AZ,=Ax A

. A Az, ;if () is the usual unitary inner product in
the space of m-tuples then (z; A ... AZ, Y1 Ao AY))
=dil@, ) =10

We remark that the condition (3) of theorem 1
will not imply that > @& in the case r<<n. For even
if =1, we can easily construct F so that X\,(F)<1
and }et (3) holds for p=0, ., r—1. However,
there is a direct generalization of Stone’s result to
the compound matrix.

TrreorEM 3. If F'>0,

G >0 and 1<r<n, then

C,(I+AF)>C.(I+AG) for all A>0
if and only iof F'’>G. (9)

Once again, r=n is precisely the result in [4].
2. Proofs

We prove theorem 1.
X=diag (z;, . . ., ).
=FE,(U*AU+ U*FU) —
+K)—E.(X+H) where K=U*FU>0, H=
>0. Let

Lot A=UXU#*, U unitary,

‘hen E,(A+F)—E.(A+ Q)
L (U*AU+U*GU)=E,(X
U*GU
s U)=E(X+K)—

oy, . . . E.(X+H).

Then

o (x1,..., > {d[diag(ra,, . .

AU —
1<ai<. .. <ar<n

+K a1, .. .0,

s %a,)
=@/eber2 (7 o 0 o
+Hlo, ..., al]}.

We see from (10) that ¢ is a polynomial in a;, . . .
r, of degree 7 in which the nonconstant terms form
a multilinear polynomial. Let

o)
(10)

o= 0% =
Piy,eecty (TI; ceny Ly U )““bxil Y (-171, o o of I"ZL )
»

and

iy ooty =iy iy (0,.. ., 0:U).
Then
QO(%],.. IIZL) Z\ Z J','l...(lf[ g&?l...i,
p=01<i1<...<ip<n v P
(11)

where the term corresponding to p=0 is just ¢(0,

..., 0: U). Let w denote the increasing sequence

i1< . < 4,. Unless wis a subset of alé’ o<

the partm] derivative satisfies

07 2
m 10 [( lag (.Ilal, 5 0 o) Ta,)+K[a1 o .OLT]]
(12)
—d[diag (zoy, . . ., #a) +H]au, . . ., &]]}=0.
If wis a subset of < .. <, let o< ... < a*_,be

the ordered complementary set of w in o< . . . < a,.
In this case the derivative in (12) has the value

dldiag (zap, . . ., zo2)+K [, . . ., o]
—d[diag (zar, . . xar,)+H[af, ..., o ,]]. (13)
Setting ;= . . . =x,=0 in (13) we have
91"’ip: Z, fi(l(K[ai”', G ')af'b‘P]
1<a1< .. . <ar<n
—d(H [, . . ., o ), (14)

where > indicates that the summation is taken only
over those ;< .. < «, containing w— (zl< <4,) as
a subset. Retmmno to (11)we sot Ty=...=z;,=tand
all other z;=0. Then ¢(0, . 5 o oy Uy 0 =
t7% .. .1, Lp1(t) where L,_ 113 a polxnommlofdcgro
at most p—1 in t. Since o(xy, . . . U)>0 we
conclude, by letting ¢ increase, that ¢‘}1. - fPZO. Con-
versely, if ¢,.. .i,20 and ¢(0, . . ., 0, U)>0, then
oy, . . ., Ty L)>O for all non- ll(‘édth(‘ Wiy o o oy il
Let ji=< . . .<j,_, denote the set complementary to
<l .. <1p inl, ... n Lete, j=1,... n be
the unit n-tuple with 1 in position 7, 0 elsewhere.
We may rewrite (14) as

Yt =2 {dK [0, . . ., 0,_,]—
=2"{(Cr—p(K)es A
—(Cr—p(H)es A . .
=23 (Cr—p(F)ug, A
—2(C—(Gue A ..

dH (o, . . .,

ar—pl}

Al A

1
Al €A AC )}

CA U U A

LA U,

r—p’

(15)

Ug A .o A u,m),
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where 277 indicates that the summation extends over
precisely those increasing sequence o< . . . <o, ,
which are subsets of 7<"". . .<j, ,. Also w,= Ue,,
Jj=1,..., nis an orthonormal set of vectors (recall
that U/ is unitary). We use an extremal result in
[3: theorem 1, p. 525] to conclude from (15) that
) ..AiPZEr~p()‘p+1(F))

)

- M)

—E,,(M(G), - My (6) 20

In case G=1 we have from (15) again that

72 ' r— p(F u"l

AU

(n D

Ug A ... )
for all choices of sets of n—p orthonormal vectors
Uy, . . . Un_p, and another application of the above
cited extremal result completes the proof.

To proceed to the proof of theorem 2, choose a
nonsingular R such that F=RR* G=RDR*,
D= dld"‘ \(FE), o MFT'G)). Let P be an
mbltr(uv nonsingular matrix and since any A >0 is
of the form (1’1{ H*(PR™'Y) we have that (7) is
equivalent to

E.(PRHY*(PRYRR*>FE,((PR")*(PR™")RDR*),

E.(P*P) > E,(P*PD),
or

E(A)> E.(AD) for all A >0 (16)

In (16) replace A by VXV* V N=diag

unitary,

(x1, . . ., z,) >0 to obtain

E.(X)>E.(XH), H=V*DV
. tr[C(X)(I—C,(H))]= (17)
where 7 is the (?)-square identity matrix. [t is not

difficult to check that (17) holds for all non-negative
diagonal X if and only if every diagonal element of
[—C,(H) is non-negative. That is,

eal/\ o o

1—(C(V*DV)eaA . . . Aea,

CAee)2>0

must hold for all V and all 1<a< .. <a,<n. But

this is precisely equivalent to

(Cr(D)a A . Ala,  Ua A . Al ) S

for all orthonormal u., . . ., %.. Asin the proof
of theorem 1 we have finally that (7) holds if and
only it (8) does.

To prove theorem 3 it will be convenient to let =
denote the relation of Hermitian congruence. Then
if A>0,

C,(I+AF)—C,(I+A®)=C,(A)
(/A7 F)—C A7+ 6) )£ (C, ()

[C (A4 F)—C (AT H-G) [(C(A)) 712

This ]ast matrix has the same roots as the Hermitian
matrix C,(A™'+F)—C,(A7'+G) and hence (9) is
equivalent to

C.(A+F)>C,(A+@) for all A>0.

Now

C(A+F)—C(A+G)=C,(A+F)—(C(@))"?
C.(G2AG~ 1+ 1)(C, (G))”?é(’ (G 12AG~12
GTPHGTYS—C(G12AG7 3 T).
Thus (9) is equivalent to
C,(A+H)—C,(A+1)>0

for all A >0 (18)

where H=G"2HG /2.

By a unitary congruence we may assume /{=diag

(hy, . . ., h,)andbysetting A=diag (2, ...,z,) >0
we see that

T T

I1 (e, +hi) > TI (2,4 1)

t=1 t=1
for any non-negative numbers z;, . . ., x;. This
clearly implies that each h,>1, =1, SR
Thus, 0> H—I=G""2FG-"*—[=F—QG.

Conversely suppose F'—G >0. Then /> 1 and if
we set B=A-+41>

-0 we would like to conclude that

C.(A+H)=C.(B+H—I)>C,(B)=C.(A+1). (19)
But (19) is equivalent to
C.(I+K)>C.(I), K=B'"*(H—-I)B~V*. (20)

After a unitary congruence (20) reduces to
C.(I+diag (ky, . . ., k,))>C.(),

where £,>0 are the characteristic roots of K. The
proof is complete.
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