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Computational Problems Concerning the Hilbert Matrix l 

John Todd 2 

(November 21, 1960) 

The interaction between t heoretical mathematics and practical computational expire­
m ent is illustrated by a discussion of recent work, at various centers, concerning t he Hilber t 
matrix. 

1. Introduction 

Recent work, in various centers, concerning the 
I-Elbert matrix shows very well the interaction 
between (theoretical) mathematics and practical 
computational experiments. Some aspects of this 
work will be discussed here in an expository manner. 
Altbough we sball be concerned mainly with the 
finite segments Hn of the (infinite) Hilbert matrix 

H = {hi,i } = {(i + j + 1) - 1) , i,j= 0,1,2, .. . , 

many of the results can b e generalized, e.g., to 
matrices of the form 

or 

2 . Theory 

Thc literature of the last half-century contains 
many theoretical resul ts concerning the Hilbert 
matrix. Of these only the b asic inequality is 
immediately relevant [8, p . 234]: 

0> 

2.1. I] 2:a! is convergent, then 
o 

'" '" '" 2: 2: aman/(m+ n+ 1)< 1l' 2: a;n' 
o 0 0 

We note the following consequence of this. 
2.2. The equation H x= 1l'x cannot be satisfied by 

any vector x in Hilbert space, 12. 
Suppose 

H x= 1l'X 

is satisfied for a vector x € 12. Then it is permissible 
to multiply bo th sides by x' , i. e., Lake inner products, 
to get 

x' I-lx= 1l'X' x. 

1 Tbis paper is baser! 011 an in vited address to tbe Societil Italiana peril Progresso 
delle Seienze, in Sicil y in 1956; it was prepared witb partial support from tbeOIDee 
of Naval Researcb . 

2 Present address: Califo1'llia Institute of T echnology, P asadena 4, Calif. 
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If X= (Xo,Xl, .. . , ... ) SO that ~x,;, is convergent 
this gives 

~~xmxn/ (m+n+ 1) = 1l'~x;" 

in contradiction with (2.1). 
The question as to whether there is an x, neces­

sarily not in 12, for which the equation 

I-lx= 1l'x 

is true, was rai ed by O. Taussky [20]. This 
question will be discllssed in sections 5 and 6 below. 

3 . Applications 

Among the areas in applied mathema tics in which 
Lhe I-Iilbert maLrix or related maLrices have turned 
up are aerodynamics (A. R. Collar [3]) , diffrac tion 
of electromagnetic waves (W. M agnus and F . Ober­
hettin ger [12]), an d statistics (1. R. Savage and 
E. Lukacs [17]), 

4 . Computational Problems- Inversion 

Theoretically, the problem of inver ting the finiLe 
matrice H n i solved because of the existence of an 
explicit represen tation of the inverse, a result which 
is, essentially, due to Cauchy. The matrix is of Lhe 
form known as a double-al ternan t, and the inversion 
has been discussed e.g., by A. C. Ai tken [1, p. 134], 
A. R. Collar [3], and G . Palya and G. Szego [15, 
pp . 98- 99 , 299- 300]. The expli cit form of the 
inverse, and the actual numerical values for 
n = 1(1)10, have been given by 1. R. Savage and 
E. Lukacs [17]. 

Practically, however , the problem remains inter­
esting. For instance, although the I-Iilbert matrix 
itself turn s up in idealized siLuations, it may be 
expected that slightly different matrices turn up in 
the practical circumstances which are approximated 
by these. It is, Lherefore, desirable to study the 
mechanical inversion of the I--Iilbert matrices H n , 

especially as they enjoyed a reputation for ill­
condition i. e., "numerical instabili ty," long before 
the advent of high-speed computers and the basic 
papers of von Neumann and Goldstine [25] and 
Turing [24], in order to compare the observed in verse 
with the theoretical one. 

The Hilbert matrix and related ones (e.g., Lotkin 
[10]) have been often used to test matrix inversion 



programs prepared for high-speed computcrs. All 
the experiments of which we are aware [2 , 16, 23]­
and in these several different schemes for inversion 
were used- completely confirm the bad reputation. 
The r esults quoted by Todd [23] are fully repre­
sentative. For machines with 10 to 12 decimals, with 
floating poin t arithmetic to about 8 significant 
figures, there is rapid deterioration of the qu ali ty of 
the alleged inverses which are produced- and usually 
complete failure to produce any in verse for Hn with 
n about 8. 

A detailed examination of the condition of Hn has 
been given by Todd [23]. Given a matrix A and a 
specific process of inversion, thc error in computing 
A - 1 can be found, in theory. In practice IV hat is 
wanted is a cheap estimate of this, in terms of quan ­
tities associated with the matrix and e.g., the word­
length of the machine. Various condition-numbers 
have been introduced to measure the condition of 
the matrix. One of these, the P -condition number 
is defined as P(A)=iAi/i Mi where IAI and IMi are the 
greatest and least among the absolute values of tbe 
characteristic values, of A. It has been shown [23], 
that ex being a certain positive constan t, 

while for the n X n matrix 

r- 2 1 
1- 2 1 

1-2 l 

l 1-2 1J 
1-2 

associated with a second-order differential equation, 
we have 

Using these results in the general error-estimate ob­
tained by von Neumann and Goldstine [25], for an 
elimination process, and comparing these theoret­
ical error-estimates with actual observed estimates, 
shows that the two are in reasonable agreement 
(see Todd [22]). 

5. Computation Problems- Characteristic 
Roots and Vectors 

As soon as programs for the computation of char­
acter'istie roots and vectors were constructed , it was 
natural to test them on the H n , since input pro­
grams for this h ad already been constructed. There 
was no reason to suppose th at it would be particu­
larly difficult to handle- since it is considered that 
the presence of multiple roo ts, or roots close in 
absolu te value woulcl b e the most likely source of 
trouble. The theory of positive m atrices due to 
P erron and Frobenius (see e.g., Wielandt [26]) guar-
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an tees the cxistence of a single dominant character­
istic root with a characteristic vector all components 
of which arc positive, so t hat the power method 
should be satisfactory. This is indeed the case and 
the dominant root, and the corresponding vector 
have been obtained for values of n up to 200 at 
vario lls cen ters [5, 18]. 

If more characteristic roots and vectors are needed , 
the Gantmakher and Krein [6] theory of completely 
positive matrices guarantees that the characteristic 
roots are all simple and posi tive and the compo­
nents of the vectors exhibit a characteristic pattern : 
th e first has all its componen ts positive and each 
succeeding one has one more change of sign. 

The last criteria shows up the weakness of the 
results obtained. For instance, a reasonably effi­
cient code using floating poin t with 8 significant 
figures which gives the dominant root A5 of H5 cor­
rect to 8S gives the smallest r oot negative! Actually, 

detH5: 3.75 X I0- 12 

and 

so the results are not too surprising. 
The usual method for handling this casc is an 

approxim ate diagonalization of the m atrix using the 
Jacobi process, or the variation on this due to 
W. Givens [7] in which the matrix is reduced to 
triple diagonal form and the roots located by a 
Sturmian process. So far few actual results of th e 
usc of these Inethods have b een published. 

6 . More Theory 

Following experimental computations, O. Taussky 
[19] showed that, if An denotes the dominant 
ch aracteristic root of H n , then 

An = 7r + O(ljlog n ) 

so that " n----'7 7r . The actual approach to 7r is very 
slow, e.g., it is known [5,18] that: A50 : 2.08, A60 : 
2.11 , A75: 2.1 4, " LOO: 2.18 , A125 : 2.21, A200: 2.27; 
the exact order or magnit ude of 7r - A n docs not 
appear to b e known . 

A constructive attack on the problem, already 
mentioned in section 2, of the existence of a vector 
v satisfying 

H V= 7rV 

appeared difficul t and an affirmative solu tion to it 
was obtained by T . Kato [9], who used an indirect 
approach . His method, which will now be de­
scribed , was suggested by observations of the mono­
tonic beh avior of the coordinates of the dominant 
characteristic vectors of Iln, when these are normal­
ized so that the first coordinate is unity. 

Suppose the characteristic vector VI! of H I! cor­
responding to An is 

vn==(vi, V2, ... ,v:), V~= l. 



Jun1erical evidence suggesLs tll at both the seq uence 
{An} n,nd all the sequences vl, v1+1, v1+2 , . . . (i= 1,2, 
... ) ar e m.onotone. Thc fLrst fact is known (e.g. , 
CollaLz [4)) and the second is a special case of it 

more general result regarding the domin an t vecLors 
a , b of tvvo positive matrices A, B where A is ex X ex 
and B is (3 X (3. If B domin ates A in the sense that 
(X~ (3 and if Cii= bij/aii is a non decreasing function 
of i, j (as long a.s it is signifLcan t) , then b dominates 
a in ~t similar sense , provided fur ther t111tt B has all 
its seeond-ordcr minors positive. This is proved 
using the fact (already noted) that in these circum­
stances the dominant vectors can be obtained by the 
"power" method. The special case used is that ill 
which A = H n , B = H n+l . 

Now assume that An is bounded- tlmt th is is the 
case when we n,re dealing with FIn, follows from 
(2 .1 ) . Then lim An= A, where A= 7r in t1lC Hilbert 
case. H follows that the sequences vl, V;H, vj+2 , ... 
are bounded, for comparing the fLrsL coordinates 
in the equation 

we have 
ho. i v7 ~ "22ho. j v~= An v7 = An ~ A, 

which gives , for all n , 

v7 ~ A(ho. i) - 1. 

In the Hilbert CftSe this is 

If we write vi=lim v1, it can Lhen be s110wn tha t 
n 

the infLn ite vector V = (V l, L'2, . . . ) sa tisfies 

IIv= 7rv. 

The result obtained by TCato [9], while answer ing 
the original question , itself suggests Ill any 1110re. 
For in sta,nce, is the vecLor v Lhe only (lin early in­
dependenL) vecto r correspo nding to A= 7r? Arc 
these characteristic vn]ues which exceed 7r? 

7 . Recent Developments 

1. During the last few years the theon- described 
in secLioll 6 lws been developed considerably by 
Tosio K ltLo and Marvin Rosen blum, and some of tile 
questions raised there have been answered. Among 
the relevan t results are the following: 

M. Rosenblum [28] has shown that every complex 
number with a positive real part is a characteristic 
root of H (8) for 8 fLxed, 8> 0. This was accomplished 
by using the t heory of special fUllctions to obtain a 
characteristic vector explicitly . I n [29J Rosenblum 
comnletely determin ed the spectrum. of H (8) , for 
any real 8 ~ O , - 1, - 2, ... ; this was accomplished 
using the Titchmarsh-Kodaira theory of singular 
differ en tial opera tors. 

T . Kato [30J shows that if M (8) is the Hilbert 
bound of 1[(8) , i.e. M (8)= 7r cosec 7r8, O< 8 ~!; 
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Nf(8) = 7r , 8~t, then every A ~lv[(8) is a charac­
terist ic value of H CO), with a positive characteristic 
vector and t here is no characteristic value A<111(O) 
which has a positive characteristic vector. 

2. A reference Lo Hilber t's own work about 
Hn is [27] where he evaluates det Hn. For some 
related results see R . B . Smith [32], W. W. Sawyer 
[33]. The problem of matrix inversion is discussed 
from the experimen tal point of view in [3 1], which 
includes further results on the Hilbert matrix. 
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