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Special Types of Partitioned Matrices

Emilie V. Haynsworth*

(September 14, 1960)

This paper extends the results of two previous papers on partitioned matrices.

General

reduction formulas are given for partitioned matrices A of order np satisfying A(X < 1,)
= (X X[I,)B, where B is a matrix of order »p and X X7, represents the direct produet of an

n Xr matrix X of rank r with the identity matrix of order p.

These formulas are related

to the formulas given in the previous papers for partitioned matrices satisfying A/, x X)

= (I,XX)B.

1. Introduction

In a recent paper L. S. Goddard and H. Schneider
[4] ' discussed the relationship between matrices A
and B, of orders n and m respectively, which satisfy

AX=XB )

for some 7 Xm matrix, X, of rank » >0.

The results of Goddard and Schneider were gen-
eralized in a paper by the author [5] for partitioned
matrices A and B, in which corresponding sub-
matrices (or blocks), A;; and B, satisfy an analogous
relationship to that given by (1); i.e.,

A ;X=X By, ) (2)
where A,; is n;Xn;, X, is n,Xm; of rank r;, and B
18 m <X my.

If, in (2), each A, is square, of order n, B, is
square of order », and all X, are equal to an nx<r
matrix, X, of rank », then A is of order pn, B of
order pr, and (2) can be written

AL XX)=(,XX)B, 3)

(iy=1,

where (1,><.X) is a pn X pr matrix which is the direct
product of the identity matrix of order p with the
matrix X i.e.,

X
X

=

X

*Present address: Auburn University, Auburn, Ala.
! Figures in brackets indicate the literature references at the end of this paper.

(The general definition for direct products is given in
section 3.)

It was shown by the author in [6] that, given a
matrix A satisfying (3) for some matrices B and X,
there exists a matrix £, which can be constructed

from .\, such that

B *
PlAP— : (4)
0

so that pr of the roots of A are the roots of B.  Thus,
if #<<n, or of B is reduced, (4) gives a reduction for-
mula for A. Naturally a matrix satisfying (1)
satisfies (3) with p=1.

In theorem 2 of this paper a similar reduction
formula to those for matrices satisfying (1) and (3)
is given for partitioned matrices A of order pn
satisfying

AXXI,)=(XXI,)B, (5)

for some n>Xr matrix X of rank 7, and the corre-
sponding partitioned matrix B of order pr. The
relationship between matrices satisfying (3) and
(5) 1s discussed more fully in the next section.

Other reduction formulas for partitioned matrices
are contained in the results of B. Friedman [3],
S. N. Afriat [1], and J. Williamson [10]. These
formulas will be shown to be special cases of theorem
2.

The reduction formulas given in section 5 are
applied in section 7 to certain special partitioned
matrices. In particular, a 9X9 matrix, involving
an arbitrary parameter 8, which arose in a problem
on lattice points at the Bureau of Standards, is
reduced by these formulas to a set of matrices of
order 4, 2, 2, and 1 and from these reduced matrices
all eigenvalues are found as functions of S.



2. Inner- and Outer-Related Partitioned
Matrices

The formulas (1), (3), and (5) may be related by
the matrix X. For instance, if the matrix 4 in (1)
is a circulant matrix,

QG W - . Ay Ay
Ap—1 QAo - - - Ap—3 Ay_2

A= , (6)
ay Ay - . . Ap_1 Qg

and X is the matrix of its characteristic vectors,
then the related matrix satisfying (3) will have each
of its submatrices a circulant of order n, and the
related matrix satisfying (5) will be in circulant
form;i.e.,

AO A1 555 [’1,1_1
4/1n,1 A() .« o . An_g

A . @)
A Ay ... A

A matrix satisfying both (3) and (5) would be one
which has the form (7), where each submatrix A;
has the form (6). D. E. Rutherford [9] has given
reduction formulas for matrices of this type as well
as for matrices related to tridiagonal matrices.

We will call matrices satisfying (3) “inner-related”
partitioned matrices, or i.r.p. matrices, those satis-
fying (5) ‘“‘outer-related,” or o.r.p. matrices, and
matrices satisfying both conditions “doubly-related,”
or d.r.p. matrices.

We shall show that dual reduction formulas exist
for o.r.p. and i.r.p. matrices and indeed that an o.r.p.
matrix can be put into i.r.p. form by a simultaneous
permutation of rows and columns.

Since the formulas (3) and (5) are stated in terms
of direct products, the general definition and three
of the properties of direct products are given in
section 3.

3. Direct Products of Matrices

W. E. Roth [8] derives some interesting results on
direct product matrices and gives the general defini-
tion for rectangular matrices, together with some of
the properties. The three properties needed for our
results are given after the definition below. Most of
the properties of direct products can also be found
in MacDuffee [7], although he deals only with square
matrices.

The direct product of an m>n matrix, A, and a
p>X ¢ matrix, B, in that order, is an mpXng matrix
defined as follows:

allB (LLQB ayy, B

anB  a»B s, B
AX B=

am B @B pn B

Three properties of direct products:
1. If the products AC and BD exist,
(AXB)(OXD)=ACXBD.
2. If A and B are nonsingular,
(AXB)'=(A'XB™.

3. If Ais an mXn matrix and B is a p><¢ matrix,
AX B=P(BXA)Q, where P and () are obtained
from the identity matrices [I,, and I,, by
simultaneous permutation of rows and columns.

4. Similarity Between O.R.P. and L.R.P.
Matrices

Tarorem 1: If A is an outer-related partitioned
matriz of order pn, with square blocks of order p,
satisfying (5), then A can be transformed by simul-
taneous permutation of rows and _columns into an
iner-related partitioned matriz, A, with blocks of
order n, satisfying (3).

Proor. Suppose A satisfies (5). Using property
3 of direct products, given above, there exist non-
singular permutation matrices, £ and @, such that

XXI,=P(I,XX)Q. (8)
Then, from (8) and (5),
A[P(I, X X)Ql=[P(I,X X)Q]B,
or
(PLAP)(I,X X)=(I, X X)(@BQ™).

So, if we let

A=P-1AP, B=QBQ,

the relationship (3) holds for A and B, and, since P
is a permutation matrix, A is obtained from A by
simultaneous permutation of rows and columns.

From this theorem we can reduce any o.r.p.
matrix, if we know the reduction formula for the
Lr.p. matrix, by first permuting the rows and
columns and then using the i.r.p. reduction formula.
However, it is usually much simpler to use the
direct reduction formula for o.r.p. matrices which is
given in the next section.



5. A General Reduction Formula

TuarorEM 2: Suppose we have a matriz A of order
n satisfying (1), or a matriz of order pn satisfying
(3) or (5) for some corresponding matriz B, where X
is @ given nXr matrix of rank r.  Then in each case
there exists @ matriz P, depending wpon X, such that
(4) holds, so that B contains r (or pr) of the roots of A.

The only new result here is the formula for a
matrix satisfying (5), as the formula for a matrix
satisfying (1) was given by Goddard and Schneider
[4], and the one for a matrix satisfying (3) was given
by the author in [6]. The three transformation
matrices are given below, however, in order to show
the relations among them, but the proof is not given
in detail as it appears in the other papers.

Proor. Since X is an nX7r matrix of rank 7,
we will assume
e
NES ) 9)
e

where X is a nonsingular (#>7) matrix, for if a
permutation of the rows of X is necessary to achieve
this, it can be matched by a simultaneous permuta-
tion of the rows and columns of A;i.e., a permutation
of the rows of X is equivalent to left multiplication
by a nonsingular matrix ¢, but a matrix A which
satisfies (1) also satisiies
QAQ'(QX)=(QX)B. (10)
In each case below we will use the matrix 22,
which we construect as follows: The first » columns
of R are those of the n><7» matrix X, which we assume
to have the form (9). The remaining n—7r columns
consist of an 7 X (n—r) block of zeros and the identity
matrix of order n—7, i.c.

X, 0
= : (11)
‘\V'.’ ]n—r
Then
X 0
e : (12)
_‘\72" 71—1 In =7

Using R we can construct the transformation
matrices for nonpartitioned matrices satisfying (1),
or partitioned matrices satisfying (3) or (5) or both.
Case 1.

Suppose A is an 7 Xn matrix satisfying (1) where
X is an 7n<r matrix of rank » and B is an »Xr
matrix. It was shown by the author in [6] that (4)
holds for the matrix A if we let P=FR.

Case 2. I.R.P. matrices

If A is a partitioned matrix of order np, with
blocks of order n, satisfying (3), A also satisfies (1)
where the matrix 7, <X replaces the matrix X. In

Non-partitioned matrices

57606961

this case it was shown by the author in [6] that, if
we let P=1,X R, then

PlAP=A,

where A can be put into the reduced form on the
right side of (4) by a simultaneous permutation of
rows and columns. 1In this case B 1s of order pr.

Case 3. O.R.P. matrices

If A is a partitioned matrix of order np, with
blocks of order p, satisfying (5), then A also satisfies
(1) with X replaced by

X,x1,
(‘Yxlp): )
X, %1,

where, by property 2 of direct products, since X is
nonsingular, X, >/, is nonsingular. Thus, if we let

X<, 0
P=RXI,= :
‘\’g><],1 1117r><[p

(13)

(4) will hold in this case also, and B will again be
of order pr.

D.R.P. matrices

If A is a matrix of order np, with blocks of order
n, and satisfies both (3) and (5), i.e.

A=) 133,
AL (U3 0=, 7)) ©)

Case /.

and

where X'is p >(r and Y is n s, then A can be reduced
twice. For, by case 3, if we let P,=R,<1,, where
R, is the p X p matrix given in case 3, we have

B =
1’{1;1])1: )
0 D

where B is of order nr and D is of order n(p—7).
It is clear that premultiplication and/or post-
multiplication of a partitioned matrix A , with blocks
of order n, by a matrix whose blocks are scalar
multiples of the identity matrix of order n produces
a matrix whose blocks are linear combinations of
the blocks of A.
Also, if any set of matrices has the property that
AN =2K058 =1, . . . ,0)
then
2 (e 4 X)=2>] (e; X By,

or

(22 e Ay) X:X(Zci B)),

so that any linear combination of the set satisfies
an equation of the form (1) with the same matrix X.



Hence the matrices B and D satisfy

B(I,XY)=(I,XY)E,
D(,_, XY)=(I,_,XY)G,

where /£ is of order s and @ is of order s(p—r).
Then, by case 2, there exist matrices Py and P, such

that
E *
P;lBPB:< >,
0 F

G £
/255 ‘DPD:< >
0 H

Thus, the roots of A are those of the matrices E, F,
G, and H, of order rs, r(n—s), s(p—r), and (n—s)
«(p—7), respectively.

It would be easier in this case however, to multiply
the two transformation matrices 2,71, and I 2 X Ry,
where R, is the nXn transformation matrix corre-
sponding to the matrix in case 2, and obtain, by
property 1 of direct products, the single transforma-
tion matrix, P=R, X R,, which could be used to put
A into the reduced form,

E* * *
o Fox s
PAZ:O 0 G *

0 0 0 I

For example suppose

A B
S= ,
¢ D)

where A, B, C, and D are 33 stochastic matrices,
ie.

3
Z @ =a,
j=1
3
Z bi]:b,
Jj=1
3
Z C,']—C,
j=1
3 .
Z (lij:d; (2:1. 2, 3)
=1

then §is an i.r.p. stochastic matrix as discussed in
reference [6].
If we have also

A+B=C+D,
then S'is a d.r.p. stochastic matrix.

10

Since a stochastic matrix with row-sum s has one
root s with corresponding eigenvector (1, 1, . 1)

(cf. A. Brauer, [2]), the matrices R, and R, would be
L0 0
1 0
R1: y Rgi 1 1 ()
1 1
1 0 1
Then
s 0
P:lelxl?z: 5
R, R,
and
IH5" 0
P'=Ri'XR;'= :
—R;! IR
So
R;yY(A+B)R, R;'BR,
(PP =
0 Ry (D—B)R,
a+b * b e
0 442+B2 0 Bg
_L 0 0 d—b @ *
0 0 0 D,—B,
where

U912 Ag3— 13
A2:< >’
Q30— A3 33— Q13
and B, and ), have similar forms.
Another example using i.r.p. and o.r.p. transfor-
mation matrices 1s given in section 7.
In each of the above cases, if 7=n, the matrix P is
much simpler; i.e., for 1, P=X, for 2, P=1,%XX,
for 3, P=X X1, and for 4 if s=p, P=XXY.

6. Theorems by Williamson, Afriat, and
Friedman

It was shown by the author in [6] that Williamson’s
theorem [10] on partitioned matrices follows from
theorem 2, part 2, (theorem 1 in [6]), where r=n
and the matrices B, are triangular.

S. N. Afriat [1] gives a general discussion with a
number of theorems on the determinant and charac-
teristic roots of partitioned matrices, A= (A;;), in
which the submatrices A,; all commute. One of his
results is a generalization of Williamson’s theorem
and shows that if the roots of the commutative
matrices A;; are NP (k=1,...n;i5=1,...p) then
the roots of the partitioned matrix A= (A,;) are
roots of the matrices \y=(\{). Since, as Afriat
preves, commutative matrices can be simultaneously



reduced to triangular form by the same unitary
transformation, it is clear that A= (A, satisfies (3),
where .Y is the unitary matrix in question, and the
corresponding matrices, B ;, are triangular of order n.
So Afriat’s result on the characteristic roots of A also
follows from theorem 2.

Theorem 2 also provides a new proof for the
following theorems by Friedman [3].

Tuaworem I.  Let Ay, As, . . ., A, be n-dimensional
square matrices and By, By, . . ., B, be p-dimensional
square matrices.  Suppose that Ay, As, . . ., A, have a
common eigenvector, ¢, and the corresponding eigen-
values are Ny, No, . . ., \; respectively.  Then p of the
eigenvalues of

O:BIXA1+BJ><A2+ . . +]3t></1t (14)
will be eigenvalues of the matriz
D=X\B;+NB,+ . . . +\B.

As Friedman points out, this is a generalization of
the well-known theorem that the eigenvalues of
B XA are the products, \pu; (i=1, s =1l
. . .p), where \; are the roots of A and u; are the
roots of B.

Tueorewm 1. Let C be the matriz considered in
theorem 1.  Suppose the ring generated by the matrices
Ay, .. LA has an r-dimensional representation (r<n)
in which the matriz Ay is represented by M. Then pr
of the eigenvalues of C are eigenvalues of the matriz

D=B,XM,+B;XM,+ . . . +B XM, (15)

Since theorem II contains theorem I as a special
case with 7=1, we will only prove theorem I1I.

Proor. Friedman shows in his proof that the
statement, “A; is represented by M,,” is equivalent
to

A X=XM,, (=1l ot (16)
where the columns of the matrix X" are the basis
vectors for the subspace.

Let the domcnts of the matrix By be b{P (i,j=1,

708 = )

Thon llom (14) (' is a partitioned matrix of order

pn with blocks of order n,

-~

Oy=323b84r  (g=1,...0. ()
From (16)
é:lb ) (A,X) éb‘f} XM
=5 g‘i EM,  (,5=1,...p). (18)
So if we let
:lgtl BOM,  (=l....p)  (19)

11

then D= (D,;) is the matrix defined by (15) and we
have, from (17), (18), and (19)
01‘) X:XI)U (i;j:]: c ';p)) (20)

so that the matrices ' and D satisfy (3). Thus, by
part 2 of theorem 2, there exists a matrix P such that

D *
B
P CP_<O L) (21)

so that pr of the roots of € are roots of ). More-
over, if the matrix X is known, [) and ¥ can be found
explicitly by using (11) to construect P.

7. An Application to a Lattice Point Problem
The example below is a matrix which arose in a

problem involving lattice points at the National
Bureau of Standards:

4 —1 —1 B h
—1 4 —1 —8 -1 8
—1 4 —8 —1
—1 —8 4 —1 S
o= B8 —1 —B —1 AR B
g —1 1 4 —8 —1
—1 -8 4 —1
B —1 —B —1 4 —1
- g —1 —1 4)
If we partition o, into 33 submatrices we see
A B 0
/=BT A B} (22)
0 BT A
D. E. Rutherford [9] shows that a tridiagonal
matrix,
(a b 3
b a b
b a b
=
b a b
\ b a)

has characteristic roots which may be written in the
form N\,=a-+2b cos 0, where §,=kr/n+1, k=1,

The characteristic vector corresponding to N\, is
(23)

2= (sin 6y, sin 260, . . ., sin ny).



The transformation for an i.r.p. tridiagonal matrix
was given by the author in [6] and Rutherford also
gives all the roots in the d.r.p. case.

The example (22) falls into none of the above
categories, however, since B B5”; but we show how
the transformations discussed in section 4 can be
used to simplify the matrix so that five of the roots
may be found without having to solve an equation
of degree higher than 2. T am grateful to D. E.
Rutherford of the University of St. Andrews for
giving me the other four roots.

We first use the transformation matrix, P, = (X X 1)
where X is the matrix of vectors (23) for a 323
tridiagonal matrix;i.e.,

1 V2 1
: :% N5 0 —42| X=X,
1 —+2 1 J
and 7 is the identity matrix of order 3. Then we find
A—+21 CT 0
B =Pi'.of Pi= C A (05 )
D C At+42r
where
0 g 0
— Z
o B=B_{ o 4l
2
0 —B8 0

. . _
Since A and also the matrices A++2 I are all
tridiagonal, we now use the transformation matrix

P,= (I XX) and find

( D—2TI C* 0 ]
=P B y= (0] D ¢ ,
L 0 C D21 J

where
F=diag (4—~/2, 4, 4++/2).

If we write the rows and columns of % in the order,
826435791, we obtain the matrix

E 0
D= ,
* Iﬂ

G H K L
E: ’ F:< >,
HG L™ M

with

12

where

) 1 0 01
e

and M=diag(4-+2v2, 4—2, Thus £ is an o.r.p.
circulant, so the roots of £ are those of G-F and
G—H, which are 44+ 8++/3*+2.

Since K is tridiagonal, let

/X
1)3: &
1,

L=

Then
(4—+/28 B2 B2 )
4
P;'Fy= 4++28 —B/NZ —B/V2
B/V2 —B/V2 4+242
B2 —B/~2 4—242

Thus 4 is a root of this matrix, and when we
delete the second row and column, we are left with
a 4 >4 matrix. I was unable to reduce this further
by any relatively simple similarity transformation.
However, D. E. Rutherford has found the other
four roots of F:

44+/82+28+2++/82—28+2.
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