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Let a matri x A have positive roots O< AI ::;A2::; ... ::;An . Upper and lower bounds 
for the P-condition number of A, P = An/ AI, are given in terms of det A and one other 
symmetri c funct ion of the roots. 

1. Introduction 

Suppose A = (aij) is a nonsingular n X n matrix 
with roots, Ai(i = l , . .. , n), ordered so that 

For a wide class of matrices A, the raLio IAnl/I Ad 
gives a rough Jllea.sure of the probable accuracy of 
the co mpu tation of the inverse of A, or the solution 
of Llte system of equaLions for which A is the matrix 
of coefficients. 

This measure was evaluaLed in some detail by 
von r\eumann and Goldstine [5JI and has been called 
by J. Todd [2, 3, 4] the P- condi tion number of the 
matrix, i .e., 

In general the accuracy of the results is in propor tion 
to the r eciprocal of P . 

In this paper we shall show that , if the roots of A 
arc all positive with 

(1) 

and the determinant of A, det A, is known, together 
with one other symmetric function of the roots, 
upper and lower bounds for P can be given in 
terms of these two known quan tities. 

More precisely, if the characteristic polynomial 
for the matrix A is 

(i= l , ... , n) (2) 

and we know Ck and cn=(det A), there exist positive 
upper and lower bounds for the ratio 

(3) 

in Lcrms of Ck and Cn. 
To simplify the notation in the statement and 

proof of Lhe theorem we use the following device. 

1 Figures in brackets indicate the literature reCerences at the end oC this paper. 
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Let 

Ck=Ck(t\) , . .. , An) =(~) SleO\1 ... , An)=(Z)sk; (4) 

and divide each rooL of p (x) by (SIe)l/k. (This is 
equivalent to dividing each clement of the matrix by 
(k)l /k.) "Ve will call tbe new m atrix "normal ized 
wiLh respect to k" or simply the normalized matrix. 
Since the condiLion. number, P , is th e ratio of two 
rooLs, P will not be affected by such a transformaLion . 
L et Dk be the determin ant of the normalized matrix. 
Then 

( n ) n/k 
k Cn (5) 

From H ardy-LiLtlewood-P61ya [1] the numbers Sk 

as defined in (4) saLisfy Lhe inequalities 

(6) 

(wh ere equality holds only if all the Ai are equal) 
hence, by (5), Dk~ l. 

2. Statement and Proof of Theorem 

THEOREM : Ij we have a matrix A = (ail) with 
characteristic polynomial (2) and 'if the constant t~rm 
and the lcth coefficient are known, the jollowing bounds 
hold jor P , 

1 <P < 1 + ,11 -D~ I 

D l/(n-l) - -1 '1 D n l' (k= l , .. . , n-l) (7) 
k - -y - k 

where D is defined by (4) and (5). 
Ij k= i (i.e., the tTaC6 oj the matrix is given) we can 

improve the upper bound: 

D _nncn • 
1- C~ (8) 

PROOF: Part i - Upper bound. W e prove (8) 
first, as the method used for this can be applied in 
the proof of (7). 

Since P = An/AI' eq (8) is equivalent to 

D < 4A1An 
1 _ (Al+An)2 (9) 



so from (5), we must show that 

(t'i + An) 2 < ( SI ) ". 

4AIAn - n~sn 
(10) 

But the right side of (10) is (A n/Gn)n where A n 
is the arithmetic mean, and Gn the geometric mean, 
of AI, ... , An· 

Thus, we can prove (10) by induction if we prove 
the following: 

LEMMA: 

( A n) n ~ (An+l)"+I , 
Gn Gn+l 

(ll) 

where A n+l and Gn+1 are the arithmetic and geo­
metric means of AI , . .. , An, An+I ' (The Ai are not 
assumed to be ordered with respect to size for this 
lemma.) 

PROOF OF LEMMA: Simplifying (ll) we see we 
must prove 

(12) 

But (12) follows from the arithmetic-geometric mean 
inequality (cL, Hardy, Littlewood, P6lya [1]), 

«al + a2+ ... + an+l ) n+l 
al~ ... an+l_ n+ l ' 

if we let at= A n, (i= l, ... , n) and an+I= An+l. 
Thus (ll) holds and (10) follows immediately 

using finite induction on n. 
To prove (7) we note that, by the inequalities (6), 

n-I 

Dn-l< Dn-I _~ 
k _ n-l- n ' 

8 n - 1 

so it suffices to show that 

Now let J.l1=A;I, ... , fJ.n= Al l and we note that 
O<fJ.l~ ••• ~ J.ln and (13) becomes 

( fJ. l+ fJ.n) 2 « St(fJ.l ... fJ.n) )n. (14) 
4fJ.IfJ.n - S}!n(fJ. l ... fJ.n) 

But (14) is the same as (10) with the fJ.'S substituted 
for the A's, hence (13) holds and the general upper 
bound (7) is true for all values of k. 

PROOF: Part 2- Lower B01),nd. From the in­
equalities (6), 

where, by the definition (4) 

SI ~ An,Sn 2: Ar- 1An , 

Hence 

which proves the lower bound in (7). 

3 . Some Remarks 

In reference [6] T. Kato gives an upper bound for 
the P -condition number which in our notation is 

P<~. 
D I 

This is larger than the bound given in (8). 
We derive several consequences from (7) , (8). 

Suppose that we have a matrix with positive roots , 

which is normalized so that Ck= (~), i,e" 8k= 1. 

Then D k= det A, and we can write 

1 <P< 1+~1- (det A )n-l. 
(detA)I /(n j) -1-~I-(detA)n 1 

(15) 

This implies that 

det A ---'70 if and only if P ---'7ro , 

det A ---'7 1 if and only if P ---'71. 

Hence, the det A behaves essentially as the reciprocal 
of the P-condition number and may be said to con­
stitute a reasonable condition number of its own 
for such matrices. This lends substance to the 
popular feeling that for a properly defined class of 
normalized matrices the smallness of its determinan t 
is accompanied by difficulty in inversion . 

A second observation relates to least square ap­
proximations. Express the general problem in the 
language of inner product spaces. We are required 
to solve IIY-~?_lai xtll=minimum, where Y is given 
and Xi are independent elements. The normal equa­
tions have matrix ((Xt,Xj» where (p, q) designates 
the inner product. vVe can assume Xl normalized: 
(x/,x;) = Ilxt W= 1. The Gram matrix ((x /,x,» is 
positive definite symmetric and hence falls within 
the scope of our inequality with k = 1, Cl=n . Hence 
if G is the Gram determinant I (xi ,x,) I we have 

1 <p<I+.Ji=G. 
GI/(" 1) - 1-~I-G 

(16) 

The quantity G, which acts as a "measure" of lineal' 
independence of XI, •.. , Xn , therefore also serves 
as a condition number for the normal equations. 
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