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As the spectral tristimulus values of the CIE Standard Observer System for Colorimetry
are measurable quantities, their variabilities should be known. This paper describes a pro-
cedure for deriving “within” and “between’ variances and covariances in the spectral
tristimulus values, based on color-matching data for individual observers. The “within”
variances are based on the replications of color-mixture data by an observer. The “between”
variances are based on differences among the color-mixture data of individual observers. A
statistical model is given for the system in which the experimental data are obtained. For-
mulas for expected values (means), variances, and covariances are developed. Variances
and covariances belonging to different sources of uncertainties in the experimental data
are considered. A procedure is developed for determining the uncertainties in the constants
of a linear transformation to a sysvem analogous to the present CIE system. The formulas
for variances and covariances after linear transformation are given, for a rigorous empir-
ically-based choice, and also for an arbitrary choice of transformation constants. The
complete standard observer system for every 10 mpu consisting of means, variances, and
covariances derived from an arbitrary transformation, is listed. The between-observer
variabilities are found to be about 10 percent of the averages of the color-mixture data and the
average ratio of the between-observer variabilities to the within-observer variabilities is found

to be about 5.7.

1. Introduction

Since 1931 the International Commission on
Ilumination has recommended the use of a Standard
Observer System for Colorimetry [1].!  This system
defines the manner in which spectral data for
materials are to be reduced to three numbers, called
tristimulus values, that describe colors of emitted,
reflected, or transmitted lights. The defining equa-
tions for these tristimulus values are:
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0
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0
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The quantities Z,, 75, and Z, are called spectral
tristimulus values and are intended to be descriptive
of the spectral-light response of the average human
observer with normal color vision. The quantity
Ny describes the spectral emittance of light sources
and the quantity 7 describes the spectral character
of the reflecting or transmitting materials.

Tristimulus values are usually reduced to chro-
maticity coordinates by the equations:

r=X/S, y=Y/S, and 2=2/8,

where S is the sum of the tristimulus values X, Y,
and Z. As I, U, z», N, and Ty are measured

1 Figures in brackets indicate the literature references at the end of this paper .

quantities, they are subject to measurement un-
certainty, Nimeroff [2,3] has treated, by means of
propagation of error theory, the manner in which
rariabilities in 7’ and in N, affect the chromaticity
coordinates, z, ¥, and z.

The general problem and several special cases
of propagation of errors in tristimulus colorimetry
have been treated by Nimeroff [3]. In that treat-
ment the mean spectral tristimulus values, z, 7, and
Z, were estimated by averaging the mean CIE (17
observers) and mean Stiles’ 2°- and 10°field pilot
data (10 observers each). The variances in these
values were estimated in the usual manner by using
deviations of these three mean data from the esti-
mated overall mean values; the covariances were
ignored. The variances as well as the covariances
should, however, be more fundamentally estimated;
that is, they should be estimated from differences
among color-mixture functions of individual observ-
ers. Such data became available in 1959. This
paper describes how this fundamental estimation
of the between-observer variances and covariances
may be made for the 10°-field color-mixture data
of the 53 observers of Stiles-Burch [4] and the 27
observers of Speranskaya [5], and gives estimates
of the average within-observer variances and co-
variances of two observers, one with 4 and the other
with 5 replications. The estimates of covariances
are developed on the basis of the data of the 53
observers of Stiles-Burch.

2. Statistical Model

Fundamental color-matching data are obtained on
a device where an observer is presented two fields
which he is asked to color-match, by adjusting the
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amounts of three primary colors. In one field, there
is a fixed amount, £, of a given spectral color of
wavelength X\.  The three adjustable primaries hav-
ing wavelengths 645.2, 526.3, and 444.4 mu may be
denoted R, G, B, respectively. One is added to the
field containing the given color, and the other two
are mixed in the second field. If Ry is the amount
of the Red (R) primary (in energy units) used in
matching £\, and Gy and By are similarly defined,
then the condition of color-matching may be ex-
pressed:

E, ZER\+G\+ By, (1)

where the primary which was mixed with the given
color is represented by a negative quantity on the
right-hand side of this symbolic equation.

The complete set of color-mixture data for a single
observer consists of the amounts of the three pri-
maries used in matching a series of spectrum colors
sampling the entire visible portion. These data are
adjusted so that, in suitable units, (R\, G\, By) repre-
sent the amounts used in matching a unit amount
(energy) of the spectrum color at wavelength \.

The empirical results for the sth observer may be
denoted (Ry;, Gri, Byy). Omitting the subsecript X we
consider the following model:

Il)izll)+bm+6m
Gi:G+bGt+€Gt (2)
Bi:B+bBt+631,

where each of R2;, (;, B;is represented as the sum of
three terms: R, the average amount which would be
used in color-matching in a population of observers
with normal color vision; the “bias” bg; of the ith
observer; and an “error’” ez;. The bias bg; is the
amount by which the ith observer’s “true” average
differs from the population average R. The error
ez: 1s the difference between a given observation R,
and the ith observer’s true average which is (R-+bg,).
The terms of the second and third eqs of (2) are
similarly defined. The expected value (true average)
of error e; is assumed to be zero; thus, for the 7th
observer,

Ei[[l)tlzll)ﬂme

E1[011:G+b(;1

Ei[Bi]:B+bBi

where £; denotes the operation of averaging (taking
the expected value) over the hypothetical set of re-
peated observations by the 2th observer.

The “within” variance for the 4th observer (for
the red primary, say) is the average squared deviation
of R; from E;[R;],

Vz‘(Ri):Ei[[{i“Ei[lfi]]ZZEi[ngt]-

If all observers have the same “within’” variance,
then this common variance is denoted by ,o%; when
it is desired to specify the dependence of this vari-
ance on the wavelength of the spectrum color being
matched, the subseript X\ is restored and the within
variance is denoted by ,o%.

Now, referring again to eq(2), the average or
expected value of R; over the whole population of
observers is R; E[R])=R, where E (without sub-
script 7) denotes the operation of averaging over
the population of observers. Therefore, it follows
that Elbg]=0.

The “between’” variance, in the population of
observers, is the average squared deviation of the
ith observer’s average (R-+bg;) from the population

average [2,
bU%z:E[b%!i]-

It is assumed that the error egp; is statistically
independent of the observer bias bz, Thus, the
total variance ¢% of the observed value R; for one
observation by one observer is the sum of the
within and between variances, and similarly for the
green and blue primaries:

2 __ 2 2
02=p0k T w0k
0e=1061 w0l (3)
0'%?:00—23"{_100’%’-

Although it is perhaps reasonable to assume that
an observer’s ‘“errors’” are not correlated with his
“biases’”, the analyses of empirical data below will

’ . .
show that it cannot be assumed that the three
observations R; @; B; for the ith observer are
independent. Accordingly, it is necessary to know
the covariances. The “between’ covariances are:
Elbrbeil, Elbribpi], Elbs:bs:].

The “within’ covariances are:
Oi(Ri,Gi):Ei[<Ri_Ei[[l)i])(Gi—Ei[Gz])]:Ei[fméci];‘
When we assume that the within covariances are
equal for all observers, we may then write the total
covariances as:

O(R,G):bURGJf—w‘TRG»
O(R,B):b033+u~633, (4)
O(G;B):b003+u«003y

where, for example,

bURG:E[szbGz]
and
.
wIRG— Ei[émém]-

No attempt will be made in this paper to estimate
the within and between covariances separately;
estimates are given for the total correlations such
as pra, defined by eqs (3), (4), and

C(R,G):PRGURGG (5)
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The total variances and covariances are estimated
in the usual way. For example,
g} 18

Q>
1%
|

(Ri— R (n—1)

I =
o

where 7 is the number of observers and R is the
average of the R; for the n observers.

3. Rigorous Transformation to a System
Analogous to CIE

Spectral tristimulus values, 7, g, b, have been de-
rived from measured color-matching data of the
primaries, wavelengths 645.2, 526.3, and 444.4 mup.
An empirically-based system of spectral tristimulus
values, Z, 7, Z, analogous to the present CIE system,
may be derived from these tristimulus ralues,
7 G, by by means of the eqs (6) below. If we wish to
locate the chromaticity coordinates of the equal-
energy point (z,, ¥, z,) at the point (1/3, 1/3, 1/3)
we must set a restriction that Z& =23\ =Z2Zz,.
This is the purpose of the adjustment factors, f., f,,
and 7, respectively.

-7>\:fz<k|7)\+k2:(7>\+kab)\) :f:cz;\
=Ty (ksxtkesgt-keby) =1, 75 (6)
a=F.(kr\tlksgrtkobr) =1 2.

We may impose two additional restrictions on the
system:

1. That
ZeT0.

2. That no one of the functions, z, 7, z, be equiv-
alent to a linear combination of the other two.
This restriction is established if the determinant of

the tristimulus values be not less than

coefficients k; does not vanish, that is,
ky ks ks
ky ks ke| #O. (6a)
kr ks ko

If all the luminosity, V,, is placed in the @ pri-
mary, and if f, is set equal to 1, then ki, ks, and k&
are determined by

V)‘:i";;:]lr7k+ng)\—*_ng)\:kl4;:)\+k5.(7)\+k65x (@)

thereby muking k=L, ks=L,, and kg=L,. Thesym-
bols L,, L, and L, are the luminous units of the7 g
system.

The solutions for the &;’s in the & and z spectral
tristimulus functions are not obtained as directly as
those for the £;'s in the 7 function. Kquations (8) to
(8e) below show how a solution of the ki's in the &
fune tmn may be obtained.

The & oquntlon (eq 8) contains three ks to be de-
termined. A unique solution for ki, ks, zm(l ky requires
three simultaneous equations. By assigning, tenta-
tively, a value of unity to &, (eq 8a), no loss of gen-

the estimate for

erality is encountered that cannot be accounted for
by the adjustment factor, f,, in eq (6).

Th =l Prt-lesgn+leshy (8)

;;:7A+k2_g-x+k3b)\. (8&)
When this is done, only two simultancous equations
are required to solve for the remaining two constants.
The equations are set up by selecting, at two wave-
lengths (N, and \;), numerical values for say, #; and
&y, that will satisfy the requirement that all the tri-
stimulus values be positive.  Equation (8a) then

becomes _
Ti=r1+k:g1+ksb (8b)
Ty=To+kogotksbe (8¢)
and 'tlw solutions for k, and k; are given by:
=@ —7)b— @—T2)b.)/(G:bs—7ob)  (8d)
k=@ =720 — @ — 705/ @:b—Gab).  (Se)

The constants k; of the z function are solved in a
similar manner as shown by eqs (9) to (9e):

2y =k +lesgrt-kobr (9)
Zr =k +-ksgr+ba (9a)
Zs=lesT3+-ksFs+ b3 (9b)
Zi=le:7 4+ ksFs+-bs (9c)
k=[G b)) §a— Gi— b)) Ts)/ (Fsgs—T47s)  (9d)
ks=[Gi—b)Ts— Zi—ba) T4/ (Tsga—Tags).  (9e)

4. Variances and Covariances in a Rigorous
Transformation

In general, variances and covariances based on
propagation of error theory are:
v,I+Z)

> a[ “')
N ) %o,
m=n a1’n a1"m et

kol 0
Jov= g av"> (b}s" ’n+m#” al’m) (azv > T00n
(11)

o/

U—Z avn (10)

where 7 and V are functions of (o, . . , %), and
the partial derivatives are understood to be evaluated
at the average values of these variables. The vari-
X U b G ol 2
ances of o, Ly DpATe 0, .., 0G, and o, ,
denotes the covariance of »,, v,,.
As & is a function of 9 variables (7, ¢ Gy by 11, G1s by T,
92, b2), ¥ is a function of 6 variables (7, g, b, L, Ly,
L), and z is a function of 9 variables (7, g, b, 73, 73,
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b3, 71, Gs, be), the numbers of terms required by our
problem can be counted readily. The numbers of
terms in the variance equations are shown in table 1,
and the numbers of terms in the covariance equations
are shown in table 2.

TasrLe 1. Number of terms in the variance equations
Variables | Variance | Covariance | Total
terms terms
6 6 15 21
9 9 36 45
TaBLE 2. Number of lerms in the covariance equalions
Variables
Terms
n m
J) 6 54
9 9 81

Thus, for every wavelength there are required in
a rigorous transformation from 7gb to zyz, 45-4+21+
45=11 terms for the variances and 54481454 =189
terms for the covariances, or a total of 300 terms for
each wavelength. If the computation of the vari-
ances and covariances is performed at every 1 mupu
step, as the z, ¥, z functions have been derived by
Judd [6], from 360 to 830 mu or at 471 wavelengths,
some 141,300 terms would need to be computed.

Observe further that eqs (10) and (11) would
include covariances between observations belonging
to different spectral colors. That is, the possible
correlation between (for example) ¢; and g, would

be included in eq (10) and between b; and byin eq (11).

5. Variances and Covariances in an Arbi.
trary Transformation

The foregoing procedure is completely general and
rigorous for the conditions where empirical data are
asked to indicate the choice of transformation con-
stants, k;, for a transformation fo a system analogous
to the present CIE system. Where one wishes to
make an arbitrary choice of transformation con-
stants he indicates that the constants are without
error or correlation with other variables.

In an arbitrary transformation the variances and
covariances involving k; are chosen equal to zero
thus:

Vk:)=C(ks, ky)=Clks, v:)=0 (12)

where »; denotes any of the variables, 7, g, b, L, with
various subseripts. Thus in the transformation,

Tn =k TrA-keoGa e
Tr=kFrt-ksgrt-ksbr (13)
Zn=kiPat-ksga+heoby

the variance equations are:
V(@) =KV +i3V(G) +kV ()
+2[ke ik, C(F,9) +kikes O(F,b) +heokes O(g,)]
V() =KV +kiV(g)+k3V(b)
+2[kedesO(F,g) +hides O(F,b) + ks O(g,)]
V(2)=KV(7) +k3V (9)+k3V (b)
+20keikes C(7,g) +erkeo O(F ) +heshe, C(5,5)] )

- (14)

O(Z,9)=lkksV (F) +-koksV (§) +-kskoV (0) + (erkes-+hoks) C(7 )+ (skeo+eskes) O(F,B) + (koks+-sks) C(g,b)
O@,2)=kikr V(7) +kaksV (§) + eV (B) + (erks +-koker) O(F )+ (kko-Fhskn) C(7,B) + (hokeo +-koks) O(3,5) ¥ (15)
O(Y,2) =kader V(F) +-lesks V (§) +eokeaV (D) + (kskes +skr) C(F, )+ (kakey +-keoks) C(7,B) + (ksko+ kisks) O(F,b)

To estimate these variances and covariances from
the data obtained in color-matching by n observers,
the following formulas are used:

PE =33 G b 1)=2)

P@=32 G—hoya—D=53 ¢ (0

‘)}(Z)Zlé) (-51'_ ﬁb)g/(n_ 1):‘;% )

O =33 (7o) G0 1)=7
6(7)—>: 111 <?1_ﬁr) (Ez_ﬁb)/(n_l):g;s L (17)
0GH =23 @b =B (—1)=b5

and
A L — A & —_— A " —
,u,:;Ti/n, l-‘g:zlgi/ny l‘b:ZIbz/n
= = =
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The transformation equations derived by Kelly
and Judd [6] and being considered for recommenda-
tion by the CIE for a 10°field standard observer
system for colorimetry are:

T10=0.341080 7,p+0.189145 g,0-+0.387529 by,
T10=0.139058 71o+0.837460 G1o-+0.073316 by,
Z,0=0.000000 7,+0.039553 F1o-+2.026200 b,

(18)

As the constants, k;, of these equations were derived
in a very complex way, the transformation will be
treated as an arbitrary one.

6. Variability of Color-Mixture Data

The results of a statistical analysis of the Stiles-
Burch color-matching data may be useful in deter-
mining the variances and covariances for the trans-
formation to the proposed new CIE standard
observer system. The Stiles-Burch data were ana-
lyzed because in the development of the new system
they are being given greater weight than those of
other investigators and because they are available in
terms of individual observer data. Such an analysis
was reported by Nimeroff, Rosenblatt, and Danne-
miller [7] at the October 1959 meeting of the Optical
Society of America and the results are given below.

The Stiles-Burch data were obtained under two
experimental conditions. For condition I, 24 ob-
servers were used, while for condition 11, 29 observers
were employed. These two conditions differ in that
the blue instrumental primary of condition I was
located at 445.4 mp (22,450 em~') while that of
condition IT was located at 470.6 mu (21,250 em™1).,
The data taken under these two conditions were
transformed by Stiles-and Burch to an 7gb system
system in which the blue primary is located at
4444 mpu. To test whether these two sets of trans-
formed data are significantly different from each
other the Hotelling 7 test [8] was used. The 77 test
provides a comparison between the two sets of
averages 7y, representing 7, ¢i, by, of condition I
and 7., representing 7,, g, by, of condition II in which
the three correlated differences between correspond-
ing averages are evaluated simultaneously against
the variability present in the data from which the
averages were estimated. In this test a high value
of 7% implies that the differences between the aver-
ages compared are large. The 77 statistic in
quadratic form for our problem of three variables in
ecach of two conditions for N, and N, observers is:

IR s St < B Sis D1i— P2i) (P1,— Doy

N1+Nzi,j2=1 (Pri—P21) (Pr;—P21),
where S¥ is the (7,7) element of the inverse of the
three by three matrix with elements

(19)

1 Ny

= N N,—2 ?‘;—1 (Prix—Pre) Prx— P1s)

N2 _ _ _
133 BaaTo) Ben—T2) | 20)
k=1 =

S

The subscripts 1 and 2 refer to the two conditions,
7 and j refer to the three primaries compared two
at a time, and £ identifies the observer for each
condition.

The results of this test are plotted on figure 1
and indicate that the data obtained by Stiles under
the two experimental conditions are in general
statistically different even at the 2.5 percent level
of significance, the exceptions lying between 470
and 580mu. The difference may result from either
an improper evaluation of the transformations of
the two sets of data to a common primary system
or an inherent dependence on the choice of instru-
mental primary. This latter supposition, if true,
would invalidate any attempt to make the data
obtained under the two sets of conditions comparable
through such transformation. The differences be-
tween conditions I and IT, while statistically signifi-
cant, are in practical terms small.

In spite of these differences the CIE is proceeding
to average these data as well as those of Speranskaya
for 27 observers, to derive the 10°-field tristimulus
functions, zyz. Figure 2 shows the averaged 7
function with its three lobes, two positive and one
negative. Also shown are the estimates of between-
observer standard deviations for the 7 function,
based on the Stiles-Burch combined data and the
Speranskaya data. Note that the standard devia-
tions of these independent mvestigations are essen-
tially of the same order of magnitude and range
approximately from 10 to 20 percent of the mean
function.

Strictly, the estimates shown in figure 2 (likewise
figs. 3, 4) are estimates of the total standard deviation
(see eq (3)). As the within-observer variances are
relatively small, the estimated between-observer
variances are only slichtly over-stated. A satis-
factory estimate of between-observer variance alone
can be made only when the data include repeated
observations by many (if not all) observers.

The lower curve gives the estimated within-

observer standard deviations for the 7 function.
40 T T T T T ﬁ—iﬁ—]
N ‘
30 - —
o
o]
o
T2 20 | 5 o R =
o
(o]
o [e]
o o
& o ve o 2.5%
I = O
re) ~ S 5%
° 10%
Oooo oo %o
o L 1 I o | | ] 1
400 450 500 550 600 650 700
X mu

Ficure 1. Values of the T? statistic for evaluating differences
between Stiles’ data obtained wunder condition I and under
condition I1.

Critical values of 72 at three probability levels are indicated, showing that

even at the 2.5% level the results obtained under the two conditions are for the
most part significantly different.
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.000I 1 !
400 450 500 550 600 650 700

X, mu
Fiaure 2. Means and variability of the red-primary data.

Means, O); standard deviations between observers (3o,): Stiles A, Speranskaya
A; standard deviations within observer (voy).
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Ficure 3. Means and varibility of the green-primary data.

Means O); standard deviations between observers (yo,): Stiles A, SperanskayaA ;
standard deviations within observer (,og).
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Ficure 4. Means and variability of the blue-primary data.

Means O; standard deviation between observers (ya3): Stiles A, Speranskaya
A; standard deviation within observer (yo).

These data are based on the average of individual
variability of two observers, one repeating his
measurements four times and the other repeating
his measurements five times. As might be expected,
the within-observer standard deviations are ap-
proximately an order of magnitude lower than the
between-observer standard deviations. Note that
because settings in matches of the primaries them-
selves are assumed to be free from error the curves
for the standard deviations are extended so as to
approach zero at the location of the 7¢b primaries,
that is at wavelengths 444.4, 526.3, and 645.2 mu.

Figure 3 shows the same kind of information for
the g function with its three lobes, two negative and
one positive. Here also there is the same agreement
between the Stiles-Burch data and the Speranskaya
data; the within standard deviations are about an
order of magnitude lower than the between standard
deviations. The standard deviations approach zero
at the location of the primaries.

Figure 4 shows the data for the b function. Here
there is a disparity between the Stiles-Burch and the
Speranskaya data in the longwave region. This
disparity may result from the transformation from
the instrumental primaries used in the Speranskaya
investigation to those of the 7gb system. It is more
likely, however, that the procedure used by Stiles,
that of employing for longwave matches a yellow
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primary at 588.2 rather than a green instrumental

primary, is responsible for the lower variability of

the b function in this region.

On figure 5 are shown averages of the between
standard deviations derived from the data of the 53
Stiles-Burch observers and the data of the 27
Speranskaya observers. In thelongwave (640 mu and
beyond) region of the b function the averages are
based on the same weights used by Judd in deriving
the mean b function itself from the British and
Russian data. The weights for the British data are
greater than those for the Russian data and increase
with wavelength.

It was noted above that the within standard
deviations are about an order of magnitude lower
than the between standard deviations. We are in-
terested in learning whether the ratio of between to
within standard deviations for the three functions
can be represented by a single constant independent
of wavelength and, if so, in determining the magni-
tude of such a constant. The computation of within-
observer variability in a transformation to an zyz
system would be simplified were this permissible.
Figure 6 shows these ratios for the three color-mix-
ture functions. The overall average ratio was de-
rived from the geometric mean and is 5.7 in the
spectral region 400 to 700 mu. The geometric mean
was used because of the wide disparity between the
extreme values, namely 2.0 and 30.9. We consider
this value reasonably representative of the ratio of
between to within standard deviations, as better
than 80 percent of the ratios lie between half and
twice 5.7.

In the transformations from color-mixture func-
tions, 7¢ b, to tristimulus values, 2y z, covariances as
well as variances need to be known. The correla-
tion coefficient, p,;, relates the covariance, oy, to the
variances, o7, o, thus:

Pij:lffj/tf«: 0j.

On figure 7 are plotted the correlation coefficients,
070,73, and pzz. In these data, a positive correla-
tion coefficient implies that il an observer uses more
or less than average of one instrumental primary in
making a match he uses more or less, respectively,
than average of the other primary, also. Conversely,
a negative correlation coeflicient implies that if more
or less than average of one primary is used, less or
more, respectively, than average of the other primary
is used. We note that p73 is always positive or zero,
while p7 7 is almost always negative or zero. On the
other hand, pz 7 is negative in the shortwave spectral
region, 380 to 590 mgy, and positive in the longwave
region, 600 to 720 mu.

Approximately two-thirds of the correlation coeffi-
cients are significantly different from zero at the 5
percent level of significance. The general consistency
of sign and magnitude among values of the correla-
tion coeflicients at adjacent wavelengths provides
further confirmation for the general pattern of values
shown. Although some of the correlation coeffi-
cients are small in magnitude they should not be

Ficure 5. Mean standard deviation between observers for the

Stiles-Burch and the Speranskaya data.

40
30 |- °
.
b7
— 20 -
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o
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v v
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0
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Ficure 6. Ratio of the between to within standard deviations,

for the three primaries, T (@), 2(A), and b(Q), showing
overall average ratio at 5.7 .

400 500 600 700
X,mp.

Ficure 7. Correlation coefficients, pi;, for ij equal to v g (O),
rb (A),gb (@).

Dashed lines define the region within which these coefficients are not (statis-
tically) significantly different from zero at the 5%, level.

neglected in determining the variances and covari-
ances in the &7z system transformed from the color-
mixture data.
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A few qualifications to the interpretation of the
statistical analyses should be mentioned. First, state-
ments concerning ‘‘statistical significance” are based
on the assumption that the observations are normally
distributed.

There has been reported, however, by Judd [9] for
7 observers and by Wyszecki [10] for 10 observers, some
evidence that the population of observers with nor-
mal color vision may be bimodally distributed. A
limited analysis of the Stiles-Burch data for the 53
observers was undertaken to see if bimodality is re-
vealed in their individual observer data. This analy-
sis showed (see for example fig. 8 for 25, against
Gse) that although the distribution may be slightly
skewed, there is insufficient data to conclude the
existence of any bimodality. If more extensive data
should lead to a reliable statement that the distribu-
tion of the population is bimodal, two standard ob-
server systems might be required, one for each group.

A second qualification is required since possible
correlations among observations for different spectral
colors have been ignored because of the arbitrary
choice of constants in the transformation. For ex-
ample, the presence of correlation could account in
part for the apparently consistent difference between
conditions I and IT, as shown in figure 1.

7. Complete Standard Observer System

A complete standard observer system should con-
tain not only the mean spectral tristimulus functions,
F\, T, B, derived from the color mixture data, but
should contain, also, the variances and covariances

At
.30 .40

.50 .60

—Rsoo

Ficure 8. Plot of Rswn against Gse for Stiles’ individual ob-

servers indicating no bimodality and very little skewness.
Condition I (@), condition IT (O), and mean (). Straight lines join outlying

values obtained under the two conditions.
of these functions as derived from the within- and
between-observer variability of the color mixture
data.

Table 3 lists, for every 10 mg, the spectral tristim-
ulus values of the proposed standard observer sys-
tem for colorimetry and the estimated total vari-

TaBLE 3. Proposed CIE tristimulus functions for 10°-field and between variances and covariances in %7,z
N(mp) ) 7 210 V@) V@) V(@@ c@,y) C@E,2) C@,2)
400 | 0.0191097 | 0.0020044 | 0.0860109 | 0.000126 0.00000118 | 0.00256 +0. 0000104 -+0.000568 -0.0000467
10 | .084736 . 008756 .389366 | . 000661 . 0000110 L0132 +.0000708 +.00294 +.000321
20 | .204492 . 021391 972542 | .000937 . 0000262 L0193 0000731 +.00421 +. 000350
30 | .314679 .038676 | 1.55348 . 000737 . 0000671 L0154 +.000106 +.00329 . 000509
40 | .383734 .062077 | 1.96728 . 000385 . 0000448 . 00978 +. 0000816 +.00189 +. 000355
450 . 370702 . 089456 1. 99480 . 000353 . 0000561 . 00815 -+.0000413 . 00161 . 000185
60 | .302273 128201 | 1.74537 . 00109 . 0000995 . 0206 —. 0000151 +.00454 +.000136
70 | .195618 .185190 | 1.31756 .00110 . 000272 L0180 —.000101 +.00423 —.000131
80 | 080507 .253589 | 0.772125 | .000716 . 000602 . 00606 —. 000108 +.00182 —. 00000827
90 | .016172 . 339133 .415254 | 000675 . 00105 . 00234 —. 0000633 +.000973 +.0000759
500 | .003816 460777 (218502 | . 000414 .00129 . 000593 +.000000553 | -+.000279 —.000245
10 | .037465 . 606741 112044 | 000325 . 000829 . 000190 +.0000884 +.000112 —. 0000999
20 | .117749 . T61757 060709 | .000183 . 000457 . 0000649 . 000109 +.0000325 —. 0000185
30 | .236491 . 875211 030451 | 000143 . 000253 . 0000271 +.000100 . 00000547 —. 00000204
40 | .376772 . 961988 L013676 | 000622 . 000590 . 0000431 +. 000301 +.0000133 —.0000285
550 | .529826 . 991761 003988 | .00143 . 000668 . 000105 +. 000528 0000531 —. 0000700
60 | .705224 . 997340 .000000 | .00283 . 000847 . 000100 +-.000960 +.000102 —.0000513
70 | .878655 . 955552 . 00437 . 000998 . 0000942 +. 00142 +.000147 —.0000107
80 | 1.01416 . 868934 . 00569 .00113 . 0000778 +. 00181 +.000184 -.0000381
90 | 1.11852 .T77405 . 00588 . 000947 . 0000652 +.00194 +.000194 +. 0000806
600 | 1.12399 . 658341 . 00493 . 000731 . 0000379 -+.00170 -.000148 -+.0000720
10 | 1.03048 . 527963 . 00324 . 000475 . 0000248 +.00116 +.000102 +.0000518
20 | 0.856297 . 398057 . 00159 . 000240 .0000123 . 000601 . 0000449 40000222
30 | .647467 . 283493 . 000575 . 0000918 . 00000587 +.000226 +.0000120 ~+.00000591
40 . 431567 . 179828 . 0000750 . 0000127 . 000000280 . 0000305 -.000000138 . 000000067
650 . 268329 .107633 . 0000470 . 00000794 . 000000050 . 0000191 . 000000052 . 000000032
60 | .152568 . 060281 . 0000458 . 00000713 . 000000043 +.0000179 . 000000166 +.000000091
70 | .0812606 | .0318004 . 0000129 . 00000192 .000000016 . 00000492 . 000000084 +-.000000044
80 | 0408508 | 0159051 .00000427 | .000000619 | 0000000017 00000161 . 000000013 -+.0000000077
90 . 0199413 . 0077488 . 000000894 | .000000128 . 00000000043 . 000000335 -+. 0000000030 -+. 0000000016
700 | 00957688 | 00371774 . 000000366 | 000000052 | 00000000016 +.000000137 | 00000000088 ~+-. 00000000049
10 | .00455263 | 00176847 -000000114 | .000000016 | 000000000039 | -+.000000042 | -.00000000012 . 000000000086
20 .00217496 | . 00084619 . 000000019 | 0000000026 | .0GI0000000043 | . 0000000069 | --.0000000000027 | -.0000000000051
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ances, V(z), V(y), V(2), and covariances, C(Z,7),
C(z,2), C(7,2), for these spectral tristimulus values
derived on the basis of an arbitrary transformation.
It should be noted that the variances in table 3 are
(5.7)% or 32.5 times those in table 4.

TasrLe 4. Within variances in &, i, 2
» Y,

A = - -
(mpu) () (y) v(2)
400 | 0.00000390 0. 0000000364 0. 0000788
10 . 0000204 . 000000338 . 000407
20 . 0000288 . 000000806 . 000595
30 . 0000227 . 00000207 . 000475
40 . 0000119 . 00000138 . 000301
450 . 0000109 . 00000173 . 000251
60 . 0000337 . 00000306 . 000635
70 . 0000340 . 00000837 . 000556
80 . 0000220 . 0000185 . 000187
90 . 0000208 . 0000322 . 0000720
500 . 0000128 . 0000396 . 0000183
10 . 0000100 . 0000255 . 000005687
20 . 00000562 . 0000141 . 00000200
30 . 00000440 . 00000779 . 000000834
40 . 0000192 . 0000182 00000133
550 . 0000441 . 0000206 . 00000324
60 . 0000871 . 0000261 . 00000309
70 . 000135 . 0000307 . 00000290
80 . 000172 . 0000347 . 00000240
90 . 000181 . 0000292 . 00000201
600 . 000152 . 0000225 . 00000117
10 . 0000999 . 0000146 . 000000764
20 . 0000489 . 00000740 . 000000380
30 . 0000177 . 00000283 . 000000181
40 . 00000231 . 000000391 . 00000000862
650 . 00000145 . 000000245 . 00000000154
60 . 00000141 . 000000220 . 00000000132
i . 000000398 . 0000000591 . 000000000493
80 . 000000131 . 0000000191 . 0000000000524
90 . 0000000275 . 00000000394 . 0000000000132
700 . 0000000113 . 00000000160 . 00000000000493
10 . 00000000351 . 000000000493 . 00000000000120
20 . 000000000585 . 0000000000801 . 000000000000132

8. Applications of the Complete System

As the individual observer data, on which the 1931
system is based, have been lost in antiquity, this
system can be used only to determine what color
matches the standard observer would make. A com-
prehensive analysis of color-mixture data in terms of
means, variances, and covariances permits use of the
proposed system to determine, in addition, the region

of within and between uncertainties; that is, the ex-
tent to which a normal observer tends to make dif-
ferent matches on successive attempts, and the extent
to which different normal observers vary one from
another.

Some applications of the variances and covariances
in the zyz system have been reported by Nimeroff [3]
and by Wyszecki [11]. Further applications are sure
to be suggested when a complete standard observer
system for colorimetry, consisting of means, vari-
ances, and covariances, is established.

The authors are pleased to acknowledge the en-
couragement, advice, and assistance afforded by the
following persons: D. L. MacAdam for his encourage-
ment, N. C. Severo for discussions of the statistical
model which describes the experimental arrangement
for the color-mixture data, W. S. Stiles for so gra-
ciously supplying his individual observer data, K. H.
Miller for checking of computations, and R. J.
Stanekenas for preparing the figures.

9. References

[1] Commission International de I’Eclairage, Proc. Eighth

Session, Cambridge, England, 19-29 (September,
1931).
[2] I. Nimeroff, J. Opt. Soc. Am. 43, 531 (1953).
[3] I. Nimeroff, J. Opt. Soc. Am. 47, 697 (1957).
[4] W. S. Stiles and J. M. Burech, Optica Acta 6, 1 (1959).
[6] N. I. Speranskaya, CIE Committee Report, and in

part, NPL Symp. 8 Her Majesty’s Stationery Office,
London 1, 317 (1958); Opties and Spectroscopy VII,
429 (1959), (OSA Translation).

[6] D. B. Judd, Detailed Report of Progress (Sept. 1957
to Apr. 1959) CIE Working Committee W-1.3.1,
Colorimetry.

[7]1 I. Nimeroff, J. R. Rosenblatt, and M. C. Dannemiller,
J. Opt. Soc. Am. 49, 1137 (1959).

[8] H. Hotelling, Ann. math. stat. 2, 360 (1931), and J. E.
Jackson, J. Opt. Soc. Am. 49, 585 (1959).

{91 D. B. Judd, J. Research NBS 43, 277 (1949).

[10] G. Wyszecki, Natl. Research Council of Canada Report
APOI-907, June 1959.
[11] G. Wyszecki, J. Opt. Soc. Am. 49, 389 (1959).

(Paper 65A6-129)

483



	jresv65An6p_475
	jresv65An6p_476
	jresv65An6p_477
	jresv65An6p_478
	jresv65An6p_479
	jresv65An6p_480
	jresv65An6p_481
	jresv65An6p_482
	jresv65An6p_483
	jresv65An6p_484

