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Let a matrix A have positive roots 0<<\ << L L.

<X,. Upper and lower bounds

for the P-condition number of A, P=X\,/\;, are given in terms of det A and one other

symmetric function of the roots.

1. Intreduction

Suppose A= (a;;) is a nonsingular nXn matrix
with roots, N;(z=1, . . . , n), ordered so that

0<IM|<f <. I

For a wide class of matrices A, the ratio |N\,|/|\]
gives a rough measure of the probable accuracy of
the computation of the inverse of A, or the solution
of the system of equations for which A is the matrix
of coefficients.

This measure was evaluated in some detail by
von Neumann and Goldstine [5]' and has been called
by J. Todd [2, 3, 4] the /’- condition number of the
matrix, i.e.,

I
I\ |

/2

In general the accuracy of the results is in proportion
to the reciprocal of /2.
In this paper we shall show that, if the roots of A
are all positive with
0 MmN, . .<\,

1)

and the determinant of A, det A, is known, together
with one other symmetric function of the roots,
upper and lower bounds for 7 can be given in
terms of these two known quantities.

More precisely, if the characteristic polynomial
for the matrix A is

p(x) =a"—ca"t+cx™ 2
—. .. (=1)"4, ;20

and we know ¢, and ¢,= (det A), there exist positive
upper and lower bounds for the ratio

A

:)\_1,

P (3)

in terms of ¢; and ¢,,.

To simplify the notation in the statement and
proof of the theorem we use the following device.

1 Figures in brackets indicate the literature references at the end of this paper.
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Let

(‘k:('k<)\ly LR )‘n) :(Z-> 'Sk()\l O )\"):<Z>sk; (4)

and divide each root of p(z) by (sp* (This is
equivalent to dividing each element of the matrix by
(sp)/%)  We will call the new matrix “normalized
with respect to £ or simply the normalized matrix.
Since the condition number, P, is the ratio of two
roots, 2 will not be affected by such a transformation.
Let Dy be the determinant of the normalized matrix.

Then
n n/k
(.
S, A n

('\,k)rn,fk‘— N '(,;\1_',/1\‘_-

Dy (5)

From Hardy-Littlewood-Pélya [1] the numbers s,
as defined in (4) satisfy the inequalities

128228 >. 28" (6)
(where equality holds only if all the \; are equal)
hence, by (5), D, <1.

2. Statement and Proof of Theorem
Tuaeorem: If we have a matric A= (a;;) with
characteristic polynomial (2) and if the constant term

and the kth coefficient are known, the following bounds
hold for P,

1 <1+\“’1—7);§‘1
—_—)
Dye=2=" = _ "

k=1, ..., n—1) (7)
where D is defined by (/) and (5).

If k=1 (i.e., the trace of the matriz is given) we can
improve the wpper bound:

N1
Z)S +\‘ il 11} ! n ng (8)
1—+/1—D, C

Proor: Part 1-—Upper bound. We prove (8)
first, as the method used for this can be applied in
the proof of (7).

Since P=2\,/\;, eq (8) is equivalent to
4NN,

Dism iy

(9)



so from (5), we must show that

MtM)? <
s,

4NN,

But the right side of (10) i1s (4,/G.)" w.here A,
is the arithmetic mean, and @, the geometric mean,
of Ny, . . ., \u

Thus, we can prove (10) by induction if we prove

the followmg
) (‘4n+1>
G n+1

Lemma:
where A,.; and @, are the arithmetic and geo-
metric means of A, . . ., Ay, Ny (The X; are not
assumed to be ordered with respect to size for this
lemma.)
Proor or nemma: Simplifying (11) we see we
must prove
(12)

But (12) follows from the arithmetic-geometric mean
inequality (cf., Hardy, Littlewood, Pélya [1]),

G atat ... +an+1>,"+‘
S n+1

(10)

(1)

n+1
n+1e

>‘n+l[1;LLS[1

@y . . .

if we let a;=A,, (i=1, . . ., n) and @y .1=Np11-
Thus (11) holds and (10) follows immediately
using finite induction on n.
To prove (7) we note that, by the inequalities (6),

gn— 1
Sn

D <Dl =

T
n—-1

so it suffices to show that

(A2 1 <8n—1>"

< = — 13

o, =D s, (13)

Now let wm=X\.', ..., u,=N"' and we note that

0<m< ... <u, and (13) becomes

(:u'l—{_l-‘n)z < 81(#1 ... :U'n)

< 14

dp,  —\SH (M - .o ) (14

But (14) is the same as (10) with the u’s substituted
for the N’s, hence (13) holds and the general upper
bound (7) is true for all values of £.

Proor: Part 2—Lower Bound. From the
equalities (6),

n-

on
SET= gk

=

where, by the definition (4)
81N, S, > NN,

> L

which proves the lower bound in (7).

Hence

Sn

1 81
E< —x" ‘x
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3. Some Remarks

In reference [6] T. Kato gives an upper bound for
the P-condition number which in our notation is

4
P

This is larger than the bound given in (8).
We derive several consequences from (7), (8).
Suppose that we have a matrix with positive roots,

which is normalized so that ck:(z>, ie., s;=1.
Then D,=det A, and we can write

1 1++/1— (det A)»1

(et 7D =S 1= (et )1

(15)

This implies that

det A—0 if and only if P—w,

det A—1 if and only if P—1.

Hence, the det A behaves essentially as the reciprocal
of the P-condition number and may be said to con-
stitute a reasonable condition number of its own
for such matrices. This lends substance to the
popular feeling that for a properly defined class of
normalized matrices the smallness of its determinant
is accompanied by difficulty in inversion.

A second observation relates to least square ap-
proximations. Kxpress the general problem in the
language of inner product spaces. We are required
to solve |ly—=7.,a;2;||=minimum, where 7 is given
and z; are independent elements. The normal equa-
tions have matrix ((z;z;)) where (p,q) designates
the inner product. We can assume z; normalized:
(i,2)=|lz;[*=1. The Gram matrix ((z;2;)) Iis
positive definite symmetric and hence falls within
the scope of our inequality with k=1, ¢;=n. Hence
if G'is the Gram determinant |(z;,z,)| we have

1 L
Gl/(n—l)— Sl_vlm (16>

The quantity ¢, which acts as a “measure” of linear
independence of z;, . . . , z,, therefore also serves
as a condition number for the normal equations.
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