
----
JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry 

Vol. 65A, No.3, May- June 1961 

Torsional Resonance Vibrations of Uniform Bars of Square 
Cross Section 

Wayne E. Tefft and Sam Spinner 

(February 14, 1961) 

Relations by which the shear modulus may be comp uted from the fundamental and 
overtones of the torsion al resonance frequencies of square bars h ave been established em­
pirically . 

The resul ts are analyzed in terms of a proportionality factor, R, defined by the equation 
(1 = (2/ fn / n)2pR. R is found to increase with increasing cross section to length ratio. Also. 
t he overtones are less t han integral multiples of the fund amental by an amount which in­
creases with increasing cross section to length ratio. 

1. Introduction 

1.1. General Background 

This is the third in a series of papers [I , 2]1 dealing 
wi th t he relations between various mechani cal 
resonance frequencies of uniform bars and their 
elastic moduli. The general method of approach 
has been described in the previous papers. Essen­
tially this approach consists in determining the 
mechanical resonance frequencies of a series of 
sp ecimens, all having tbe same intrinsic clastic 
moduli and density, but having dimensions which 
differ from each other in a consistent manner. Then, 
relations are developed from which the elastic 
moduli can be computed from the associated re -
onanee frequencies in terms of properly selected 
dimensional and elastic parameters. These em­
pirically establ ished relations are compared with 
corresponding theoretical ones (based on the classi­
cal theory of elasticity) whenever feasible. The 
theoretical relations serve as a guide in the select ion 
of these foregoing parameters. Also, it is only 
because the experimental methods for determining 
these resonance frequencies have been developed to 
a high degree of accuracy (see sec. 2.2) that it has 
become possible to develop the empirical relations 
with comparable accuracy, and to check the classical 
theory more carefully than has been possible 
heretofore. 

Since the uniformity of specimens with respect 
to elastic modulus and density is a necessary condi­
tion for the entire development, considerable care 
must be taken in the selection of specimens to realize 
this condition experimentally. If, in the course of 
t he investigation, an opportunity presents itself for 
checking this uniformity independently, it is clearly 
of the utmost value, since, as just indi cated, failure 
of the specimens to conform to this condition would 

I Figures in brackets indicate the literature references at the end of this paper. 
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render the entire subseq ucnt analysis invalid. Such 
an opportunity OCCUlTed in a previous study 
(specimens of set II in [2]) and again in this st udy, 
as will be shown. 

Generally, steel specimens have been chosen be­
cause this material possesses certain desirable prop­
erties in fulfillin g the purposes of these investigations. 
These includc, 
1. Steel can be machined to high dimensional 

accuracy fairly easily . 
2. The material is in expensive. (For these reasons 

steel is chosen over tungsten, for instance.) 
3. It is dimensionally staple. 
4. It has been found that if reasonable care is taken, 

the fundamental condition of maintaining the 
lll1iformity among the different specimens with 
res12ect to intrinsic modulus and density can be 
acJueved to the high accuracy necessary for the 
subsequcn t analysis. . 

5. Also, if ufficient care is taken, steel can be 
selected which satisfactorily fulfills the assump­
tions on which the empirical and corresponding 
theoretical equa tions are based, namely, that the 
material be homogeneous and isotropic. Even 
though the individual grains of which the steel is 
composed are anisotropic, and cbemically, the 
material is not "pure", nevertheless, t he orienta­
tion and distribution of t he grains is random. 
On the macroscopic scale of the experiments and 
analysis, this material mny safely be considered 
to be isotropic and homogeneo us, and equations 
based on this condition arc valid. 

6. Steel gives excellent elastic responses under the 
experimental conditions used, so that resonance 
frequencies of up to about 50 kc/s can be realized. 
This applies for higher overtones of longer speci­
mens or lower overtones or the fundamental of 
the shorter specimens. Consequently, a fairly 
wide range of experimental data can be analyzed. 
This is of considerable importance, because it is 
usually only at higher frequencies that departures 
from the theory are large enough to be observed. 



It is emphasized, however, that although steel 
specimens have been used almost entirely in these 
investigations (and will be used in this one), the re­
sults are not peculiar to steel, but should apply to 
any elastic, homogeneous, isotropic material. The 
only qualification to this statement is that for 
Young's modulus and its related modes of vibration, 
flexural and longitudinal, Poisson's ratio must also 
be considered. This complication presumably does 
not arise in the determination of shear modulus from 
measurements in the first torsional mode of any 
order. 

1.2. Particular Problem of This Study 

It is recalled from the previous paper [1] on torsion 
that the first overtone of rectangular specimens was 
found to deviate from the exact double of the funda­
mental, and that the amount of deviation varied 
with the width to depth ratio of the cross section. 
Even for a specimen of square cross section the data 
revealed that the first overtone was slightly lower 
than the exact double of the fundamental. How­
ever, the data of that paper [1 ] were limited to one 
length of specimen (about 6 in.) and to only the first 
overtone. The purpose of the present paper is to 
consider this problem more fully by investigating 
specimens of square cross section of different lengths 
and at higher overtones. 

To give a fuller picture, the fundamental and 
higher overtones of torsional resonance of some 
cylindrical specimens were also investigated. 

2. Experiment 

2 .1. Specimens 

All the specimens listed were cut from a single bar 
of steel, designated as SAE 1010. It was the same 
bar mentioned in footnote 4 in [2] . Its composition, 
as determined by spectroscopic analysis was, carbon 
0.10 percent, manganese 0.30 percent, phosphorus 
0.011 percent, sulfur 0.022 percent, and the re­
mainder, iron. The original bar was about 2 it long 
and about 1 7~ in. square in cross section. The steel 
was specially heat treated to be as homogeneous as 
possible and to h~ve a minimum of preferred crystal 
orientation. As : further precaution to insure uni­
formity, the original specimens were cut from the 
center ,of the stock, since preferred crystal orienta­
tion, when it does occur, is usually most pronounced 
at the periphery. 

First, two cylindrical and one square specimen 
were machined from the original stock. After the 
fundamental and as many overtones as possible were 
determined for these specimens, the square one was 
subdivided in length and the torsional resonances 
were similarly determined for the two new shortened 
specimens thus formed. The larger of these two 
specimens was again subdivided and the resonances 
once more determined. The subdivisions were so 
performed that the resulting specimens were all of 
different lengths. 

In this manner, a large number of specimens (and, 
therefore of experimental points) was made available 
from the original bar stock. The subscripts in the 
specimen designations indicate the history of the 
subdivision process. Thus A12, indicates that the 
specimen was cut from AI , Al was cut hom A, 
which ill turn was cut from the original bar. 

The dimensions of all the specimens were true to 
± 0.0003 cm. This was a higher order of accuracy 
than that achieved in the previous investigations. 
The accuracy of the dimensions and the intrinsic uni­
formity of the specimens was such that the standard 
deviation in the density of four randomly selected 
specimens, calculated from the mass and volume (ob­
tained from the dimensions) was less than 0.0002 
g/ cm3, the average density being 7.8541/g/cm3. 

2.2 . Resonance Frequencies 

The torsional resonance frequencies were obtained 
in the manner previously described [1] . In addition 
to the precautions previously taken to insure accu­
racy, sufficient time was allowed to elapse for the 
specimens to arrive at equilibrium with the ambient 
temperature which was controlled at 25.0 ± 0.5°C. 
This often took from 2 to 3 hI' since it was found that 
significant frequency variations could be observed 
during this time interval. The specimen was con­
sidered to have come to equilibrium when successive 
measurements at one-half hour intervals showed no 
change in the measured resonance frequencies (i .e., 
one in the last significant figure) . When this addi­
t ional (temperature) precaution was taken, a con­
servative figure for the accuracy of the resonance 
frequency determinations was about 1 part in 10,000. 
This figure is about 2 H times better than that given 
previously [1,2]. 

Table 1 lists the dimensions, and torsional reso­
nance frequencies, both fundamental and overtones, 
of the specimens used in this investigation. 

3 . Results and Discussion 

3 .1. General Theory 

All rods , whether cylindrical, square or rectangular 
in cross section conform to the following eqnation 
relating the shear modulus, G, to the density, p, the 
first (nondispersive)-mode torsional resonance fre­
quency, j, and the length, l , of the specimens, 

(1) 

n signifies the overtone of the resonance frequency; 
for the fundamental, n = l , fn-st overtone, n = 2, etc. 
R is a proportionality factor which depends upon 
the shape of the specimen and n. 

3.2. Cylindrical Specimens 

For cylindrical specimens, the theory states that 
R= 1 exactly for all length to cross section ratios and 
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TABLE 1. Dimensions and torsional resonance fTequencies oj stee l bars oj square cross section 

Speci men· t j l b 

A ___ _____________ _ 
A 1 ______________ _ 
A 12 _________ ____ _ 
A 2 _____________ _ 
A 11 _____________ _ 
B ___ _____________ _ 
C ________________ _ 

O. 12225 
. 17497 
. 21609 
.42339 

1. 00000 
0.45039 
. 27871 

5182. 0 
7417.9 
9161. 5 

17937 
41995 
28233 
17471 

12 

10362. 7 
14832. 0 
18315. 6 
35785 

34946 

Resonance frequencies, else 

h II Is Is fr 

15542 2071 9 25892 31058 -----------
22241 29637 -- --- ------ --------- - - ---------- -
27456 36573 45653 54700 63621 
53430 -- --------- ----------- ----------- ------ - -- --

• Sp eci mens designated A are bars of squa re cross section, t hose designated Band C are cy linders of ci rcular cross section . 
b l= length of specimen, for square speci mens t = cross-sec t.iona l edge = 3.4950 cm ; for cyli ndrical specimens t= diameter = 

2.5737 cm. 
c f, = fun damental to rsional resonan ce freq uency, 

12= first overtone, etc. 

for all over t ones. Also t orsional waves in cylinder s 
con form t o th e following t wo equ a,t ions (which ar e 
exactly a nalogous t o Lh e on es for longit udin al waves 
in cylinders), 

l d 2lf n 
n X= 2 an V l=-­

n 
(2) 

where X= wavelength and vl= velociLy, of Lorsion al 
waves. 

In con trasL wi th longit udin al waves in cylind ers, 
however , the velocity of torsion al waves is no t re­
duced a Lhe length of t he specimen is r educed with 
r espect to t he cross section . F or all lengths, th en , 

(3) 

The constan cy of R was ch eck ed from t he experi­
mental data by substi t uting the appropriate valu es 
for the t wo cylindrical specimens, in eq (1) and 
assuming OJ p to be the same for bo th specimens. 
R was fonnd to be constant with a coefficien t of 
v ariation of 1.2 X 10- 7 p er cent . Sin ce these t wo 
specimens were no t long enough to pro vide enough 
overton es for an extended r ange of data, the con­
s ta ncy of R was fur ther checked experimen tally by 
using another pair of specimens, a bout 12 in. a nd 
8 in. long, bo th a bout 1 in. in diameter from an earlier 
source (specimens I- 19 and I- 16 from [2]) . For th e 
lon ger of these specimens, torsional r eson ances up 
to the four th , and for the shorter specimen , up to the 
third overtone could be detected ; and R was similarly 
computed from these 9 r eson an ces. Again, R was 
found to be cons tan t with a coefficien t of variation 
of 1.1 X 10- 7 percen t. Furth ermore, R showed no 
tend en cy to drift system a tically for either pail' of 
speCimens. 

The equ ations for torsional waves in cylind ers are 
not only exact bu t so clear cu t and simple (requiring 
110 qu alifyin g correction factors) t hat, b ad the experi­
mental results not been in liccord wi th the t heory, 
one would be more inclined Lo suspect t he data than 
the theory. Consequ en tly, the excellen t agreemen t 
found in th is respect is r eass uring eviden ce of t he 
reliabili ty of th e experimen tal data. 
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GJp for the specimens m ay now be obtained b y 
s ubstitu ting the 3 sets of values for the t wo cylin­
drical specimens in eqs (2) and (3). The average 
of these 3 values so obtain ed is, 

(4) 

Since p is known from section 2 .1, G may also b e 
compu ted. It turns ou t to be 17 .7 X I09 cl yn esJcm2 • 

Ho wever , this information is no t n ecessary for th e 
fur ther developmen t. 

3 .3. Square Bars 

F or torsional waves in bars of sq narc cross section, 
unfor t un ately, the si t uation is not so simple as in 
cylinders. (Not only is t he t heory more complex 
r eq lliring uncertain approximations, but t he experi­
men tal r esults obtained here do not agree too well 
wi th the theory.) 

Timoshenko [3] has derived exact express ions for 
the str ess, strain a nd dimension al r elations of sq uare 
bars in static torsion. Timoshenko's equ ations h ave 
been solved for a shape factor, kl' which when sub­
sti tuted in to Pickett's [4] equation for R , (R= I pJk1 

where I p is t he polar moment of iner tia of the cross­
sectional area) leads to a value of R= 1.18559, which 
is accurate to the number of places given . This 
par ticular value of R is henceforth design ated as 
Ro. For the dyn amic case (i.e., a square bar vibrat­
ing in torsion) Ro m ay be safely used in eq (1) as long 
as the cross section of the specimen is sm all in com­
parison wit h the wavelength . For shorter specimens 
in torsional resonance, however , as the cross section 
becomes a significant par t of th e waveleng th, th e 
s train pa t tern depar ts sufficien tly from the static 
case to require modification (increase) in the value 
of Ro. 

D avies [5] h as considered t heoretically this prob­
lem of change in R for shor ter squ are specimens along 
wi th t he possible departure of t he over tones from 
in tegral multiples of the fund amen tal. His con clud­
ing equ ation, which involves a number of approxi-



mations, may be expressed, in the notation of this 
paper, as follows: 

R/Ro= I + .00851 (ntY (5) 

where t= the length of a cross sectional edge. 
It is clear from Davies' equation and eq (1), that 

as til increases R/Ro will increase and the overtones 
will decrease by greater amounts from integral 
multiples of the fundamental. These results are in 
qualitative agreement with the experimental data. 
However if one attempts to fit the experimental 
results to Davies' equation, one finds significant 
quantitative disagreement, especially at higher valu es 
of til and at higher overtones. 

After considerable manipulation, it was found that 
a satisfactory fit could be obtained if R, or preferably 
R/Ro, was not assumed to be a function of (nt /l)2 
as Davies does, nor any other function of (nt/l), but 
rather a function of nand til separately. Figure 1 
is a plot of R/Ro as a function of n2(t /l)3. 

For any given value of n, R/Ro varies very nearly 
as (t /l)3. Therefore the solid lines in the figure for 
n = 1, n = 2, and n = 3 (which plot R/Ro as fun ctions 
of (t/l)3) are very nearly straight lines. The 5 
dashed lines represent the variations in R/Ro for 
given values of til (represented by the values for the 
5 square specimens) as a function of their overtones. 

1.018 

1.016 

It is seen from the figure that for constant t/l, R/Ro 
is not a linear function of n2, but requires further 
modification. The equation finally arrived at, for 
most accurately representing all the data, was of 
the form, 

The constant, A, in this equation would equal one, 
if the two basic assumptions made in arriving at 
the equation are correct. These are (1) that it is 
legitimate to substitute Ro, solved from the static 
case, into the dynamic one for a long specimen, i.e. , 
that R/Ro-71 as t/l-70 and (2) that the numerical 
value of G/ p given in eq (4) and contained implicitly 
in R is correct, for the square bars as well as for the 
cylinders. 

In order for A to equal one, both of these assump­
tions must be correct, except in the unlikely possi­
bility that both are incorrect in such a manner as to 
cancel each other. Also the second of these 
assumptions is recognized to be the one mentioned 
earlier as the basic condition for the entire analysis . 
Therefore if A = 1 is not assumed but is solved for, 
along with the constants B, 0, and D from the 
available data, then the degree to which A approaches 
one, will be a critical indication of the correctness of 
these assumptions. This agreement of A with one 
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FIGU RE 1. Plot of COlTection factoT R /Ro for computing th e shew · modulus of square bars .fl·om 
their torsional resonance f Teq1wncies . 

RIR , is a function of n, I, and I where; n is the order of the overtone, I is length of the cross sectional ed ge, and I is 
the length of the specimen. The dashed lines are for constant til. The solid lines are for constant n. All the lines arc 
actually drawn hy sol ving the equation, RIR,~ 1+n'(t11)3 (O.01746+0.00148n+O.OOOO9n') for selected values of n or til . 
R,~ 1.18559 . 
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is also the independent check mentioned earlier 
(sec. l.1) on the uniformity of the specimens with 
respect to modulus and density (actually Glp). 

The constants, A, B , C, and D were determined 
by a least squares routine on an automa tic computer. 
For this purpose, the data from the same specimens, 

i as plotted in figure 1, 21 measurements on 5 speci­
mens were used. 

The values so obtained for these constants are 
given below, 

Constant 

A ______________________________ • ___________ _ 
E ___ ___ ____ _______ _____ _____ ___ _______ ____ _ _ 
c . __________ __ _____ ___ _____ _____ _____ ______ _ 
n __________________________________________ _ 

Value 

1. 00010 
0.01745 
. 00148 
. 00009 

Standard deviation for R IRo= 0.00022. 

Standard error 

0. 000C6 
. 00045 
. 00036 
. 00005 

The value for A is seen to depart only insignifi­
cantly from one. If A = 1 were used with the same 
standard error actually obtained for A, then Gl p 
would come out to be 104.107 ± 0.006. Had this 
value turned out to be significantly different from 
the one actually used, (Glp= 104.117 ± 0.008) then a 
readjustment in the values for B, C, and D would be 
necessary. However, the difference between the 
two values for G/p, the one actually used, and the one 
resulting from assuming A = 1, is not statistically 
significant, being not greater than (actually equal to) 
the standard elTor of the difference which is 

Therefore no such readjustment is necessary. It 
appears then that, except in the unlikely possibil­
ity mentioned above, the assumptions made in 
arriving at eq (6) are valid. Also, the standard 
deviation in R /Ro, is well within the error to be ex­
pected on the basis of the accuracies given for the 
resonance frequencies and the dimensions of the 
specimens. The standard deviation of this variable 
is most critical since it is the test of whether the form 
of equation selected (eq (6», accurately represents 
the data. Had the standard deviation of R /Ro been 
larger than that to be expected from the experimental 
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errol', iL would have meant that the form of equation 
chosen was incorrect. The entire analytical expres­
sion corresponding to figure 1 may now be written as, 

Actually the curves in the figure are not drawn 
through the experimental points but through values 
obtained by solving eq (7) for selected values of n 
and t/l. This gives a graphical indication of the 
degree of agreement between the equation and the 
experimental points. 

4. Summary 

Accurate relations have been developed from which 
the shear modulus may be computed from the tor­
sional resonance frequ encies of uniform bars of square 
cross section. These relations are in qualitative 
agreement with Davies' corresponding theoretical 
formulation which recognizes that the proportional­
ity factor R varies for different ratios of cross section 
to length and also for higher overtones. However 
the accurately determined empirical relations given 
here are shown to depart from Davies' equation 
especially at these higher cross section to length 
ratios and higher overtones. 
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