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Special Types of Partitioned Matrices 

Emilie V. Ha ynsworth * 

(September 14, 1960) 

This paper extends t he results of two previous papers on partitioned matrices. General 
r ed uction formulas are given for partition ed matrices A of order np sa tisfying A (X X J p ) 

= (X X J p) B, \I' h ere B is a matrix of order r p and X X J v r epresen ts the direct producL of a n 
n X r matrix X of rank r with th e id entity matrix of order p . These formu las are r elated 
to the formulas given in t he previous papers for pa r t ition ed matrices satisfying A (J pX X ) 
= (JpX X )B . 

1. Introduction 

In fl, recent paper L. S. Goddard and H . Schneider 
[4]1 discussed the relationsbip beLween maLrices A 
and B, of orders 11. and m respeclively, which salisfy 

AX= XB (1 ) 

for some n X m matrix, X , of fH,nk 1'> 0. 
The results of Goddard and Schneider \\'ere gen­

eralized in a paper by the au Lhor [5] for parLitioned 
matrices A and B, in which corresponding sub­
matrices (or blocks) , A ij and B ill satisfy an analogoLl s 
relationship to that given by (l); i .e., 

(i,j = l , . . . ,p ) (2) 

where A i} is n i X nll X i is ni X m i of rank 7' i , and B ij 
is mi X m j. 

If, in (2), each A ij is square, of oreler 11., B ij is 
square of order 1', and all LY i fl,re eq ufl,l to fl,n 11. X 7' 

matrix, X, of rank 1', then A is of order pn, B of 
order p1', and (2) can be written 

(3 ) 

where (I pX X ) is a pn X p7' matrix which is Lhe direct 
product of tbe identity matrix of order p with the 
maLrix X ; i.e., 

X 
X 
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(The general definition fOl' clirecl producls i gIven m 
section 3.) 

It was shown by Lhe auLhor in [6] that, given a 
malrix A saLisfying (3) for some maLrices B and X , 
Lhere exisLs a Illitll'ix P, \ 'hich Ctlll be constru clcd 
from X , sllch thaL 

(4) 

so thaL pr of the rooLs of A are Lhe rools of B. Thus, 
if 1'<11., or of B is reduccd, (4) gives fl, rcduclion for­
mula for A. Naturally a maLrix satisfying (1 ) 
sfl,tisfi es (3) with p = 1. 

In thcorem 2 of Lhis paper a similar reduction 
formula to those for m atrices sfl,tisfyin g (1) and (3) 
is given for parlitioned malriccs A of oreler pn 
salis fyin g 

(5) 

for some n X 7' malrix X of rank T, and the corre­
sponding partitioned matrix B of order P7'. The 
relationship bctween matrices satisfying (3 ) and 
(5) is discussed more fully in the next section. 

Other reduction formulas for partitioned matrices 
are contained in the results of B. Friedman [3], 
S. N. Afriat [1], and J. Williamson [10]. These 
formulas will be shown to be special cases of theorem 
2. 

The reduction formulas given in section 5 are 
applied in section 7 to certain special partitioned 
matrices. In particular, a 9 X 9 matrix, involving 
an arbitrary parameter {3, which arose in a problem 
on lattice points at the Bureau of Standards, is 
reduced by these formulas to a set of matrices of 
order 4, 2, 2, and 1 and from these reduced matrices 
all eigmwalues are found as functions of {3. 



2 . Inner- and Outer-Related Partitioned 
Matrices 

The fonnulas (1), (3), and (5) may be related bv 
the matrix X. For instance, if the matrix A in (1) 
is a circulant matrix, 

ao al a._, a'-'l 
an- I ao an-3 an- 2 

A = 

J 
(6) 

al a2 an- I ao 

and X is the matrix of its characteri s tic vectors, 
then the related matrix satisfying (3) will have each 
of its submatrices a circulant of order n, and the 
related matrix satisfying (5) will be in circulant 
form; i.e., 

Ao Al An-I 

An- I Ao A n- 2 
A = (7) 

Al Az Ao 

A matrix satisfying both (3) and (5) would b e one 
which has the form (7), where each submatrix A i 
has the form (6). D. E. Rutherford [9] has given 
reduction formulas for matrices of this type as well 
as for matrices related to tridiagonal matrices. 

We will call matrices satisfying (3) "inner-related" 
partitioned matrices, or i.r.p. matrices, those satis­
fying (5) "outer-related," or o.r.p. matrices, and 
matrices satisfying both conditions "doubly-related," 
or d.r.p. matrices. 

W e shn,ll show that dual reduction formulas exist 
for o.r.p . and i .r.p. matrices and indeed that an o.r.p. 
matrix can be put into i.r.p. form by a simultaneous 
p ermutation of rows and columns. 

Sin ce the formulas (3) and (5) are stated in terms 
of direct products, the general definition and three 
of the properties of direct products are given in 
section 3. 

3. Direct Products of Matrices 

W. E. Roth [8] derives some interesting results on 
direct procluct matrices and gives the general defini­
tion for rectangular matrices, together \\,ith some of 
the properties. The three properties n ceded for our 
results are given after the definition below. Most of 
the properties of direct products can also be found 
in MacDuffee [7], al though he deals only with square 
matrices. 
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The direct product of an m X n matrix, A , and a , 
p X q matrix, B, in that order, is an mp X nq matrix 
defined as follows: 

ranR 
al2 B al nB 

aJ[B aZ2B a2nB 
A X B = -

l",B a",2 B am1).. B 

Three properties of direct products: 
1, If the products AC and BD exist, 

(A X B) (CX D) = ACX BD. 
2. If A and Bare nonsingular, 

(A X B) - I= (A- JX B - J). 
3. If A is an m X n matrix and B is a p X q matrix, 

A X B = P(B XA) Q, where P and Q are obtained 
from th e identity matrices I mp and I nQ by 
simultaneous permutation of rows and columns. 

4. Similarity Between O.R.P. and LR.P. 
Matrices 

THEOREM 1: If A is an outer-related partitioned 
matrix of order pn, '1J)ith square blocks of order p , 
satisfying (5), then A can be transformed by simul­
taneous permutation of 1'"OWS and _columns into an 
inner-related partitioned matrix, A, with blocks of 
order n, satisfying (3). 

PROOF. Suppose A satisfies (5). Using property 
3 of direct products, given above, there exist non­
singular permutation matrices, P and Q, such that 

(8) 

Then, from (8) and (5), 

A [P(IpX AjQ]= [P(IpXX)Q]B, 

or 

So, if we let 

A - P - IAP - , 

the relationship (3) holds fQr A and B, and, since P 
is a permutation matrix, A is obtained from A by 
simultaneous permutation of rows and columns. 

From this theorem \ve can r educe allY o.r.p. 
matrix, if we know the reduction formula for the 
i,r.p. matrix, by first permuting the rows and 
columns and then using th e i .r.p . reduction formula. 
However, it is usually much simpler to u se the 
direct reduction formula for o,r,p . matrices which is 
given ill the next section. 



5. A General Reduction Formula 

THEoHEM 2: Suppose we have a matrix .J1 oj order 
n ati jying (1), or a matrix oj order pn satisjyin[J 
(3) 01' (5) jor some corresponding matrix 13, where X 
is (~ given nXr matrix oj Tank r. Then in each case 
there exists a matrix P , depending upon X, such that 
(.n holds, so that B contains l' (or PI') oj the roots oj .J1. 

The only new res ult hore is the formula for a 
maLrix: satisfying (5), as the formula for H, m a tr ix 
s<tLisfying (1) was given by Goddard and Schneider 
[4], and the one for a matrix satisfyin g (3) was given 
by Lhe a,uthor in [6]. The three transformation 
maLrices axe given below, however , in order to show 
tho rclaLions among them, but the proof is not given 
in deUtil as it appears in the other paper s. 

PROOF. Since X is an n X r 1l1rttrix of rank 1', 

\\"e will H,ssume 

(9) 

wh erc Xl is a non singular (r X r) JlI<tLrix, for if a 
perll1uLation of the 1"01\'S of X is noco sary Lo achievc 
t his, iL can be maLched b y a simul taneo us pefll1u La­
Lion of Lhe rows and col ullllls of.J1; i. c., a pOl'l1lulnLioll 
of the rows of X is eq uiva.lellL Lo lefL Jl1ul LiplicaLion 
by rt 11011singular malri x: Q, buL it mittrix .J1 whid 

aLi fies (1) also sa lis:oes 

Q.J1Q - l(QX) = (QX)B. (10) 

I n each case belo IV we IV ill use Lh o llht trix Ji, 
which we consLruct as follows : Tho first l' column 
of R a,re those of the n X T maLrix X, which we assume 
to have the form (9). Tlw rellHtining n - r column s 
consist of an r X (n-r ) block of zeros and Lhe idenLiLy 
matrix: of order n - r, i.e. 

(11) 

Then 

(12) 

Using R we can construct the transformation 
malrices for nonpartitioned matrices srtLisfying (1), 
or parLiLioned matrices satisfying (3) or (5) or bo th. 

Case 1. Non-partitioned matrices 
Suppose .fl is an n X n maLrix satisfying (1) wher e 

Lhis ca e it was shown by the au thor in [6] that, if 
we let P = I pX R, then 

where .J1 can be put into Lhe reduced form on the 
right side of (4) by a simulLaneo us permutation of 
rows and columns. In this case B is of order Pl'. 

Case 3. D.R.P. matrices 

If .J1 is a partitioned mrtLrix of order np, with 
blocks of order p, satisfying (5), then .J1 also satisfies 
(1) with X replaced by 

where, by property 2 of direct produ cts, sin ce Xl is 
nonsing ular, ,XI X l p is llon sing ulnr. Thus, if we let 

(13) 

(4) will hold i n Lhis case also, and B wiU rtgain be 
of oreler Pl'. 

(lase 4. D .H.P. mat1'ices 

1£ .fl is ,1 matrix of order np, wiLh blocks of order 
n, and rtLis (ics boLh (3) and (5), i .c . 

and 
.J1 (XX I n) = (X X I n) B, 

.J1 (I pX Y ) = (I pX Y) C, 

wllerc X is p X l' and Y is n Xs, Lhell .J1 can b e reduced 
t ll"ice. For, by case 3, if we leL PI= RI X l n, where 
RI is Lhe p X p maLrix giycn ill case 3, we have 

wh ere B is of order n1' a nd D is of order n(p-r). 
It is clear that premulLiplicaLion and /or post­

multiplicrtLion of a partitioned m atrix.J1 , with blocks 
of order n, by a matrix whose blocks are scalar 
multiples of the identi ty matrix of order n produces 
a matrix whose blocks are linear combinations of 
the blocks of .J1. 

Also, if any set of matrices has the property that 

(i= l , ... , t ) 
X is an n X r matrix of rank I' and B is an r X r then 
matrix. It was shown by the author in [6] that (4 ) 
holds for the matrix .J1 i1' we let P = R. 

Ca e 2. TR.P. matrices 

If .J1 is rt partitioned matrix of order np, with 
blocks of order n, sali sfy in g (3), .J1 also satis:fies (1) 
where Lhe matrix 17J X X replaces the J1)rttrix X. In 

576060 61 - 2 9 

or 

so that any linear combination of the se t satisfi es 
an equation of the form (1) wi th the same matrix X. 



H ence the ma trices B and D satisfy 

B (I rXY) = (I rXY )E , 

D(111- rX Y )= (I p-rXY )G, 

where E is of orcl er 1'S and G is of order s (p - 1'). 
Then, by case 2, there e:'\''1st matrices PE and PD such 
that 

Thus, the roots of .11 are those of the matrices E , F, 
G, and H , of order 1's, T(n -s), s(p-1'), and (n-s) 
·(p -1'), respectively. 

It would be easier in this case however , to multiply 
the two transformation matrices R IX I n and I p X R 2, 

where R2 is the n X n transformation matrix corre­
sponding to the matrix in case 2, and obtain, by 
property 1 of direct products, the single transforma­
tion matrix, P = R 1 X R2, which could be ust'd to put 
A into the reduced form, 

rE 
* * * 

P-'AP~l: 
F * * 

0 G * 

0 0 H 

For example suppose 

~vhere A, B , 0, a nd Dare 3 X 3 stochastic matrices, 
I.e. 

Ci= l , 2, :3) 

then S is an i.r.p. stochastic matrix as discussed in 
reference [6J. 

If we have also 

then S is a d.r.p. stochastic matrix. 
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Since a s tochastic matrix with row-sum s has one 
root s with corresponding eigenvector (I , I , ... , 1) 
(cf. A. Brauer, [2]), the matrices RI and R2 would be 

Then 

and 

So 

ra
:

b 
* b * 

1 A 2+ B2 0 B 2 

~l 0 0 d- b 

D'~BJ 0 0 0 

where 

and B2 an d D2 have silnilar form s. 
Another example using i .r.p. and o.r.p. transfor­

ma tion matrices is given in section 7. 
In each of the above cases, if T= n, the matrix P is 

much simpler ; i.e., for I , P = X, for 2, P = I pX X, 
for 3, P = X X I p and for 4 if s= p, P = X X Y . 

6. Theorems by Williamson, Afriat, and 
Friedman 

It was shown by the author in [6J that Williamson's 
t heorem [10J on parti tioned matrices follows from 
theorem 2, part 2, (theorem 1 in [6]), where T= n 
and the matrices B tj arc triangular . 

S. N. Afriat [1 ] gives a gener al discussion with a 
number of theorems on the determinant and charac­
teristic roo ts of partitioned matrices, A = (Atj) , in 
which the submatrices A ij all commute. One of his 
results is a generalization of Williamson 's theorem 
and shows t hat if t he roots of the commutative 
matrices A ij arc AU' (k = l , . . . ,n; i,j= l , .. . ,p) then 
the roots of the parti tioned matrix A = (A i}) are 
roo ts of the matrices f.. k= ( f.. ~;») . Since, as Afriat 
proves, commu tative matrices can b e simultaneously 



reduced to triangular form b y the sam e unitary 
transformation, it is clear that A = (Ai,) atisfies (3), 
where X is the unitary matrix in question , and the 
cOl'l'esponding matrices, B ii> are triangular of order n. 
So Arriat's result on the characteristic roo t or A also 
follows from theorem 2. 

Theorem 2 also provides a n ew proof for the 
following theorems by Friedman [3] . 

THEOREM 1. L et AI, A 2 , • •• , At be n -dimensional 
square matrices and B I , B2, • •• , B t be p-dimensional 
square matrices . Suppose that AI, A 2, ••• , A t have a 
common eigenvector , .\, and the corresponding eigen­
values are :>-'1, A2, ... , :>-. £ respectively. Then p oj the 
eigenvalues oj 

then D = (D 'j) is the matrix defined by (15) and we 
have, from (17), (18), and (19) 

(i,j= 1, . . . ,p), (20) 

o that the matrices C and D satisfy (3). Thus, by 
part 2 of theorem 2, there exists a matrix P such that 

(21) 

so that pr of the roots of C are roots of D. More­
over, if the matrix X is known, D and E can b e found 
explieitly by using (11) to construct P . 

(14) 7. An Application to a Lattice Point Problem 

will be eiger,values oj the matrix 

D= AIBI + A2B2+ ... + :>-' tB t. 

As Friedman points out, this is a generaliza Lion of 
the well-known theorem that the eigenvalues of 
B X A ar e the products, Ai J.! } (i= I , . . . ,n; .7= 1, 
. . . ,p), where Ai al·e the roots of A and J.! j are the 
roots of B. 

THEOREM II. L et 0 be the matrix considered in 
theorem 1. Suppose the 1'ing generated by the matrices 
AI, . . . ,A t has am r-dimensional representation (r< n ) 
in 'lohich the matrix A k is represented by l\11k • Then pr 
oj the eigenvalue s oj 0 are eigenvalues oj the matrix 

Since theorem II con tains theorem I as a special 
case wi th T= l, we will only prove theorem JI. 

PROOF. Friedman shows in his proof that the 
sta tement, "A" is represented by M k ," is eq uivalenL 
to 

(lc = 1, .. . ,t) (16) 

where the col umn s of the maLrix X are t he b asis 
vectors for the subspace . 

Let the clements of the matrix B" b e bi:) (i,j = 1, 
. . . ,p; lc = 1, . . . ,t) . 

Then from (14) , O is a parti tioned matrix of order 
pn with blocks of ordor n, 

(i,j= I , . . . ,p). (17) 

From (16) 

t 

The example below is a matrix which a rose in a 
problem involving lattice points at the National 
Bureau of Standards: 

r-~ 
- 1 - 1 (3 l 4 - 1 - (3 - 1 (3 

- 1 4 - (3 - 1 

- 1 - (3 4 - 1 - ] (3 

.5'/= (3 - 1 - (3 - 1 4 - 1 - (3 - 1 (3 

(3 - 1 - 1 4 - (3 - 1 

l 
- 1 - (3 4 - 1 

(3 - 1 - (3 - 1 4 - 1 

(3 - L - 1 4 

If we parLiLion .r, into 3 X 3 submatricC's we eo 

(~ 1 

.r;/= ~T 

D. E . Ruthedord [9] 
m atrix, 

a b 

b a b 

b a b 

T= 

l 

~ ~) . 
BT A 

(22) 

shows Lhat a Lrid iagonal 

l 
. b a bJ 

b a 

= X L: bWMk 
k= l 

(i,j= l, .. . ,p). (18) has characteristic roots whieh may be written in the 
form Ak= a+ 2b cos Ok where Ok= k7r/n + 1, lc = 1, .. . ,'n. 

o if we let 
The characteristic vector corresponding to A I: is 

(i,j= l. .. . ,p ) (J 9) 

11 



The transformation for an i.J'.p. tridiagonal matrix 
was given by the author in [6] and Rutherford also 
gives all the roots in the d.r.p. case. 

The example (22) falls into none of the above 
categories, however, since B=pB7'; but we show how 
the transformations discussed in section 4 can be 
used to simplify the matrix so that five of the roots 
may be found without having to solve an equation 
of degree higher than 2. I am grateful to D . E. 
Rutherford of the University of St. Andrews for 
giving me the other four roots. 

We first use the transformation matrix, P I = (X X I ) 
where X is the matrix of vectors (23) for a 3 X 3 
tridiagonal matrix; i.e., 

and I is the identity matrix of order 3. T hen we find 

[
A- 'li I OT 

f!J=Pjl.st/P1= C A 

D C 

where 

Since A and also the matrices A±.J2 I are all 
tridiagonal, we now use the transformation matrix 
P 2= (Ix X) and find 

D 

C 

where 

9=diag (4- ·/2, 4, 4+ .J2). 

If we wTite the TOWS and colwnns of Crt in the order, 
826435791, we obtain the matrix 

D= (E 0) 
* F ' 

with 

(G H) E-- HG ' 
F=(K L), 

L TM 

12 

where 

r 4 -~ 'l 
K=l-~ 4 -~J ' 

. -~ 4 

and M = diag (4 + 2.J2, 4-2.J2) . 
circulant, so the roots of E are 
G- H, which ar e 4 ± ~± .J(32 + 2. 

Since K is tridiagonal , let 

Then 

r 4-~~ 
4 

3 3 - . 4+ .J2(3 

Thus E is an o.l'.p . 
lhose of G+ Hand 

(3/.J2 (3h/2 

-N/'i -(3I.J2 p-'F -l 
(31.J2 -(3/ .J2 4+ 2-/2 

(31.J2 -(3I.J2 4-2, 12 

Thus 4 is a root of th is matrix, a nd when we 
delete the second row and column, we arc left wi th 
a 4 X 4 matrix. I was un able to reduce this further 
by any relatively simple similarit~ .. transformation. 
However , D . E . Rutherford has found the otheT 
four roots of F: 
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