JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 65, No. 1, January-March 1961

Some Computational Problems Involving Integral
Matrices'
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In this mainly expository article dealing particularly with recent problems, a computa-
tional problem of G. Pall related to finite projective geometries is discussed in greater

detail.
1. Introduction

All computation on a machine with a fixed number
of digits is arithmetic modulo some integer and
therefore can be regarded as number theory. From
this fact, in “analytic” problems there arise all the
difficulties associated with “round-off,” i.e., neglect
of insignificant digits. However, there are often
considerable difficulties in handling actual number
theoretical problems, e.g., because the numbers may
grow large rapidly. Codes which permit numbers
of arbitrary length have been written, but they have
to be monitored carefully.

Matrices with integral elements have been studied
for a very long time and an enormous number of
problems arise, both theoretical and practical. The
whole vast classical theory of quadratic forms comes
under the theory of symmetric matrices; many new
problems have arisen in recent years. Some of the
problems can be divided, perhaps, into four topics:

(1) Inversion (see e.g., J. B. Rosser [1]).

(2) Eigenvalues and eigenvectors. These play a
role in the determination of the class number of an
algebraic number field /' by rational methods. For
it can be shown that the number of ideal classes coin-
cides with the number of classes of matrices S71AS,
where A is a matrix with integral elements which is
a root of the algebraic equation determining /), and
S runs through all unimodular matrices with integral
elements (see O. Taussky [2, 3]).

(3) Enumeration of matrices with special proper-
ties. Here we have the various problems concerning
latin squares, the problems concerning matrices
with -+ 1 as elements and orthogonal rows (see e.g.,
R.E.A.C. Paley [4] and J. Hadamard [5]). The
study of finite projective geometries has led to new
problems in this field and some of them will be dis-
cussed here later. A generalization of these problems
is given by the study of block designs which are of
importance in statistical work (see M. Hall [6],
H. Ryser [7], R. C. Bose [8], W. S. Connor and
W. H. Clatworthy [9]).

(4) Maximization problems. These come actually
also under the problems discussed in (3), but have

1 This paper is based on an invited address to the Societa Italiana per il Pro-
gresso delle Scienze, in Sicily in 1956; it was prepared with partial support from the
Office of 1 al Research.

2 Present address: California Institute of Technology, Pasadena 4, Calif.
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Numerical results obtained on SEAC and SWAC are discussed.

been studied rather extensively, particularly in recent
years. A prototype among these is the assignment
problem: given an 7 <Xn matrix (a;,), determine the
permutation 2 (z) for which

Z(lw(i)

is maximum (see e.g., T. S. Motzkin [11], C. B.
Tompkins [12], H. W. Kuhn and A. W. Tucker [13]).

2. Some Problems

However, many other problems arise which cannot
easily be brought under these headings. Of these
we mention a few. Matrices with rational integral
coeflicients are a generalization of rational integers
and any number theoretical process can be applied
to them: e.g., any two n<Xn matrices of this type
have a greatest common left divisor, a greatest
common right divisor, a least common left multiple,
a least common right multiple. Tf 22 is the greatest
common left divisor of 4,5, then '

D=AP+BQ

can be solved where P, @ are again n<n matrices
with rational integral coefficients. Diophantine
equations can be studied, even the Fermat equation

xn_%_yn: ZIL

can be considered for matrices.
Completely new problems arise as well because of
the noncommutativity of matrices. A quite elemen-
a
tary example is to express a matrix , with a,
¢ d
b, ¢, d rational integers and ad—be=1 in terms of the
11 0 —1
generators and A much more dif-
0 1 1 0
ficult problem is to express (when possible) a positive
definite 7 Xn matrix O of rational integers in the
form C=XX’ where X is again an nXn matrix of
rational integers and X’ is its transpose. If the
determinant [C|=1 and n<8 such a decomposition
is known to be possible always. Actually to find

A can be a difficult computational problem (see [7]).



3. Hermite Normal Forms

For many of the problems concerning matrices of
rational integers the so-called Hermite normal form of
amatrix A plays an important role. Itisa triangular
matrix obtained by multiplying A with a suitable
unimodular matrix 7 of integers and is of the form.

hir s h

1n
0 hzz h; n

U A= )
0 0 0 hy,,

where ;>0 and 0 <h;<h; (i<Fk).

Another important normal form associated with
A is the Smith normal form which is a diagonal
matrix. It is obtained by multiplying A with two
unimodular matrices 7, V" so that

(" / (21
by

UAV=
0

. 0J

and hylho| . . . |he.

4. Application of the Hermite Normal Form
to Finite Projective Planes

An important use of the Hermite normal form was
made in the study of finite projective plane geometries
(FPP). An FPPis a set of k elements called points
which are distributed over £ lines such that exactly
n—+1 points lie on each line and exactly n-1 lines
pass through a given point. Two distinct points
are contained in one and only one line; two distinct
lines contain one and only one point in common. We
have k=n?+n-+1. The number n is called the
order of the geometry. With such a geometry there
is associated the so-called &>}k incidence matrix

A=(ay)
where
a;;=1 if the ith point lies on the jth line,
a;;=0 if the ith point does not lie on the jth
line.
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Hence any two rows (columns) have a one in common
in exactly one column (row) and there are n--1
elements @;;=1 in each row (column).

The incidence matrix A is a matrix of integers.
If the lines (points) are numbered in a different order
then A is replaced by PA (AQ) where P and () are
permutation matrices. The following two properties
of A are particularly important:

det A= Ln™+me(n41),
AA'=A’A=nl+J,

where I'is the unit matrix and J the matrix consisting
of 1’s only.

G. Pall studied the Smith and Hermite normal
forms of A (see [14]). He showed that for square
free values of n the diagonal elements in the Smith
form are

1,1, ..., L,n ..., nnnt+t1)
and the diagonal elements of the Hermite normal
form are 1, or divisors of n, or (n+1) times a divisor
of n.

Two different geometries cannot have the same
Hermite matrix. Thus the Hermite matrix of a
geometry is rather important. G. Pall further
mvestigated the p-rank of A, ie., the maximum
number of linearly independent rows of A, mod p,
where p is a prime factor of n. If 5* is not a factor
of n (e.g., if n is square free) then the p-rank of A
is exactly

1 2
5 (n*+n)41-

For all other p
p-rank g% (n*+mn)+1

holds. As special examples the 2-rank for the
(unique) geometry corresponding to n=4 was com-
puted. It is 10. The 3-rank corresponding to
n=9 presented a more difficult task. There are
two different geometries of order 9. The 91 %91
incidence matrices of these geometries have as
3-rank 37 and 41 while ¥4(n*+n)+1=46. These
values of the 3-rank were computed on SEAC and
on SWAC. The computation on SKAC was carried
out by M. Newman; it took 20 hr. The Hermite
normal forms of the geometries of order n=5 and
n="7 were also computed; it took 3 hr for this task.

5. Further Facts About the Incidence
Matrix 3

Incidence matrices have been used to study the
still unsolved problem: For what value of n is there
a finite projective plane? So far it is known that
for n=p", p a prime number, there is always a

3 See also reference [15].



finite projective plane. This plane is uniquely
determied for n=2, 3, 4, 5, 7, 8. This was estab-
lished for n=7 by M. Hall [16] and for n=8 by
computations carried out on SWAC by M. Hall,
J. D. Swift and R. J. Walker [17].

For n=6 there is no FPP whatsoever (see R. H.
Bruck and H. J. Ryser [18], S. Chowla and H. J.
Ryser [19]). On the other hand for n=9 it is known
that there exist two different geometries; one of these
satisfies the axiom of Desargues, the other does not.
For n=10 it is not known whether a FPP exists.
valuable contribution towards the solution of
the problem of determining the possible orders of a
FPP is given by the following theorem of Ryser [20]:

Let n be odd and let k=n>+n-+1. Assume nl+J
= XX’ where X is a matriz of integers. Then there
exists @ FPP with n—+1 points on each line.

However, as pointed out earlier, it is a rather
difficult computational problem of deciding whether
a given positive definite matrix of high order splits
up in the form XX’ with X an integral matrix.
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