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On Transient Solutions of the "Baffled Piston”
Problem

F. Oberhettinger !

(September 14, 1960)

The acoustic field produced by the movement of a piston in an infinite rigid wall for
arbitrary time dependency of the motion is given.

1. Introduction

The case of the time harmonic movement of a piston membrane in an infinite rigid wall
(““baffle’”) can easily be generalized to the case when the motion of the piston is not periodic
but an arbitrary function of time. Such transient solutions have become of considerable in-
terest in recent times (for a detailed treatment of the propagation of such sound pulses, see [5]2).
The procedure for the case treated here is the same as used elsewhere [7], i.e., the Green’s fune-
tion for the exponential decay case (modified wave equation AU—~y*U=0, y=1k) is used to
obtain the solution for the pulse problem. The accustic field (velocity potential) for the time
harmonic movement of the piston include representations given by Bouwkamp [1], King [6],
and Wells and Leitner [9].  The first of these contributions gives the solution in the form of a
series expression while the second and third involve integral representations that are obtained
using integral transform methods (Hankel transform [4, p. 73] and Lebedev transform [4, p. 75]
respectively). These representations can be used to treat the general case of an arbitrary move-
ment of the piston. In view of the method to be employed here, such representations should be
used for which the inverse Laplace transform of the velocity potential with respect to the purely
imaginary wave parameter y=2k can be given. Such an expression can be obtained in a direct
way by regarding each point of the moving disk as an accustic point source and integrating
over all points of the disk.

2. Exponential Decay and Time Harmonic Solution

The piston is represented by an infinitely thin circular disk of radius @ located in the z,y-
plane with its center at the origin of a three-dimensional Cartesian system of coordinates. The
remaining part of the z,y-plane consists of a rigid wall. The movement of the disk is time

harmonic of the form
D= (1)

where v, 1s the velocity of the disk.
Each point @) of the disk can be considered as a point source with the velocity potential
(,—ikr

i 47r

e'e'p'de’dp’, v=PQ, (2)

(w=ke, ¢ is the velocity of sound), which represents Green’s function of the wave equation in
free space (see fig. 1).

1 Oregon State College, Department of Mathematies (invited paper).
2 Figures in brackets indicate the literature references at the end of this paper.

1



P(p,,2)

Figure 1.
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Upon substituting
k=—1y, w=—1iyc, (3)

one obtains, after isolation of the time-dependent factor er** for the free-space Green’s funec-
tion of

Au—~v2u=0, (4)
the expression
6_77 ’ ’ ’
u=—n 4 p'dg’dp’, (5)
r=[p?+p’*—2pp’ cos (p—¢’)+2*]"/2. (6)

The transition from % to v by (3) amounts to the transition from a wave problem to an expo-
nential decay problem. At first the exponential decay problem for positive real v is solved and
the solution for the wave problem can be obtained by returning from v to £. This, however,
i1s not necessary here, since the exponential decay solution will be used in order to solve the
problem of an arbitrary moving disk. If the expression in (5) is integrated over the whole disk,
one obtains—observing (6):

2T a
U:'"lf f [p24p’2—2pp’ cos (o—¢’)+ 22712
4r Jor=0 Jor=o
- exp {[p*+p’2—2pp’ cos (p—¢')+2%"?} p’dp’de’.  (7)

Here 7 is the “density distribution” over the disk. Since the disk moves as a whole, this prop-
erty is a constant; it is determined by the fact that according to (1)

__[oUN  [1,for p<a, )
V= bz>z=0— {0, for p >a. (8)

This function 7 as defined in (7) satisfies

(a) AU —+U =0,
(b) %lf:—l for p<a, aa[;:() for p>a at 2=0,
(c) lim U—0 when p or |z|—> .
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In order to perform the integration in (7), one replaces the integrand in (7) using the well-
known formula [3, vol. 1, p. 191, 9],

f JO[Mtz_,YZ)l/z]e—ztdt:(22+)\2)—1/ze_7(32+)\2)1/2’ 220
0

or, upon substituting
12— =12, {2=1-F?

(22+)\2)_1/26A7(z2+>\2)1/2:L JO()\T)T(TZ+72)_1/26_3(12+72)1/2(l7‘ (9)

If this formula is used to replace the integrand in (7), one obtains upon interchanging the
order of integration

Lo ; T a 27 N
U:—iﬁ T(r2+72)‘”?e*2”2”2‘w><{ﬁ ﬁ Jo(7p*+p"*—2pp’ cos (xp—<p')]”2)p’dp’d<p’}dr.

(10)

To evaluate the mtegral in (10), one uses the addition theorem for the Bessel functions [4,
p. 101]

©

Jollp*+p"=2pp" cos (¢—¢")]"*} =3, eneun(rp) Ju(7p”) cos[mle—¢")],
m=(
6021, 6,”:2, m:1,‘3,3, A 5o

Integrating with respect to ¢” and observing that only the term m=0 gives a contribution,
yields

T 1 e 9 o 9 —a(s2 2y1/2 e
l’:_fjnj 7(ri ") Ve ”’WJ(;(TP){J P'J‘J(Tp')flpl}(lr'

0

Finally, using the result [4, p. 45, 1]

] J‘,(Tp/)p’([p'ngl(T(Iv),
JO

one obtains

i 1 " P 9 D 2(42 2y1/2 ;
L :—éfl'ﬂjﬂ (r24-2) V2= 2P+ ) T (ra)dr (11)
Now, according to (1)
DU) oU
(=) =1, p<a; — .
2 /)eme  PST az)m. e
therefore by [3, vol. 2, p. 14],
_(b(ﬁ) L a’, p<a,
0z)..y 27" 0, p>a.
Hence
==y

The final representation becomes therefore

U=a | @) 2D g () Ty ra) i, (12)
0

=02
Clearly U satisfies the conditions a, b, ¢, stated following (8). The restriction z=0 in (12)
means no loss of generality, since it is sufficient to consider the upper half space. If one wishes
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to return to the wave problem one has to replace y by 7k according to (3) and one arrives in
this case at King’s solution [6].
Approximate evaluations of King’s and related integrals for various cases have been
carried out [2, 6, 8].
3. Transient Solutions

The expression (12) is now used to investigate the corresponding pulse problem. Let the
movement of the piston be represented by a pulse starting at t=0; let the pulse function be
g(t), and g(t)=0 for t< 0. Under the assumption that the pulse function ¢(¢) is such that it ad-
mits its representation by Laplace’s integral formula

o(f) = (2mi) ! f j: [ ﬁ : g(r)e"’dr] i (13)

one can represent the expression for the acoustic field generated by the pulse in the form

B(t) = (2i) ! f +: [ L ) g(r)e"”d‘r:l Gty (14)

where U is the representation (12) for the “exponential decay” field. (The velocity of sound
has been chosen to be unity.)
If the order of integration can be interchanged one obtains

B(t)— f e [(m‘)ﬂ f ’ er—ﬂdy]dr. (15)

0 c—iw
The integral in the bracket is the inverse Laplace transform of the “exponential decay’” solution
with respect to the wave parameter . If this is known, then the velocity potential ®(¢) of the
acoustic field for the case of an arbitrary movement of the piston can be obtained by a further
integration involving the pulse function g(f) according to (15). The inverse Laplace trans-
form of the integrand in (i12) with regard to v is known [3, vol. 1, p. 248]:

ci® 1
(27ri)—1f i (72_}_72)—% e~ 22 Hy2) 12 6”d‘y={‘0]°[1(t2_ 2?) 3] (16)

according as t >z or 1<z, respectively.

The acoustic velocity potential due to a pulse function ¢(¢) (“‘Dirac” pulse movement of
the piston at t=0) is by (14)

B () — 2mi) ! f Uy, (17)
Hence, (15) can be written as o
B(t) = f " 9(1)® D(t—r)dr. (1s)
Therefore, by (12) and (16) '
0, t<z
R L " Da) Ju(r) e (=2 dr, >z (19)

The integral is known. One has [3, vol. 2, p. 21]:

f Jo(bx)Jy(ex)J, (xy)de=< (7y) ' arc cos (1)2—|-2c4zc—y2>’ [b—ec|<y<b+e (20)
v y>b+tc



In order to evaluate (19) identify y with a, b with (2—22)? and ¢ with p. Two different cases
have to be distinguished :

Case A. ap,

Case B. a<_p,
i.e., the two possible different cases where the projection S ot the point of observation P into

the z,y-plane lies either inside or outside the disk are treated separately (fig. 2 and fig. 3
respectively).

*Z

Plp,¢,2)
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The largest and the smallest distances of a point on the circumference of the disk from the
point of observation P are denoted by R and R’ respectively.

R=[z*+(a+p)*]"?,  R'=[2"+(a—p)*]"" (21)

One obtains then for ®,(¢) by (19) under consideration of (20) and (21):
For the case A, a >p:

dp(t)—0, t<z
=il 2t R
2 ~2 2 2 (22)
=7! arccos [%@%], R <t<R
=0} t>R.
For the case B, a<p:
q’b(t):o, t<lx"
2__ 2 2__ 42
—x ! arccos l:t—z;)(zti'—ZZ)TZ]y I{’<t<b) (23)

=0, t>R.



The physical interpretation of these results is obvious. The parts in (22) and (23) that
are different from zero represent the transient acoustic field at a point 2 due to a “Dirac”
pulse movement of the piston for a time which lies between the smallest and the largest distance
of the point of observation P from the disk. Outside of this the field is zero. (Note that the
velocity of sound was assumed to be unity.) The “Dirac” pulse solutions (22) and (23) can
now be used to construct the acoustic field in case of an arbitrary time dependency ¢(#) of the
movement of the piston according to (18). One obtains immediately:

For the case A, a >p:

t—R’ - 2 S S /-
(b<t):7r_1f g<T> arccos (t T) +p2 0/2 VE) dT+f T) (IT (24)
t—R 2p {(t_T) g
For the case B, a<p:

Y t—7)2+ a’—z? _
®(t)=m lftiR g (1) arccos { (2p[(t_7p>2_22]1/2 } dr. (25)

The case p=0 (point of observation on the axis of the disk) reduces to

Off=—

d (t> :Jt—(11?+:2>1,'2 g (T) (IT' (2())

It has to be remembered that g(f)=0 for +< 0. Therefore no possibly negative part of the
interval of integration in (24) to (26) gives a contribution. Furthermore, the time parameter ¢
in the above formulas has to be replaced by ¢, where ¢ is the velocity of sound.
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