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Relations by which the shear modulus may be computed from the fundamental and
overtones of the torsional resonance frequencies of square bars have been established em-

pirically.

The results are analyzed in terms of a proportionality factor, R, defined by the equation

G= (2l fa/n)2R.

R is found to inerease with inereasing cross section to length ratio.

Also,

the overtones are less than integral multiples of the fundamental by an amount which in-
creases with increasing cross section to length ratio.

1. Introduction

1.1. General Background

This is the third in a series of papers [1, 2] ! dealing
with the relations between various mechanical
resonance frequencies of uniform bars and their
elastic moduli. The general method of approach
has been described in the previous papers. Essen-
tially this approach consists in determining the
mechanical resonance frequencies of a series of
specimens, all having the same intrinsic elastic
moduli and density, but having dimensions which
differ from each other in a consistent manner. Then,
relations are developed from which the elastic
moduli can be computed from the associated res-
onance frequencies in terms of properly selected
dimensional and elastic parameters. These em-
pirically established relations are compared with
corresponding theoretical ones (based on the classi-
cal theory of elasticity) whenever feasible. The
theoretical relations serve as a guide in the selection
of these foregoing parameters. Also, it is only
because the experimental methods for determining
these resonance frequencies have been developed to
a high degree of accuracy (see sec. 2.2) that it has
become possible to develop the empirical relations
with comparable accuracy, and to check the classical
theory more carefully than has been possible
heretofore.

Since the uniformity of specimens with respect
to elastic modulus and density is a necessary condi-
tion for the entire development, considerable care
must be taken in the selection of specimens to realize
this condition experimentally. If, in the course of
the investigation, an opportunity presents itself for
checking this uniformity independently, it is clearly
of the utmost value, since, as just indicated, failure
of the specimens to conform to this condition would

! Figures in brackets indicate the literature references at the end of this paper.

render the entire subsequent analysis invalid. Such

an opportunity occurred in a previous study

(specimens of set I in [2]) and again in this study,

as will be shown.

Generally, steel specimens have been chosen be-
:ause this material possesses certain desirable prop-
erties in fulfilling the purposes of these investigations.
These include,

1. Steel can be machined to
accuracy fairly easily.

2. The material is inexpensive. (For these reasons
steel is chosen over tungsten, for instance.)

3. It is dimensionally staple.
It has been found that if reasonable care is taken,
the fundamental condition of maintaining the
uniformity among the different specimens with
respect to intrinsic modulus and density can be
achieved to the high accuracy necessary for the
subsequent analysis.

Also, if sufficient care is taken, steel can be

selected which satisfactorily fulfills the assump-

tions on which the empirical and corresponding
theoretical equations are based, namely, that the
material be homogeneous and isotropic. Even
though the individual grains of which the steel is
composed are anisotropic, and chemically, the
material is not “pure”, nevertheless, the orienta-
tion and distribution of the grains is random.

On the macroscopic scale of the experiments and

analysis, this material may safely be considered

to be isotropic and homogeneous, and equations
based on this condition are valid.

6. Steel gives excellent elastic responses under the
experimental conditions used, so that resonance
frequencies of up to about 50 ke/s can be realized.
This applies for higher overtones of longer speci-
mens or lower overtones or the fundamental of
the shorter specimens. Consequently, a fairly
wide range of experimental data can be analyzed.
This is of considerable importance, because it is
usually only at higher frequencies that departures
from the theory are large enough to be observed.

high dimensional
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It is emphasized, however, that although steel
specimens have been used almost entirely in these
investigations (and will be used in this one), the re-
sults are not peculiar to steel, but should apply to
any elastic, homogeneous, isotropic material. The
only qualification to this statement is that for
Young’s modulus and its related modes of vibration,
flexural and longitudinal, Poisson’s ratio must also
be considered. This complication presumably does
not arise in the determination of shear modulus from
measurements in the first torsional mode of any
order.

1.2. Particular Problem of This Study

It is recalled from the previous paper [1] on torsion
that the first overtone of rectangular specimens was
found to deviate from the exact double of the funda-
mental, and that the amount of deviation varied
with the width to depth ratio of the cross section.
Even for a specimen of square cross section the data
revealed that the first overtone was slightly lower
than the exact double of the fundamental. How-
ever, the data of that paper [1] were limited to one
length of specimen (about 6 in.) and to only the first
overtone. The purpose of the present paper is to
consider this problem more fully by investigating
specimens of square cross section of different lengths
and at higher overtones.

To give a fuller picture, the fundamental and
higher overtones of torsional resonance of some
cylindrical specimens were also investigated.

2. Experiment

2.1. Specimens

All the specimens listed were cut from a single bar
of steel, designated as SAE 1010. It was the same
bar mentioned in footnote 4 in [2]. Its composition,
as determined by spectroscopic analysis was, carbon
0.10 percent, manganese 0.30 percent, phosphorus
0.011 percent, sulfur 0.022 percent, and the re-
mainder, iron. The original bar was about 2 ft long
and about 1} in. square in cross section. The steel

ras specially heat treated to be as homogeneous as
possible and to have a minimum of preferred crystal
orientation. As :further precaution to insure uni-
formity, the original specimens were cut from the
center of the stock, since preferred crystal orienta-
tion, when it does occur, is usually most pronounced
at the periphery.

First, two cylindrical and one square specimen
were machined from the original stock. After the
fundamental and as many overtones as possible were
determined for these specimens, the square one was
subdivided in length and the torsional resonances
were similarly determined for the two new shortened
specimens thus formed. The larger of these two
specimens was again subdivided and the resonances
once more determined. The subdivisions were so
performed that the resulting specimens were all of
different lengths.

In this manner, a large number of specimens (and,
therefore of experimental points) was made available
from the original bar stock. The subscripts in the
specimen designations indicate the history of the
subdivision process. Thus A12, indicates that the
specimen was cut from Al, Al was cut from A,
which in turn was cut from the original bar.

The dimensions of all the specimens were true to
£+0.0003 em. This was a higher order of accuracy
than that acbieved in the previous investigations.
The accuracy of the dimensions and the intrinsic uni-
formity of the specimens was such that the standard
deviation in the density of four randomly selected
specimens, calculated from the mass and volume (ob-
tained from the dimensions) was less than 0.0002
g/em?, the average density being 7.8541/g/cm®.

2.2. Resonance Frequencies

The torsional resonance frequencies were obtained
in the manner previously described [1]. In addition
to the precautions previously taken to insure accu-
racy, sufficient time was allowed to elapse for the
specimens to arrive at equilibrium with the ambient
temperature which was controlled at 25.04+0.5°C.
This often took from 2 to 3 hr since it was found that
significant frequency variations could be observed
during this time interval. The specimen was con-
sidered to have come to equilibrium when successive
measurements at one-half hour intervals showed no
change in the measured resonance {requencies (i.e.,
one in the last significant figure). When this addi-
tional (temperature) precaution was taken, a con-
servative figure for the accuracy of the resonance
frequency determinations was about 1 part in 10,000.
This figure is about 214 times better than that given
previously [1,2].

Table 1 lists the dimensions, and torsional reso-
nance frequencies, both fundamental and overtones,
of the specimens used in this investigation.

3. Results and Discussion

3.1. General Theory

All rods, whether cylindrical, square or rectangular
in cross section conform to the following equation
relating the shear modulus, G, to the density, p, the
first (nondispersive)-mode torsional resonance fre-
quency, f, and the length, /, of the specimens,

G=(2lf,/n)*pR (1)

n signifies the overtone of the resonance frequency;
for the fundamental, n=1, first overtone, n=2, etc.
R is a proportionality factor which depends upon
the shape of the specimen and n.

3.2. Cylindrical Specimens

For cylindrical specimens, the theory states that
R=1 exactly for all length to cross section ratios and
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Tasre 1.  Dimensions and torsional resonance frequencies of steel bars of square cross section
Resonance frequencies, ¢/s¢
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a Specimens designated A are bars of square cross section, those designated B and C are cylinders of circular cross section.
b [=length of specimen, for square specimens = cross-sectional edge=3.4950 em; for cylindrical specimens ¢=diameter=

2.5737 cm.
¢ fi=fundamental torsional resonance frequency,
fo=first overtone, etc.

for all overtones. Also torsional waves in eylinders
conform to the following two equations (which are
exactly analogous to the ones for longitudinal waves
in cylinders),

Ly ol §

nA=2[ and »,=—" (2)
n

where A=wavelength and »,=velocity, of torsional

waves.

In contrast with longitudinal waves in eylinders,
however, the velocity of torsional waves is not re-
duced as the length of the specimen is reduced with
respect to the cross section. For all lengths, then,

G=v?p. (3)

The constancy of R was checked from the experi-
mental data by substituting the appropriate values
for the two ecylindrical specimens, in eq (1) and
assuming G/p to be the same for both specimens.
R was found to be constant with a coeflicient of
variation of 1.2 1077 percent. Since these two
specimens were not long enough to provide enough
overtones for an extended range of data, the con-
stancy of R was further checked experimentally by
using another pair of specimens, about 12 in. and
S in. long, both about 1 in. in diameter from an earlier
source (specimens I-19 and 1-16 from [2]). For the
longer of these specimens, torsional resonances up
to the fourth, and for the shorter specimen, up to the
third overtone could be detected ; and R was similarly
computed from these 9 resonances. Again, R was
found to be constant with a coeflicient of variation
of 1.1X1077 percent. Furthermore, R showed no
tendency to drift systematically for either pair of
specimens.

The equations for torsional waves in cylinders are
not only exact but so clear cut and simple (requiring
no qualifying correction factors) that, had the experi-
mental results not been in accord with the theory,
one would be more inclined to suspect the data than
the theory. Consequently, the excellent agreement
found in this respect is reassuring evidence of the
reliability of the experimental data.
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G/p for the specimens may now be obtained by
substituting the 3 sets of values for the two cylin-
drical specimens in eqs (2) and (3). The average
of these 3 values so obtained is,

qa_

a_ . , of Y,
= (104.117 4 .008) <10 <SOC> (4)

Since p is known from section 2.1, ¢ may also be
computed. It turns out to be 817.7 <X 10? dynes/cm?.
However, this information is not necessary for the
further development.

3.3. Square Bars

IFor torsional waves in bars of square cross section,
unfortunately, the situation is not so simple as in
cylinders.  (Not only is the theory more complex
requiring uncertain approximations, but the experi-
mental results obtained here do not agree too well
with the theory.)

Timoshenko [3] has derived exact expressions for
the stress, strain and dimensional relations of square
bars in static torsion. Timoshenko’s equations have
been solved for a shape factor, k;, which when sub-
stituted into Pickett’s [4] equation for R, (R=1,/k,
where 7, 1is the polar moment of inertia of the cross-
sectional area) leads to a value of R=1.18559, which
is accurate to the number of places given. This
particular value of R is henceforth designated as
R,. For the dynamic case (i.e., a square bar vibrat-
ing in torsion) R, may be safely used in eq (1) as long
as the cross section of the specimen is small in com-
parison with the wavelength. For shorter specimens
in torsional resonance, however, as the cross section
becomes a significant part of the wavelength, the
strain pattern departs sufficiently from the static
rase to require modification (increase) in the value
of R().

Davies [5] has considered theoretically this prob-
lem of change in R for shorter square specimens along
with the possible departure of the overtones from
integral multiples of the fundamental. His conclud-
ing equation, which involves a number of approxi-



mations, may be expressed, in the notation of this
paper, as follows:

R/Ry—1-.00851 <n§>2 (5)

where t=the length of a cross sectional edge.

It is clear from Davies’ equation and eq (1), that
as t/l increases R/R, will increase and the overtones
will decrease by greater amounts from integral
multiples of the fundamental. These results are in
qualitative agreement with the experimental data.
However if one attempts to fit the experimental
results to Davies’ equation, one finds significant
quantitative disagreement, especially at higher values
of ¢/l and at higher overtones.

After considerable manipulation, it was found that
a satisfactory fit could be obtained if R, or preferably
R/R,, was not assumed to be a function of (nt/l)?
as Davies does, nor any other function of (nt/l), but
rather a function of n and ¢/l separately. Figure 1
is a plot of R/R, as a function of n*(t/l).

For any given value of n, R/R, varies very nearly
as (t/l)®. Therefore the solid lines in the figure for
n=1, n=2, and n=3 (which plot R/R, as functions
of (t/1)®) are very nearly straigcht lines. The 5
dashed lines represent the variations in R/R, for
given values of ¢/l (represented by the values for the
5 square specimens) as a function of their overtones.

It is seen from the figure that for constant t/i, R/R,
is not a linear function of n2, but requires further
modification. The equation finally arrived at, for
most accurately representing all the data, was of
the form,

RIRy=A+n2@/l)® (B4 Cn+Dn?). (6)
The constant, A4, in this equation would equal one,
if the two basic assumptions made in arriving at
the equation are correct. These are (1) that it is
legitimate to substitute R, solved from the static
case, into the dynamic one for a long specimen, i.e.,
that R/R,—1 as t/l—0 and (2) that the numerical
value of G/p given in eq (4) and contained implicitly
in R is correct, for the square bars as well as for the
cylinders.

In order for A to equal one, both of these assump-
tions must be correct, except in the unlikely possi-
bility that both are incorrect in such a manner as to
cancel each other. Also the second of these
assumptions is recognized to be the one mentioned
earlier as the basic condition for the entire analysis.
Therefore if A=1 is not assumed but is solved for,
along with the constants B, C, and D from the
available data, then the degree to which A approaches
one, will be a critical indication of the correctness of
these assumptions. This agreement of A with one
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Frcure 1. Plot of correction facter R/Ro for computing the shear modulus of square bars from
their torsional resonance frequencies.

RIR, is a function of n, ¢, and I where; % is the order of the overtone, # is length of the cross sectional edge, and 7 is

the length of the specimen. The dashed lines are for constant ¢/1.

The solid lines are for constant ». All the lines are

actually drawn by solving the equation, R/R,=1+n2(t/1)? (0.01746+0.001487+0.0000972) for selected values of n or #/l.

R,=1.18559.
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is also the independent check mentioned -earlier
(sec. 1.1) on the uniformity of the specimens with
respect to modulus and density (actually G/p).

The constants, A, B, C, and D were determined
by a least squares routine on an automatic computer.
For this purpose, the data from the same specimens,
as plotted in figure 1, 21 measurements on 5 speci-
mens were used.

The values so obtained for these constants are
given below,

Constant ' Value ’ Standard error
1.00010 0.000C6
0.01745 . 00045
.00148 . 00036
. 00009 . 00005

Standard deviation for F2/R;==0.00022.

The value for A is seen to depart only insignifi-
cantly from one. If A=1 were used with the same
standard error actually obtained for A, then G/p
would come out to be 104.10740.006. Had this
value turned out to be significantly different from
the one actually used, (G/p=104.117-+£0.008) then a
readjustment in the values for B, €, and D would be
necessary. However, the difference between the
two values for G/p, the one actually used, and the one
resulting from assuming A=1, is not statistically
significant, being not greater than (actually equal to)
the standard error of the difference which is

v (0.006)2+ (0.008)z.

Therefore no such readjustment is necessary. It
appears then that, except in the unlikely possibil-
ity mentioned above, the assumptions made in
arriving at eq (6) are valid. Also, the standard
deviation in R/R,, is well within the error to be ex-
pected on the basis of the accuracies given for the
resonance frequencies and the dimensions of the
specimens. The standard deviation of this variable
is most critical since it is the test of whether the form
of equation selected (eq (6)), accurately represents
the data. Had the standard deviation of R/R, been
larger than that to be expected from the experimental

585402—61——3
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error, it would have meant that the form of equation
chosen was incorrect. The entire analytical expres-
sion corresponding to figure 1 may now be written as,

R/Ro=1-+n2(t/1)*(0.01746 +0.00148n0.0000972)
(7)

Actually the curves in the figure are not drawn
through the experimental points but through values
obtained by solving eq (7) for selected values of n
and ¢/l. This gives a graphical indication of the
degree of agreement between the equation and the
experimental points.

4. Summary

Accurate relations have been developed from which
the shear modulus may be computed from the tor-
sional resonance frequencies of uniform bars of square
cross section. These relations are in qualitative
agreement with Davies’ corresponding theoretical
formulation which recognizes that the proportional-
ity factor R varies for different ratios of cross section
to length and also for higher overtones. However
the accurately determined empirical relations given
here are shown to depart from Davies’ equation
especially at these higher cross section to length
ratios and higher overtones.
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