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Calculated Energy Dissipation Distribution in Air by Fast 
Electrons From a Gun Source 1 

John E. Crew 2 

(Nove mber 22, 1960) 

R esults of calculations on t he energy dissipa tion distribu tion for electrons from a point 
collimated (gun) source ill an infini te air medium are presented . The calculation has been 
m ade for a monoenergetic source of 0.4 Mev electrons. The method of moment s has been 
employed, fi tting t he two spa tial variables separate ly. 

1. Introduction 

Calculations of the energy dissipation distributions 
tfor fast elec trons in infinite and homogeneous media 
have b een reported for the simples t source geom
etrie .3 , 4 The problem of electron penetration is 
considered to be the following : given a source of 
elec trons in a material, calculate the energy deposited 
by the electrons in a small pherical volume as a 
function of its position in the material. Spencer has' 
calculated the energy dissipa tion distributions for 
the plane perpendicular source and the point iso
tropic source,3,4 using the moment fittin g technique 
which has proved successful in treating X-ray 
penetration.5 His calculations were made for a 
variety of materials and for a range of source energies 
from 25 kev to 10 M ev. Agreement with available 
experim ental da ta has been good. 

The pre ent work is concerned with a source 
geometry involving two spatial variables, namely 
that of the point collim ated (gun) source, and 
corresponds to the following experimen tal situation: 
A collimated beam of monoenergetic electrons 
originates a t a point in the medium. As the electrons 
move about, they dissipate energy. The quantity 
we determine, J (r, a) , is basically the energy dissi
pated in a small volume at a distance r from the 
source point, a t an obliquity angle a with respect to 
the initial line of fire, and at an azimuthal angle ¢ 
relative to an arbitrary reference plane. 

2. Calculation of the Moments 

Following the notation of footnote (4), the elec
trons are assumed to be generated at energy E o, 
with r esidual range 1'0 and stopping power (- dEl 
dr)EO. If N electrons are produced by the source, 
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then the energy dissipated in a small volume dV = 1.2 

drd¢d(cosa) at the po ition (r ,a,¢) is 

dE N (dEldr) EO J ( ' ) 
dV 1'02 1,a . (1) 

D etermination of the function J (r ,a) is our obj ective. 
This is accomplished by fitting moments of the 
closely related function 

(2) 

F (r ,a) i proportional to the energy dissipated per 
unit volume in a narrow ring of the material, whose 
symmetry axis is the initial line of fire, at a position 
(1',a) . The moments 

Thus for total energy production by the source 
N Eo, the lowest order coefficient is 

1 f E n 
Fo.o= 1'g J (r,a)dV - 1'0 (dEld1'ho' (4) 

The F n .! may be r epresented as lineal' combinations 
of a se t of basic coefficien ts 

r::: ,lo= edt [ (l + a)tJ m-n-q 
n ,l Jo t + a 

27T f~1 dx xn f~1 d(cos a) P z(cos a) I 1o(t ,a ,x) 

obtained by solution of the difl'er ential equation 

all all ( 2.. f1 
- 0/ +cos a o xO= Jo dep' - 1 d (cos a' )S (t ,8 ) 

(5) 

{I1o( t ,a' ,x)- I lo(t ,a ,x) }+ ( ln~t) 8(x) 8(t - 1) P lo(cos a ) . 

(6) 
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This equation describes penetration by electrons 
originating on a plane, with intensity in different 
directions given by a Legendre polynomial. The 
parameter t is the remaining fraction of the electrons' 
initial range, x is the distance from the source plane 
in units of the initial electron range, and the scatter
ing kernel S(t,8) has an energy dependence expressed 
by a factor [t(t+ a)]-I. (See footnote [4].) 

Using the stopping power representation of eq. (14) 
of footnote (4) together with eq. (12.19) of footnote 
(5), which by symmetry applies also to the case of 
isotropic detector and collimated source, we write 

( n - Z) ! (n+ Z+ 1) !2n 4 

F - 2 2 '" A I ( n + i -3), I (7) 
n, 1 (2 l + 1)n! W! f;;t i n,O ~ 

where the At's are given in footnote (4). 
Spencer has kindly made available to us tabula

tions of 1'::)0 obtained with a generalized version of 
the machine program described in footnote (4). We 
have calculated from these a triangular set of Fn,l 
values with l~n~12- l, 0~Z~6 . Th e spatial 
moments Fn ,l were used to compute a set of functions 
FI(r) by the function fitting procedure of footnote (4). 
These moments are listed in table 1. Computations 
have been carried to six digits throughout for the sake 
of internal consistency. 

TABLE 1. Spatial moments for a point collimated SOUTee of 0.4 
M ev electrons in air 

The entries written as N (m ) are to be interpreted as NX IO n 

n I FrI .l n I F n ., 

--- ---
0 0 0.143977 (I) 9 1 0.232118 (-1) 
1 1 . 512249 (0) 9 3 . 838418 (-2) 
2 0 . 383407 (0) 9 5 . 157837 (-2) 
2 2 . 176665 (0) 9 7 . 1734.30 (-3) 
3 1 . 182270 (0) 9 9 · 123226 (-4) 

3 3 · 558737 (-1) lQ 0 . 217520 (-1) 
4 0 . 156178 (0) 1U 2 . 116838 (-1) 
4 2 .741548 (-1) 10 4 . 309866 (-2) 
4 4 . 162271 (-1) 10 6 . 457991 t -3) 
5 1 .827478 (-1) 10 8 . 414279 -4) 

5 3 . 265519 (-1) 10 10 .200647 (-5) 
5 5 · 436366 (-2) 11 1 .134557 (- I) 
6 0 . 744594 (- I ) 11 3 . 511519 (-2) 
6 2 . 369759 (- I) 11 5 · 103639 (-2) 
6 4 · 854666 (-2) 11 7 · 123527 (-3) 

6 6 . 109575 (-2) 11 9 . 937227 (-5) 
7 1 . 422286 (- 1) 11 11 . 539047 (-6) 
7 3 . 144003 (-I) 12 0 . 127403 (-I) 
7 5 . 2.51286 (-2) 12 2 · 706332 (-2) 
7 7 · 258849 (-3) 12 4 . 199041 (-2) 

8 0 . 389695 (-1) 12 6 . 317900 (-3) 
8 2 . 201798 (-1) 12 8 . 312289 (-4) 
8 4 . 500374 (-2) 12 10 . 201874 (-5) 
8 6 . 683193 (-3) 12 12 · 922263 (- i ) 
8 8 . 578889 (-4) 

3 . Construction of the Energy Dissipation 
Function 

The fitting of the moments F n •l in r yields a set of 
functions 

F I(r)= 27r f~IF(r,a) P I(cos a) d (cos a). (8) 

The same asymptotic form for the trial function for 
F I(r) was used as for the plane perpendicular source 
calculation in footnotes 3 and 4. The function 
F z(r) is normalized to unity at the origin, this 
boundary condition being assured by choosing the 
trial function 

FI (r)=(I-~) 'Yexp [-Azr/ (ro-r)] 

= 0 

+2:. ~ {3~~ 2 ('I--{3r ) 'Y exp [- Azr/ ({3iro-r)] 
ro. i irO 

r 
forO ~ r;; ~(3 i 

r 
for - > 1. 

ro 
(9) 

The asymptotic constant A z is calculated from the 
two highest moments of Fn ,l, and the coefficients 
ai,{3i are computed by fitting moments according to 
the procedure of footnote (4). The parameter "I was 
set equal to zero for 0 ~l~3. The choice "1 = 1 gave 
a better fit for l = 4 . The results of the fitting in r 
are shown in figure 1. The results for l= O correspond 
to the case of a point isotropic source and are in 
close agreement with the previous calculation by 
Spencer.4 

To obtain F(r,a) it is necessary to sum the Legendre 
series 

co 

F(r,a)=:B(l + 7f) F I(r )P1(cos a) (10) 
1=0 

using the set of Fz(r)'s known for 0~l~4. How
ever, the series has very poor convergence unless 
terms with l> > 4 are included; hence it was necessary 
to perform an extrapolation to higher l values . 
By fitting the F z to a suitable form and making use 

3.0 

2.0 

oLO--L-~--L--+==:I===.+6==:I===+~~-~La 
r/ro' FRACTIONAL RANGE 

FIGURE 1. Fint five partial moments 1.n r versus radial 
distance from the source in umts of the fractional range, 
r/ro. 

F, (r) is in nnits of stopping power of 0.4 M ev electrons in air per nni t range 
per electron . 
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of the generaLing function for L egendre polynomials, 
i t was pos ible to sum the series. 6 The following 
form was used over an appreciable portion of the 
electron r ange: 

F I=22 ai(l +7~)n exp (- bi(l+%)] (11 ) 
i 

for n an integer. If in the generating function for 
Legendre polynomials 

'" ( 1 - 2xz+z2)-1/2=~ Zl p /(X) (12) 
1= 0 

the substitutions z= e-a and x= cos a are made, it is 
easy to show that 

. (_1) "+1 0,,+1 
F(r,a)=~ a i -{2 ob7+ 1 (cosh bi-COS a)-1/2. 

(13) 
' L. V. Spencer, priva te communica tion. 

Q, deg 

FIGURE 2 . Energy dtssipatwn function versus angle wtth 
respect to initial beam direction for various radial penetra
tions, r / ro. 

J (r,a l is in units of sto pping power of 0.4 M ev electrons in air per sterradian 
per uni t range per electron . 

This method was used for 1'< 0 .51'0 with n = 1. For 
larger values of r the series converges more rapidly , 
so that a simpler method of extrapolating to higher 
F/ valu es was used. A plot of log (Fd (l+ 1/2) tn] versus 
l was mftde. A value of m yielding a straigh t line 
for the la t three or four calculated F l was chosen by 
trial and error and the higher values obtained by 
extrapolat ing this line. The ser ies was then summed 
explicitly with only a moderate number of higher l 
terms required. From F(r,a) the desired energy 
dissipation function J (r,a) was obtained according 
to eq (2). A plo t of the energy dissipation function 
versus a for differen t penetrations r /1'0 is presented in 
figure 2. A plot of J (r,a) vers us 1'/1'0 for differen t 
angles a is given in figure 3. A polar di agram 
showing con tours of constant energy dissipation is 
given in figure 4. 

rlro , FRACT IONAL RANGE 

FIGU RE 3. Energy dissivation function versus radial penetra
tration for varwus angles with respect to initial beam direc
tion. 
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FIGURE 4. Contours of constant energy dissipation in air for 
0.4 M ev electrons. 

Contours of 2 ... J (r,a) are shown, with the radial distances giving the penetra· 
tioni Jl em of air at 76 elll of IIg and 25 °C. 

(Paper 65A2- 93) 

4. Discussion 

At present there are no experimental data with 
which to compare our results. Results of calcula
tions for the one-dimensional problem have yielded 
results in good agreement with experiment. Calcu
lations with slightly different trial functions generally 
reproduce results within about 3 percent. Since 
we are fitting twice, the errors can be e:~:pected to 
multiply, and our results cannot be expected to be 
better than about 10 percent. The exact value of 
the asymptotic constant Az is not very critical. A 
variation of 10 percent in Az affects the fit by more 
than the expected 3 percent error in fitting only on 
the tail of the distribution. The results in this 
region are not expected to be very precise anyway 
due to neglecting the range straggling. The values 
of the energy dissipation function near the source 
are of low precision because of the very slow con
vergence of the Legendre series in this region and 
also of low precision in the backward hemisphere for 
all penetrations because these values result from 
taking differences of nearly equal numbers. 

An alternative double-fitting procedure would be 
to use the spatial moments in cylindrical coordinates 
(z, p). This presents an additional difficulty due to 
the fact that while the fitting in z is straightforward 
the asymptotic form to use in the fitting in p is not 
known. 

The author expresses his appreciation to Dr. H . O. 
Wyckoff for suggesting this calculation. He is 
greatly indebted to Dr. L. V. Spencer for providing 
the plane source moments used as a starting point 
for this work and for valuable discussions. He also 
wishes to acknowledge the excellent work of Mrs. 
Sally Peavy of the NBS Computation Laboratory 
in performing certain calculations. 
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