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Computational Problems Concerning the Hilbert Matrix'
John Todd *

(November 21, 1960)

The interaction between theoretical mathematics and practical computational expire-
ment is illustrated by a discussion of recent work, at various centers, concerning the Iilbert

matrix.
1. Introduction

Recent work, in various centers, concerning the
Hilbert matrix shows very well the interaction
between (theoretical) mathematics and practical
computational experiments. Some aspects of this
work will be discussed here in an expository manner.
Although we shall be concerned mainly with the
finite segments 7, of the (infinite) Hilbert matrix

I]:{]'l.]}:{(?+J+1)71}1 Ii:j:OrlyQy LR
many of the results can be generalized, e.g., to
matrices of the form

H={(a:+b)™},

o= 5 o g &
or
H@)={G+j+0)7},

1,j=0,1,2, ..., 0<0<1.

2. Theory

The literature of the last half-century contains
many theoretical results concerning the Hilbert
matrix. Of these only the basic inequality is
immediately relevant [8, p. 234]:

2.1. If 20ak is convergent, then
0

i i G/ (MAN~4-1) < i:‘, .

We note the following consequence of this.

2.2. The equation Hr=mx cannot be satisfied by
any wvector x in Hilbert space, [*.

Suppose

=g

is satisfied for a vector ze/’. Then it is permissible
to multiply both sides by 2/, i.e., take inner products,
to get

o' Hy—=n2'2.

1 This paper is based on an invited address to the Societa Italiana per il Progresso
delle Scienze, in Sicily in 1956; it was prepared with partial support from the Office
of Naval Research.

2 Present address: California Institute of Technology, Pasadena 4, Calif.

If.ﬂ'?:. (wo,r1, . . ., . ..)so that 2z} is convergent
this gives
22LmTnf/ (M1t 1)= 7222,

in contradiction with (2.1).
The question as to whether there is an z, neces-
sarily not in £, for which the equation

I8 f=

is true, was raised by O. Taussky [20]. This
question will be discussed in sections 5 and 6 below.

3. Applications

Among the areas in applied mathematics in which
the Hilbert matrix or related matrices have turned
up are aerodynamics (A. R. Collar [3]), diffraction
of electromagnetic waves (W. Magnus and F. Ober-
hettinger [12]), and statistics (I. R. Savage and
E. Lukacs [17]).

4. Computational Problems—Inversion

Theoretically, the problem of inverting the finite
matrices /7, is solved because of the existence of an
explicit representation of the inverse, a result which
is, essentially, due to Cauchy. The matrix is of the
form known as a double-alternant, and the inversion
has been discussed e.g., by A. C. Aitken [1, p. 134],
A. R. Collar [3], and G. Polya and G. Szegd [15,
pp. 98-99, 299-300]. The explicit form of the
inverse, and the actual numerical values for
n=1(1)10, have been given by 1. R. Savage and
E. Lukacs [17].

Practically, however, the problem remains inter-
esting. For instance, although the Hilbert matrix
itself turns up in idealized situations, it may be
expected that slightly different matrices turn up in
the practical circumstances which are approximated
by these. 1t is, therefore, desirable to study the
mechanical inversion of the Hilbert matrices H,,
especially as they enjoyed a reputation for ill-
condition i.e., “numerical instability,” long before
the advent of high-speed computers and the basic
papers of von Neumann and Goldstine [25] and
Turing [24], in order to compare the observed inverse
with the theoretical one.

The Hilbert matrix and related ones (e.g., Lotkin
[10]) have been often used to test matrix inversion



programs prepared for high-speed computers. All
the experiments of which we are aware [2, 16, 23]—
and in these several different schemes for inversion
were used-—completely confirm the bad reputation.
The results quoted by Todd [23] are fully repre-
sentative. Formachines with 10 to 12 decimals, with
floating point arithmetic to about 8 signiiicant
figures, there is rapid deterioration of the quality of
the alleged inverses which are produced—and usually
complete failure to produce any inverse for /, with
n about 8.

A detailed examination of the condition of 77, has
been given by Todd [23]. Given a matrix A and a
specific process of inversion, the error in computing
A~' can be found, in theory. In practice what is
wanted is a cheap estimate of this, in terms of quan-
tities associated with the matrix and e.g., the word-
length of the machine. Various condition-numbers
have been introduced to measure the condition of
the matrix. One of these, the P-condition number
is defined as P(A)=|\|/|u| where |A and |u| are the
greatest and least among the absolute values of the
characteristic values, of A. It has been shown [23],
that a being a certain positive constant,

P(H,)=0(e"")

while for the n <Xn matrix

r—9 1 N
1—2 1
12
=
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associated with a second-order differential equation,
we have

P(C,)=0(?.

Using these results in the general error-estimate ob-
tained by von Neumann and Goldstine [25], for an
elimination process, and comparing these theoret-
ical error-estimates with actual observed estimates,
shows that the two are in reasonable agreement
(see Todd [22]).

5. Computation Problems—Characteristic
Roots and Vectors

As soon as programs for the computation of char-
acteristic roots and vectors were constructed, it was
natural to test them on the f{,, since input pro-
grams for this had already been constructed. There
was no reason to suppose that it would be particu-
larly difficult to handle—since it is considered that
the presence of multiple roots, or roots close in
absolute value would be the most likely source of
trouble. The theory of positive matrices due to
Perron and Frobenius (see e.g., Wielandt [26]) guar-
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antees the existence of a single dominant character-
istic root with a characteristic vector all components
of which are positive, so that the power method
should be satisfactory. This is indeed the case and
the dominant root, and the corresponding vector
have been obtained for values of n» up to 200 at
various centers [5, 18].

If more characteristic roots and vectors are needed,
the Gantmakher and Krein [6] theory of completely
positive matrices guarantees that the characteristic
roots are all simple and positive and the compo-
nents of the vectors exhibit a characteristic pattern:
the first has all its components positive and each
succeeding one has one more change of sign.

The last eriteria shows up the weakness of the
results obtained. For instance, a reasonably effi-
cient code using floating point with 8 significant
figures which gives the dominant root \; of /; cor-
rect to 8S gives the smallest root negative! Actually,

det H,=—=3.75<10712

and
5.58X1075>u; >1.12 10"

so the results are not too surprising.

The usual method for handling this case is an
approximate diagonalization of the matrix using the
Jacobi process, or the variation on this due to
W. Givens [7] in which the matrix is reduced to
triple diagonal form and the roots located by a
Sturmian process. So far few actual results of the
use of these methods have been published.

6. More Theory

Following experimental computations, O. Taussky
[19] showed that, if A\, denotes the dominant
characteristic root of F,, then

N=7+0(1/log n)

so that N,—m. The actual approach to = is very
slow, e.g., it is known [5,18] that: A\;;==2.08, N\g=—
211, }\757214, )\10():218' )\]_7',‘22], )\g()f)1f227,
the exact order of magnitude of 7=—NX\, does not
appear to be known.

A constructive attack on the problem, already
mentioned in section 2, of the existence of a vector
v satisfying

Hy=mv

appeared difficult and an affirmative solution to it
was obtained by T. Kato [9], who used an indirect
approach. His method, which will now be de-
scribed, was suggested by observations of the mono-
tonic behavior of the coordinates of the dominant
characteristic vectors of 77, when these are normal-
ized so that the first coordinate is unity.

Suppose the characteristic vector », of [, cor-
responding to \, is
W=l

s Ay n
v,= (0%, 0%, . . ., 0},



Numerical evidence suggests that both the sequence
{\,} and all the sequences 2!, vit!, »it2 . . . (1=1,2,
. . .) are monotone. The first fact is known (e.2.,
Collatz [4]) and the second is a special case of a
more general result regarding the dominant vectors
a, b of two positive matrices A, B where A is aXa
and B is 8 p. If B dominates A in the sense that
a<p and if ¢;;=b;;/a; is a nondecreasing function
of 7,7 (as long as it is significant), then & dominates
@ in a similar sense, provided further that 77 has all
its second-order minors positive. This is proved
using the fact (already noted) that in these eircum-
stances the dominant vectors can be obtained by the
“power” method. The special case used is that in
which A=H,, B=H,.,.

Now assume that N\, is bounded—that this is the
case when we are dealing with 77,, follows from
(2.1). Then lim \,=\, where A== in the Hilbert
case. [t follows that the sequences v}, vi™', »i*2 . ..
are bounded, for comparing the first coordinates
in the equation

IIn"n:)\npn
we have
h(),i 7771'1 Szh‘(l,j l"?}:>\” ”71’:)\/1 S)\v

which gives, for all n,

0F SN(ho, 1) L.
In the Hilbert case this is

P <w(i+1).

If we write »;=lim 2%, it can then be shown that

n
the infinite vector o= (vy,n,, . . .) satisfies
Hv=mv.

The result obtained by Kato [9], while answering
the original question, itself suggests many more.
For instance, is the vector » the only (linearly in-
dependent) vector corresponding to A==? Are
these characteristic values which exceed 7?

7. Recent Developments

1. During the last few years the theory described
in section 6 has been developed considerably by
Tosio Kato and Marvin Rosenblum, and some of the
questions raised there have been answered. Among
the relevant results are the following:

M. Rosenblum [28] has shown that every complex
number with a positive real part is a characteristic
root of Z7(0) for 6 fixed, 6 >0. This was accomplished
by using the theory of special functions to obtain a
characteristic vector explicitly. In [29] Rosenblum
completely determined the spectrum of H(6), for
any real 0, —1, —2, . . .; this was accomplished
using the Titchmarsh-Kodaira theory of singular
differential operators.

T. Kato [30] shows that if M(6) is the Hilbert
bound of F(6), i.e. M(6)== cosec w0, 0<0<3%;

21

M@)==, 6>1%, then every \>M(0) is a charac-
teristic value of 77(8), with a positive characteristic
vector and there is no characteristic value N<M(6)
which has a positive characteristic vector.

2. A reference to Hilbert’s own work about
H, is [27] where he evaluates det H,. For some
related results see R. B. Smith [32], W. W. Sawyer
[33]. The problem of matrix inversion is discussed
from the experimental point of view in [31], which
includes further results on the Hilbert matrix.
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