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Part 1. Information Theory and Coding
P. Elias*

Since 1957, there has been considerable progress in the theory of coding messages for
transmission over noisy channels. There have been three main directions of advance.
First, there has been work on the foundations of the theory. During this time American
mathematicians interested in probability have shown a serious interest in information
theory, since Feinstein’s work (now available in book form) [Feinstein, 1958a] and since
the interest shown by Kolmogorov and Khinchin. Second, a great deal of work has been
done on error-correcting block codes for noisy binary channels. This work has involved a
good deal of modern algebra, and some mathematical algebraists have been joining the
communications research workers in attacking these problems. Third, there has been con-
tinuing investigation of procedures in which input messages are coded and decoded sequen-
tially rather than in long blocks. This work and the work on binary block codes both have

significant practical implications for electrical communications.

1. Foundations

Shannon’s original demonstration of the noisy
channel coding theorem was an existence proof
[Shannon, 1949]. Given a channel of capacity C
bits per second and a rate of transmission R bits
per second, the transmitter sends sequences of N
channel input symbols.  The receiver receives
sequences of N channel output symbols and decides
which input sequence was transmitted, making this
decision incorrectly with probability 2.  What
Shannon showed was that for £ < O, P could be
made arbitrarily small by increasing N. The proof
was not constructive, and nothing quantitative
was said about how rapidly 7 decreased as a func-
tion of N for given R and (. Feinstein [1954; 1958a]
showed that P could be bounded by a decaying
exponential in N. His proof covered channels with
a simple kind of finite memory. While constructive
~in principle it could not be used in practice to con-
© struct a code with large N. In 1957, Shannon [1957]
gave a remarkably concise proof based on his
original random coding argument but more detailed
and precise, which also gave an exponential bound
to P as a function of N, and extended the proof to
channels with considerably more complex memory.
Blackwell, Breimann and Thomasian [1958] proved
- the existence theorem for channels with a finite-
state memory of a still more general kind. Wolfo-
witz [1960] and Feinstein [1959] have also proved
converse theorems—the weak converse being that
for ® > C, P cannot approach zero, and the strong
. converse being that for £ > €, P must approach 1.
The kind of technique used by Shannon [1957]
- can be extended to obtain upper and lower bounds
to the rate of exponential decay of P with N. Earlier
work on binary channels had shown that for a con-
- siderable range of R less than C the upper and lower
| bounds essentially agreed, and, best possible behavior
could be uniquely specified. Similar results have
been obtained by Shannon for more general channels.
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This work is not yet published, but the case of a
continuous channel with additive Gaussian noise
has been treated in detail [Shannon, C. E.; 1959].

The increasing interest of mathematicians in this
field is evidenced by an article by Wolfowitz [1958].
In general the results which the mathematicians
have obtained are firmer proofs under more general
circumstances of theorems whose general character
was not surprising to communications researchers.
However a recent paper [Blackwell, Breimann, and
Thomasian, 1959], has presented an interesting new
problem, defining capacity and proving a coding
theorem for a channel whose parameters are not
known precisely, but are constrained to lie in known
ranges. This work might be relevant to incomplete-
ly measured and time-varying radio channels. So
might a paper by Shannon [1958] on channels in
which the transmitter has side information available
about the state of a channel with memory: an exam-
ple would be the information obtained by measure-
ments of the propagation medium obtained,while
communicating.

2. Binary Channels

Starting with the earlier work of Hamming [1950]
and Slepian [1956a, 1956b], error-correcting block
codes for binary channels have been investigated
extensively. Peterson and Fontaine [1959] have
searched for best possible error-correcting codes of
short block length (up to 29), using a computer.
The number of codes grows so rapidly with block
length that it was necessary to use many equivalence
relations and shortcut tests to eliminate codes from
consideration early. A number of counterexamples
were found to common conjectures about optimum
codes.

The use of error-correcting codes in practice has
been limited by the difficulty of implementation, and
by the fact that in many applications of interest
the errors in the channel are not independent, but
occur in runs or bursts. In earlier work Huffman
[1956] had shown a coding and decoding procedure



for the Hamming code which was simple to imple-
ment, and Green and SanSoucie [1958] have shown an
easy implementation for a short multiple-error-
correcting code. Hagelbarger [1959] has described
codes which correct errors occurring in bursts whose
implementation is not too difficult, and Abramson
[1959] has described a highly efficient and easily
implemented set of codes with similar properties.

Work on codes of longer block length, which can
correct multiple errors, started with a decoding
procedure given by Reed [1954] some time ago for
the Reed-Muller family of codes. For really large
block lengths these codes are not efficient, but Perry
[1958] has built a coder and decoder for a Reed-
Muller code which has block length of 128 digits, 64
of which are information digits and 64 check digits.
This code can correct any set of 7 or fewer errors
among the group of 128 and the efficiency is quite
good. Using microsecond switching devices, the
units can keep up with millisecond binary digits.

Calabi and Haefeli [1959] have investigated in
detail the burst correcting properties of a family of
codes which has been introduced earlier for correc-
tion of independent errors [Elias, P.; 1954]. They
also discuss the implementation of these codes.

A new family of codes discovered by Bose and
Ray-Chaudhuri [1959, 1960] is much more efficient
than the Reed-Muller codes for larger block lengths.
Although in the limit of infinite block length these
codes may also have zero efficiency, at lengths of a
few thousands digits they are still quite good.
Peterson [1960] has discovered an economical way
to decode these codes. There is a great deal of cur-
rent work on finding more properties of these codes,
finding similar codes for channels which are sym-
metric but not binary, and so forth.

There has been a good deal of recent work on
cyclic codes, including some encouraging results on
step-by-step decoding due to Prange [1959]. Cyclic
codes are closely related to the sequences which can
be generated by shift registers with feedback con-
nections. Recent discussions of these sequences
have been given by Elspas [1959] and by Zierler
[1959]. A review of the recent algebraic work on
coding theory, including the Galois field theory
which enters in the Bose-Chaudhuri codes, will be
given by Peterson in a monograph to be published
shortly [Peterson, 1960]. Most of the results in
this area extend to channels which have an input
alphabet of symbols whoses number is not 2 but any
prime to any power, the channel still being complete-
ly symmetric in the way it makes its errors. Non-
binary channels have been investigated in their own
right by Lee [1958] and by Ulrich [1957].

The introduction of two thresholds rather than
one in a continuous channel introduces a null zone.
The transmitter sends a binary signal, but the re-
ceiver makes a ternary decision, not attempting to
guess the value of signals received in the null zone.
Introducing the null zone may increase channel
capacity, as shown by Bloom et al. [1957]. Tt also
has the valuable effect of reducing the amount of
computation required in decoding, since it is easier

to replace missing digits than to correct incorrect
ones. This is especially relevant for application to
channels with Rayleigh fading.

3. Sequential Decoding

Earlier work had shown that the block coding pro-
cedure could be modified (in the binary case) by con-
structing codes in a convolutional fashion, so that
the coding and decoding of each digit was of the same
character and involved the same delay [Elias, 1955].
The parameter which replaces block length in such an
argument is the delay between the receipt of a digit
and the attempt to decode it reliably. This simpli-
fied the coding but left the decoding procedure as
complicated as ever. However Wozencraft [1957]
has shown that a suitable sequential coding procedure
may be followed by a sequential decoding procedure
which reduces the average amount of decoding com-
putation immensely. Like the best of the long block
codes now in prospect, this procedure promises milli-
second communication with microsecond switching
circuitry in the decoder at very high reliability.
Unlike the block codes, however, Wozencraft’s pro-
cedure is statistical and not highly algebraic, and it
may be expected to generalize to other discrete
channels with no special symmetry properties. On
the other hand the computation remains reasonable
only for a range of 12 well below (.  Epstein [1958]
has studied a sequential decoding procedure for the
erasure channel, and work on more general channels
is under way.

4. Conclusions on Coding

The general conclusions of interest for applications
of error-correcting codes are two. First, there are
now several good small codes which correct bursts of
errors, which could be instrumented fairly easily for
use in situations in which a rate well below capacity
can be tolerated so that short codes may be used.
These may find early application in sending digital
data over telephone lines. Second, there are now
available several kinds of large block codes and
sequential codes which will permit very reliable
transmission over long distance scatter channels,
which can also be implemented. The cost of imple-
mentation is appreciable in these cases, but current
computer circuitry is fast enough to permit decoding
at transmission rates of the order of 1,000 binary
digits per second, coded in blocks or with sequential
constraints hundreds of digits in length, and the
alternative of more large antennas or greater trans-
mitter power are also expensive. It seems likely
that such systems will be in experimental use by the
next international URSI meeting in 1963.

5. Other Topics

Less progress has been made in the economical
coding of information sources. In part this is be-
cause such progress becomes work in speech analysis
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of television systems and not information theory as
such. However it might be worth noting that a
scheme for coding runs of constant intensity in tele-
vision has been demonstrated at full televison speed
by Schreiber [1958].

Arelation between the bandwidth and the duration
of a signal is imposed by the Heisenberg uncertainty
principle, whose applicability to time functions was
pointed out by Gabor many years ago. Kay and
* Silverman [1959] have examined this relationship
more carefully, and a form of the uncertainty prin-
ciple which places a lower bound on the sums of
entropies rather than on the products of second
moments is discussed by Leipnik [1960]. Stam [1959]
also discusses this entropic inequality and closely
related results.

The sampling theorem is closely related to these
questions. Linden and Abramson [1960] have given
a generalization which permits the closed form ex-
pression of a bandlimited function in terms of sam-
ples of the function and its first £ derivatives, taken
at time intervals (k1) times as far apart as is re-
quired for samples of the function value alone. This
extends earlier work by Jagerman and Fogel [1956].
Results bearing both on the uncertainty principle
and on approximate sampling theorems—i.e.,
theorems concerning functions which include all but
a fraction 6; of their energy in bandwidth W and all
but a fraction 6, of their energy in a time interval of
duration 7—are the subject of active current work.
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Part 2. Random Processes

P. Swerling*

Research on random processes in the period under
consideration may be conveniently summarized
under three main headings: statistical properties of
the output of nonlinear devices; estimation theory
for random processes; and representation theory for
random processes.

Under the first heading, the investigations concern
the statistical properties of the output of a nonlinear
device, or of a linear filter following a nonlinear
device, when the input is a random process having
prescribed statistics. These problems are of great
interest since this is a model for many types of
receivers. The period 1957 to 1960, continuing
earlier work, has seen the buildup of a large inventory
of results and of methods for attacking this class of
problems.

One of the most comprehensive approaches is
reported on in papers by Darling and Siegert [1957],
and by Siegert [1957, 1958]. These papers report on
work actually done earlier. The problem considered
is that of finding the (first order) probability distri-
bution function of the quantity

[ otatr) e,

where ¢ is a preseribed function and z(r) is a com-
ponent of a stationary mn-dimensional Markoff
process. Many problems in the category under
consideration are special cases of this. The approach
is via the characteristic function of the required
probability distribution;it is shown that this charac-
teristic function must satisfy two integral equations.
Under certain conditions, it can also be shown that
the characteristic function must satisfy two partial
differential equations.

Another type of problem in this category is the
investigation of the second or higher order proba-
bility distributions of the output, and particularly
of the autocorrelation function of the output or the
cross-correlation between two or more such outputs.
For example, Price [1958] gives a theorem which is
useful in deriving such auto- and cross-correlations
when the inputs are Gaussian. The theorem stated
can be used in many cases to calculate the quantity

n
R=Expected Value of{ 1 f;(z,) »>
=l

where (x,, . . ., ,) 1s a Gaussian vector and f; are
prescribed functions.

Many other papers, for example Leipnik [1958],
Pierce [1958], Kielson et al., [1959], Helstrom and
Isley [1959], McFadden [1959], Campbell{[1957], and
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Leipnik [1959],
results and using a number of different approaches.

Work has also continued on the problem of the -
distribution of zero crossings of Gaussian processes
[Helstrom, 1957, and Brown, 1959].

Under the heading of estimation theory for random
processes one might first mention the subject of
estimating the spectral density of stationary Gaus-
sian processes. Two references [Grenander and
Rosenblatt, 1957, and Blackman and Tukey, 1959]
summarize much work on this problem, a great deal
of which had been done previously (but not all of
which had been published previously). Blackman
and Tukey discuss two types of estimates of the
power spectrum, viz: estimation of the autocorrela-
tion function, multiplication by a prescribed function
of time called a “lag window,” followed by Fourier
transformation; or, passing the observed process
through a filter of specified transfer function and
calculating the average power of the output. They
derive expressions for the first and second moments
of such estimates, as well as of the cross-moments of
estimates of the spectral density at two different
frequencies. Grenander and Rosenblatt discuss
similar types of spectral estimates, emphasizing and
utilizing the fact that these as well as most other
useful estimates of spectral density are quadratic
forms in the observed data. They derive first and
second order moments, as well as asymptotic proba-
bility distributions for large observed samples, of
such estimates.

A recent paper of Grenander, Pollak, and Slepian
[1959] discusses the small sample case, relying heavily
on the fact that spectral density estimates are usu-
ally quadratic forms in the observed data.

In an interesting paper Slepian [1958] has dis-
cussed the following hypothesis-testing problem:
given an observed sample of a Gaussian random
process, known to be characterized by either one of
two prescribed power spectra, which power spectrum
does the process actually have? It turns out that in-
problems of this type, the measures induced by the
two alternative hypotheses may be singular with
respect to each other; in which case, it is possible to
decide between the alternatives with arbitrarily
small error probability, and with an arbitrarily small
sample. Slepian gives various sufficient conditions
for this. The power spectra satisfying his conditions |
are, moreover, standard types very frequently |
postulated. This emphasizes that the mathematical
model one chooses must be carefully chosen to be

appropriate to the problem one is trying to solve.

Another type of estimation problem for random
processes 1s considered by Swerling [1959].  Suppose
a prescribed waveform, depending on one or more
unknown parameters, is observed in additive Gaus--
sian noise having prescribed autocovariance function .
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and zero mean. KExpressions are derived for the
greatest lower bound for the variance of estimates
of the unknown parameters having prescribed bias.
These greatest lower bounds are found to coincide
in certain special cases with the variance, obtained
by Woodward, of maximum likelihood estimates of
the unknown parameters. Similar problems are
mvestigated in Middleton [1959].

In the field of representation theory for random
processes, work has continued on the subject of
representation of nonlinear operations on random
processes—especially for Gaussian processes. Papers
by Zadeh [1957] and Bose [1959] and a book by
Wiener [1958] deal with this problem. The approach
followed is, first, to express the initial random process
{z(t)} as a series

() =3t (1),

where {a,(t)} 1s a set of orthonormal functions over
the interval of definition of {z(t)}. If {z(@)} is
Gaussian, the wu, are Gaussian and, if «,(f) are
properly chosen, can be made independent. Any
linear or nonlinear functional of {z(f)} can then be
regarded as a function of w, . . ., w, . . ..
Second, one may choose a set of functions of the
variables %, which are orthonormal in the stochastic
sense as explained, for example, in Zaceh [1957]
with respect to the process {z(t)}. Then, nonlinear
functionals of {z(t)} may be expanded in a series of
the orthogonal functions of the variables u,.

Other research in the field of representation theory
has treated such subjects as:

Use of bi-orthonormal expansions [Leipnik, 1959],
envelopes of waveforms [Arens, 1957, and Dugundji,
1958], the sampling theorem and related topies
[Balakrishnan, 1957, and Lerner, 1959], and harmonic
analysis of multidimensional processes [Weiner and
Masani, 1957 and 1958].

Much of this work in representation theory pro-
vides useful tools for attacking the problems dis-
cussed under the first two headings above.

References

Arens, R., Complex processes for envelopes of normal noise,
IRE Trans. IT-3 (Sept. 1957).

Balakrishnan, A. V., A note on the sampling principle for
continuous signals, IRE Trans. I'T-3 (June 1957).

Blackman, R. B., and J. W. Tukey, The measurement of
power spectra from the point of view of communications
engineering (Dover Publs., New York, N.Y., 1959).

Bose, A. G., Nonlinear system characterization and optimiza-
tion, IRE Trans. IT-5 (Special suppl.) (May 1959).

Brown, W. M., Some results on noise through circuits, IRE
Trans. IT-5 (Special suppl.) (May 1959).

Campbell, L. Lorne, On the use of hermite expansions in
noise problems, J. of S.I.LA.M. 5 (Dec. 1957).

Darling, D. A., and A. J. F. Siegert, A systematic approach
to a class of problems in the theory of noise and other
random phenomena, Pt. I, IRE Trans. IT-3 (March 1957).

Dugundji, J., Envelopes and pre-envelopes of real waveforms,
IRE Trans. IT-4 (March 1958).

Grenander, U., and M. Rosenblatt, Statistical analysis of
stationary time series (John Wiley & Sons, New York,
N.Y., 1957).

Grenander, U., H. O. Pollak and D. Slepian, The distribution
of quadratic forms in normal variates: A small sample
theory with applications to spectral analysis, J. of S.I.A. M.
7 (Dec. 1959).

Helstrom, C. W., and C. T. Isley, Two notes on a Markoff
envelope process, IRE Trans. IT-5 (Sept. 1959).

Helstrom, C. W., The distribution of the number of crossings
o{f) a)Gaussi:m stochastic process, IRE Trans. IT-3 (Dec.
1957).

Kielson, J., N. D. Mermin, and P. Bello, A theorem on cross
correlation between mnoisy channels, IRE Trans. IT-5
(June 1959).

Leipnik, Roy, The effect of instantaneous nonlinear devices
on cross correlation, IRE Trans. IT-4 (June 1958).

Leipnik, Roy, Integral equations, biorthonormal expansions,
and noise, J. of S T.AM. 7 (March 1959).

Lerner, R. M., The representation of signals, IRE Trans.
IT-5 (Special suppl.) (May 1959).

McFadden, J. A., The probability density of the output of an
RC filter when the input is a binary random process, IRE
Trans. IT-5 (Dec. 1959).

Middleton, D.; A note on the estimation of signal waveform,
IRE Trans. IT-5 (June 1959).

Pierce, J. N., A Markoff envelope process, IRE Trans. IT-4
(Dec. 1958).

Price, Robert, A useful theorem for nonlinear devices having
Gaussian inputs, IRE Trans. IT-4 (June 1958).

Siegert, A. J. ., A systematic approach to a class of problems
in the theory of noise and other random phenomena, Pt. II,
Examples, IRE Trans. IT-3 (March 1957).

Siegert, A. J. F.; A systematic approach to a class of problems
in the theory of noise and other random phenomena,
Pt. 111, Examples, IRE Trans. IT-4 (March 1958).

Slepian, D., Some comments on the detection of Gaussian
signals in Gaussian noise, IRE Trans. IT-4 (June 1958).

Swerling, P., Parameter estimation for waveforms in additive
Gaussian noise, J. of S.T.A.M. 7 (June 1959).

Weiner, N., Nonlinear problems in random theory (John
Wiley & Sons, New York, N.Y., 1958).

Weiner, N. and P. Masani, The prediction theory of multi-
variate stochastic processes, Acta Mathematica 98 (1957)
and 99 (1958).

Zadeh, L. A., On the representation of nonlinear operators,
IRE Wescon Conv. Record, pt. 2 (1957).

675



Part 3. Pattern Recognition
Arthur Gill*

Pattern recognition, in its widest sense, cuts across many fields of engineering interest—
from character sensing to learning theory, and from machine translation to decision-making
techniques. Inasmuch as the problem of recognizing patterns is that of simulating human
thinking processes, it is also closely related to nonengineering fields such as physiology,
psychology, cryptology and linguistics. No attempt is made in this report to summarize
the developments in all these areas. Rather, pattern recognition developments are reported
only to the extent that they represent a direct contribution to the theory of information.
The enclosed bibliography is compiled primarily from engineering journals; consequently,
it will be found that the emphasis in this report is placed on the recognition of visual patterns,
rather than vocal, linguistic or other patterns, which are mainly covered in nonengineering
publications.

The reason for the acute engineering interest in visual patterns is the recent emergence
of the following two urgent problems: (a) How can redundancy be removed from television
pictures, so that video signals could be transmitted at a greatly reduced waveband; (b)
How can printed documents be read automatically, so that the most serious bottleneck—
the human typist or card puncher—could be eliminated from digital data-processing systems.
Although these two topics are treated separately in the literature, both represent different
aspects of the same general problem of pattern recognition. This problem may be divided,
somewhat artificially, into three phases: (1) Redundancy removal, (2) Recognition programs,
(3) Recognition system design. This division will be adopted in the following summary.
Since the boundaries between three phases are not well defined, the corresponding bibliography

classification should not be regarded as too rigorous.

3.1. Redundancy Removal

Both the compression of television bandwidth
and the design of character recognizers, require the
determination of the source redundancies, and the
establishment of secanning-coding schemes which
would minimize these redundancies. Considerable
work has been done in the past three years on the
“run-length” scheme, where lengths of pattern runs,
rather than values of individual cells, constitute the
transmitted information. [Capon, 1959; Michel,
1958; 1957]. The redundancies which may be
eliminated under this scheme were measured for
some sources of practical interest, and bounds were
found for the potential bandwidth saving [Deutsch,
1957; Powers and Staras, 1957; Schreiber and
Knapp, 1958]. Another scheme that was explored
is one in which scanning is confined to the minimal
set of cells necessary for recognition under noiseless
and noisy conditions [Gill, 1959]. Progress has
also been made in the techniques of measuring the
autocorrelation function of two-dimensional patterns
[Kovasznay and Arman, 1957].

3.2. Recognition Programs

Although the removal of redundancies from the
given patterns simplifies and accelerates their recog-
nition, the recognition itself is a result of a predeter-
mined series of decision rules—applied sequentially
or simultaneously—which is called ‘“‘a recognition
program.” The program invariably involves a set
of transformations performed on the unknown pat-
terns, followed by a comparison of the transformed
pattern with a precompiled library of reference
patterns. The size of the library and the length of

*Department of Electrical Engineering, University of California, Berkeley,
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the comparison process depend on the chosen set of
transformations. Thus far, no universal procedure
has been formulated for selecting a necessary or
sufficient transformation set for a given pattern
source; rather, each investigator uses intuitive or
heuristic arguments to propose such a set for the
specific source under investigation [Bledsoe and
Browning, 1959; Dimond, 1957]. The approach
which seems to be the most popular in the case of
character recognition, is the association of each
pattern with a distinct set of two-dimensional
features (“corner,” “intersection,” “arc,” ete.) which
can be abstracted from each pattern with the aid of
digital computers [Bomba, 1959; Kamentsky, 1959;
Unger, 1959]. The necessary set of concepts is,
again, presented heuristically. Similar situation
exists in recognition programs proposed for other
classes of patterns [Gold, 1959].

3.3. Recognition System Design

Once a set of transformations is selected for the
recognition program, a system has to be constructed
for executing the program. The intuitive basis on
which the program is constructed, forces most in-
vestigators to plan a flexible system, in which trans-
formations can be readily varied either manually or
automatically as more experience is gained on the
nature of the pattern source and the performance of
the program (the automatic method is closely re-
lated to problems concerning ‘“adaptive systems,”
which are not reviewed in this report). The majority
of all recognition systems built to date are found to
be still in the “learning” stage, serving as testing
grounds for the various schemes devised by the
respective investigators [Grenias et al., 1957 ; Kirsch
et al., 1957; Tersoff, 1957]. A byproduct of these
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circumstances are the so-called “pattern synthesis”
techniques, developed for simulating various pattern
sources for test purposes [Flores and Ragonese, 1958;
Grenias and Hill, 1957]. These techniques are also
applied to the design of optimal-style patterns,
where a limited degree of freedom may be exercised
over the construction of the source itself.

It seems that although a considerable progress
has been made in various areas of pattern recogni-
tion, it is still minute in comparison with the prob-
lems that still remain unresolved. The scanning-
coding techniques devised for transmitting visual
patterns compress the currently employed bandwidth
by at most a factor of 10, while a factor of a million
is required in order to approach the recognition
capacity of the human eye. Automatic reading of
relatively standardized characters is in a relatively
high development stage, but the mechanical recog-
nition of handwriting or speech are still practically
unfeasible. Further progress in this field seems to
lie in three directions: (a) Deeper analysis of the
redundancies inherent in the various classes of pat-
tern sources, (b) Formulation of procedures for
determining optimal sets of transformations required
for recognizing given sets of patterns, (¢) Simulation

of learning processes with digital computers. It is
hoped that the next three years will witness

significant contributions to these basic problems.
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Part 4. Detection Theory

Robert Price*

4.1. BRemarks

The period since the XII General Assembly has
seen a consolidation of the closely related concepts
of Wald, Woodward, Middleton, and Van Meter,
and Peterson, Birdsall, and Fox into a fairly unified
theory of detection, together with the successful
application of the theory to a variety of problems.
Through this approach, ‘optimal’ detector structures
for electronic systems can be synthesized provided
that the designer has a priori knowledge of the
governing statistics and error costs. At the same
time, older and more standard detection techniques
have continued to receive attention, the theoretical
results generally being stated in terms of proba-
bility-of-error or signal-to-noise ratio at the detector
output. If one must attribute the discovery of
any new, guiding principles to the preceding three-
year period, the most likely candidates would seem
to be found in those few studies which have sought
theories which can cope effectively with situations
in which @ priori knowledge is seriously lacking.

It appears that roughly half the effort of the past
three years has been devoted to specific detection
problems in radar and communications. In con-
temporary communications studies considerable heed
is paid to ‘optimum’ detection procedures, there
being less inclination to examine conventional,
suboptimum detectors than in the radar analyses.
The reason for this may be that the radar designer
faces considerably greater a priori uncertainty,
both with regard to the signal and the channel
through which it comes. By contrast, relatively
simpler channels have usually been assumed without
loss of realism in communications problems, while
the communications system designer also has more
direct control of the signal. The appropriate opti-
mum detectors for communications then turn out
to be rather elementary, and can at present be con-
structed with hardly more effort than suboptimum
devices require. In fact, the communications en-
vironment is generally ‘clean’ enough that much
recent work has been concerned with determining
good sets of transmitted signal waveforms, the use of
an optimum receiver being taken for granted.

The bulk of the remaining effort has dealt with
special topies in detection of quite general applica-
tion. Further study in sequential decision has been
made both theoretically and through Monte Carlo
computer experimentation, in the hope of achieving
significant speedup in detection over fixed-sample
operation. Greater understanding of the detection
of stochastic signals in noise has been sought for
applications in such fields as radio astronomy and

*Lincoln Laboratory, M.I.T., Lexington, Mass.
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in systems where rapidly fading channels are en-
countered. There has been some work on param-
eter estimation for a finite number of parameters,
a subject which is virtually inseparable from detec-
tion theory. Detection losses in nonlinear devices
have also received further examination.

Attempts to circumvent the a priori difficulty
represent only a small fraction of the output of the
past three years in detection analysis, but have
perhaps the most significance for future work.
Original attacks have been made through game
theory, comparison of experiments, nonparametric
techniques, dynamic programing, and inductive
probability. It is hoped that one or more of these
tools will prove effective in breaking new ground.

4.2. Papers

The following list of references has been drawn
largely from the American journals concerned with
statistical communication theory and information
theory, but also contains a few laboratory technical
reports. This selection omits papers on multiple
parameter estimation, and the estimation of signal
waveforms and impulse responses, since these
topics verge on filtering theory. Other closelyrelated
subjects which are not covered are classical studies
in hypothesis testing that do not refer to electronic
systems, investigations into ambiguity functions of
radar waveforms, and information-feedback sys-
tems.! The future pursuit of feedback studies may
well lead to wider interchanges in detection notions
between radar and communications,
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Part 5. Prediction and Filtering
L. A. Zadeh*

Much on the research on prediction and filtering conducted in the United States during
the period 1957-1960 was concerned essentially with various extensions of Wiener’s theory.
In particular, extensions involving nonstationary continuous time processes, vector-valued
processes, stationary and nonstationary discrete-time processes, nonGaussian processes,
incompletely specified processes, and nonlinear filters and predictors have received attention.

A new and very promising direction in prediction theory has been opened by the applica-
tion of Bellman’s dynamic programing to the determination of optimal adaptive filters and
predictors. Actually, the basic work of Bellman and Kalaba [1958, 1959, 1960] and its
extensions and applications by Freimer [1959], Aoki, Kalman, and Koepcke [1958], and
Merriam [1959] are not concerned with prediction and filtering as such. However, the
recent work of Kalman shows that, mathematically, there is a duality between the filtering
problem and the control problems considered by Bellman and Kalaba, and others. Thus,
these contributions are likely to have a considerable impact on the course of development of
the theory of filtering and prediction in the years ahead, and point toward an increasing
utilization of digital computers and the concepts and techniques of discrete-state systems
both in the design of predicting and filtering schemes and in their implementation.

During the past two years four books containing in aggregate a substantial amount of
material on prediction and filtering have been published. Davenport and Root [1958]
present a clear exposition of Wiener's theory and some of its extensions. Wiener [1958]
discusses orthogonal expansions of nonlinear functionals but stops short of applying them
to prediction problems. Bendat [1958] presents a general survey of linear prediction and
treats some special problems in considerable detail. Middleton [1960] contains a thorough
exposition of the classical prediction theory together with a theory of reception in which the
problems of prediction and filtering are formulated in the framework of decision theory.
The appendix of Middleton’s book includes an informative section on the solution of the
Wiener-Hopf equation and some of its variants.

A more detailed discussion of the contributions to filtering and predietion theory is

presented in the following pages.

separately.

5.1. Nonlinear Filtering

The contributions to nonlinear filtering and predic-
tion have centered largely on the fundamental work
of Wiener [1953] and its earlier extensions by Bose
[1956] and Barrett [1955]. A discernible trend in
research in this area is to consider special types of
processes for which optimal nonlinear filters assume
a simple form. A key work in this connection is
that of Barrett and Lampard [1955], in which the
class, A,' of all second order density functions ad-
mitting a diagonal representation of the form.

])(.171 % '1‘2; T) :])<.I?1)])(.I'2) ”2:01111,(7)07L(j'[71)6rz("’2) (1 )

is introduced. Here p(x,z5;7) denotes the second
order density of a stationary process {z(t)}, a,=x(t),
py=x(t+7), px) is the first order density, and
{0,(x)} is a family of polynomials with the ortho-
gonality property

fp (2)6,,(x)6,(x)dr=0,,,. (2)

In particular, Barrett and Lampard have shown that
Gaussian and Rayleigh processes are of this type,
with the 8, being Hermite and Laguerre polynomials,
respectively. Convergence and other aspects of the

*Department of Electrical Engineering, University of California, Berkeley,
alif.

1 In Barrett and Lampard’s definition of A, p(zi, z2; 7) is not assumed to be
symmetrical.
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For convenience, the subjects of nonlinear filtering, non-
stationary and discrete-time filtering, and miscellaneous contributions are dealt

with

Barrett-Lampard expansion were investigated by
Leipnik [1959], while necessary and sufficient condi-
tions under which P (z;,2,;7) can be expressed in the
form (1) have been given by J. L. Brown [1958].
Brown also studied [1957] a more general class of
densities for which the expansion (1) is nondiagonal
and the coefficients A,,,(r) are restricted by the
relation A,,(7)=d,a,(r), m=1, 2, ., the d,
being real constants.  As shown by Brown, processes
with densities of this type exhibit a number of in-
teresting properties.

One way in which the Barrett-Lampard expansion
can be used in nonlinear filtering was pointed out by
Zadeh [1957]. Specifically, assume that the second
order density of a process with zero mean can be
represented by (1), with the 6,(z) not necessarily
having the form of polynomials. Then, if an opti-
mal (minimum variance) filter is sought in the class
of filters admitting the representation

Fo=% [ Klet—)dr, 3)

=0 Jo

where the K,(r) are undetermined kernels, and the
desired output is written as

() =0>)

o
meM J— ®©

where M is a finite index set and the A#(7) are given
kernels, the determination of the A, () reduces to
the solution of a finite number of Wiener-Hopf

K;::(T)en["'(f_TH’/T: (4)



integral equations
J KIIL(T)‘4IH(’_T>([T:J K*(T>A4m(t_T)(lT, me 1‘1
0 —

, (5)
with K,=01if n=M.

Another type of process—for which the problem
of determining an optimal nonlinear predictor is
greatly simplified—was introduced by Nuttall [1958].
Specifically, Nuttall calls a process separable ? if
the conditional mean of z, given , can be represented
as

E{J&!Tl}:[<$2—#)]’(I2§7’[11)d12: (xy—mwp(r) (6)

where is the mean value of the process and p(r)
is its normalized autocorrelation function. Separa-
ble processes form a slightly broader class than that
defined by Brown [1957].

Among the many interesting properties of separa-
ble processes is the following prediction property.
Let s(t) be a signal mixed with additive noise. Then,
if {s(t)} is a separable process, the best estimate of
;‘)(H— 7) in terms of the best estimate of s(f) is given

s

st m)=s*)ps(7)H=usll—ps(@)]; (7)

where p,(7) and u, are the normalized autocorrelation
and the mean value of the signal process, and starred
quantities, represent optimal (minimum variance)
estimates. In the absence of noise, the explicit
formula for the best predictor in terms of s(¢) becomes

§*(t4-7)=5()ps(7) F-ms[1 — ps(7)]. (8)

Still another type of process for which the predic-
tion problem is manageable was considered by D. A.
George [1958]. Here the observed signal f(¢) i
assumed to be the output of an invertible nonlinear
system N preceded by an invertible linear system
L to which a white Gaussian signal w(t) is applied.
Thus, symbolically, f=NLxz and xr=L'N~'f. Then,
if an optlmal estlmate of f(t+ oc) is denoted b\'

f(t+ o), it is not difficult to find an operator H.
acting on the present and past values of z(t) such
that f(t+ oc)=H«[z(t)]. Once H« has been found,
f(t+ o) can be expressed in terms of the present and
past values of f(#) by the relation f(t+ oc)=H. L™
N7Y.

While some authors have sought to simplify the
prediction problem by considering processes with
special properties, others have turned to special types
of nonlinear operators. In particular, the work of
Bose [1956, 1959] was extended bv D. A. Chesler

[1958] to operators of the form F(TC,@,L) where F

n=1
denotes either a linear operator with memory, or a
nonlinear memoryless operator, or a more general
nonlinear operator possessing an inverse; the C, are

2 It should be noted that the term ‘‘separable process’ is used in the theory of
stochastic processes in an altogether different sense.
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adjustable constants, and the ¢, are nonlinear opera-
tors such that the expectation F{¢,(®)¢,(x)}=0 -
for msn, x being the input to the filter. As was
shown by Bose in the absence of F' the optimal value
of each C can be determined by measuring the mean-
square error as a function of, say, C; and assigning
to C; the value which minimizes the mean-square
error. This method is shown by Chesler to be appli-
cable also when F is a linear operator or a nonlinear
operator with no memory. The extension is less
straightforward when the only assumption on F is
that it possesses a realizable inverse.

In all the foregoing analyses the signal process is
assumed to be stationary. However, there are
many situations of practical interest in which an
appropriate representation for the signal is a series
of the form '

vs‘(t):il,amt), 9)

in which the ¢,(t) are known functions of time and
the a; are unknown constants or random variables.
In such cases, the problem of filtering or predicting
s(t) reduces to the estimation of the coefficients ;.
It was shown some time ago by Laning [1951]
that when (a) the noise if additive, stationary and
Gaussian, (b) the joint distribution of the «; is
known, and (¢) the loss function L(e) is nonnegative
and vanishes for e=0, optimal estimators for the «;
are memoryless nonlinear functions of linear com-
binations of values of the mmput over the interval of
observation. In a recent paper, similar results were
obtained by a different and more rigorous method by
Kallianpur [1959]. More specifically, for the case
where the interval of observation is [0, 7], and the
loss function is quadratic, Kallianpur derived explicit
expressions for the best estimate of s(t) at time
T+ T, in terms of n linear functionals of the form

T
f z(Op)dt, 1=1,2, . . ., n,
0

where z(t) is the sum of signal and noise, and the p,(¢)
are square integrable solutions of integral equations

7
f R(t—n)pu(r)dr=i(t)yi=1,2, .. .,m, (10)
0

in which R(7) is the correlation function of the
process.

More concrete results for the same general problem
were obtained by Middleton [1959] and Glaser and
Park [1958].  In particular, Middleton found explicit
expressions for minimum variance estimators of the
a; for the cases where (a) the «; are jointly normally
distributed, (b) the «; are independent and Rayleigh
distributed, (¢) the «; are independent and their
distributions are not symmetrical, (d) the «; are
independent and their distributions are symmetrical.-
Of these cases, only (a) and (d) yield linear estimators
for the «,.



The relation between maximum likelihood, mini-
mum variance and least squares estimates of the «;
was studied in earlier papers by Mann [1954] and
Mann and Moranda [1954]. A number of interesting
properties of minimum variance estimates of s(#)
and its derivatives for the case where the ¢,(t) are
polynomials in ¢ were found by I. Kanter [1958,
1959]. A central result of Kanter is that an optimal
weighting function for predicting the ;™ derivative
of n™ degree polynomial can be expressed uniquely
and simply in terms of optimal estimators of i™
derivatives of k™ degree polynomials, with £ ranging
between 7 and 7.

5.2. Filtering and Prediction of Nonstation-
ary, Discrete-Time, and Mixed Processes

As is well known [Miller, Zadeh, 1956], extensions
of Wiener’'s theory to nonstationary processes lead
to integral equations of the general form

*h
1 R(t, r)a(r)dr=g(t), a<t<b, (11)

a

in which R(t, 7) is the covariance function of the
observed process. Little can be done toward the
solution of this equation when £2(f, 7) is an arbitrary
covariance function. Thus, contributions to the
theory of prediction of nonstationary continuous
time processes consist essentially of methods of
solving (11) in special cases.

Along these lines, Shinbrot [1957] discussed the
solution of (11) for the case where F(t, 7) can be
expressed in the form

N
R(t, r)=>, a,(7)b,(1). (12)
n=1
Using Shinbrot’s methods, the solution of (11)

reduces to the solution of a system of differential
equations with time-varying coeflicients. There is
some advantage in such a reduction when one has
available a differential analyzer or an equivalent
machine. Similar results are vielded by a theory
due to Darlington [1958, 1959], in which many of
the concepts and techniques of time-invariant
networks are extended to time-varying networks.
As in the paper of Miller and Zadeh [1956], a key
assumption in these approaches is that the observed
process may be generated by acting on white noise
with a product of differential and inverse-differential
operators, or equivalently, with a lumped-parameter
linear time-varying network. Darlington’s paper
[1958] contains also a simplified technique for finding
a finite memory Wiener filter for stationary signal
and noise.

A special case for which explicit solution can be
found has been studied by Bendat [1957]. Here
the basic assumption is that the signal is of the form

s(t)=0 for <0, s(t)=>( a, cos nwt+b, sin nwt) for
T

t>0, where the «, and b, are random variables with
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known covariance matrices, while the covariance
function of the noise is of the form

R(tt;) =Ae P1i=12l cos v (1,—1y) for t;, t,>0

=0 for ,<0 or £,<<0. (13)
Closely related cases in which the prediction problem
can be solved completely are those in which the
nonstationarity of signal and noise processes is due
to a truncation (e.g., multiplying the signal and
noise by a step function) of stationary processes.
This is true also in the case of discrete-time processes,
as is demonstrated by several examples in Fried-
land’s [1958] extension of Wiener’s theory to non-
stationary sampled-data processes.

Several interesting results concerning the linear
prediction of filtering of stationary discrete-time
processes were described by Blum [1957a, 1958,
1957b]. In particular, Blum has developed recursive
formulas which express the estimate at time 7 in
terms of a finite number of past estimates and past
values of the observed process. This type of repre-
sentation is especially useful in connection with
so-called growing memory filters, i.e., filters which
act on the entire past of the input. Thus, if the
input sequence (starting at ¢=0) is denoted by
Ay AR . 2y, and the filter output at time n is

n

denoted by Z,, then Z, is expressible as Z,=>

r=:1
', X,, in which the ', depend on n. A shortcoming
of this representation is that as time advances the
(', have to be recomputed at each step and their
number grows with n. On the other hand, a recur-
sive relation (if it exists) is of the form

Zn=01Zn—1} + arZy— i+ bon+ by, 1t

+b,x (14)

n—e)
where a’s; b’s, k and ¢ are constants independent of
n and hence need not be recomputed. One compli-
cation in this approach to the problem is that in
order to start the recursion one must know initially
Zoy 2y« « oy Do

A somewhat related but more general approach
has been formulated recently by Kalman. Specifi-
cally, Kalman assumes that the observed process
is an n-dimensional vector process {y(f)} which is
generated by acting with a linear discrete-time
system on a white noise {u (¢)}: thus,

YO =P() x()

x(t+1)=G(t)x(®) +u(), (15)

where the bars denote vectors and 2(¢) and G(t) are
given time-varying matrices. (This assumption is
analogous to the usual one in the case of nonsta-
tionary continuous-time prediction, viz, that the
observed process can be generated by acting on
white noise with a time-varying network.) Kalman
shows that an optimal (minimum variance) estimate



of x(1) is given by the recursive relation

X+ D=[O)—ADOpOx* O+ AWMy @) (16)

where

AQ)=GO)ME)P )[PE)ME)P (t)] ! (17)

and M(1) is given by
M+1D)=[GO—AOPOIMBE )+ Q@) (18)

where G’ 1s the transpose of G and (¢) is the covari-
ance matrix (}(f);]"{u(f)u (t)}. The matrix M(t)
is the expectation of the matrix e(t)e (t), where €(?) is

the error at time £. In this formulation, to start the
recursion one must know z*(0) and AM(O). However,
in most cases the effect of the initial choices of 2*(0)
and M(0) will be insignificant by the time the system
reaches its steady state.

An interesting observation made by Kalman is
that the prediction problem as formulated by him is
dual to a problem in control theory in which the
objective is to find an input which minimizes a
quadratic loss function.

In additions to extensions of Wiener’s theory to
nonstationary continuous and discrete-time proc-
esses, extension to processes of mixed type were also
reported. In particular, Robbins [1959] solved the
mean-square optimization problem for the case where
the filter consists of a linear time-invariant system
followed by a sampler which is followed in turn by
another linear time-invariant system. Janos [19: )‘)]
gave a (mnplolo analysis of the case where a sta-
tionary signal is multiplied by a train of rectangular
pulses, vleldnw a periodic pulse-modulated time
series. The filter is assumed to be a time-invariant
linear network. The integral equation satisfied by
the impulsive response of the optimum filter is of the
Wiener-Hopf type, but a multiplying factor involving
trains of rectangular pulses complicates its solution.
A method of solution of this equation is given by
Janos for the infinite memory as well as the finite
memory case.

5.3. Miscellaneous Contributions

There are several not necessarily unimportant
problems in filtering and prediction which have re-
ceived relatively little attention during the period
under review. Contributions concerned with such
problems are discussed in this section.

It has long been recognized that the use of a quad-
ratic loss function imposes a serious limitation on the
applicability of Wiener’s theory. Under certain con-
ditions, however, optimality under the mean-square-
error criterion implies optimality under a wide class
of criteria. Such conditions have been found by
Benedict and Sondhi [1957], and, independently, by
Sherman [1958]. Thus, Benedict and Sondhi have
shown that in the case of a Gaussian process opti-
mality with respect to a loss function of the form

L=¢€, where e denotes the error, implies optimality
with respect to anvlos%lun(-tlonoftho form L_Z\e‘"

where n >0 but is not restricted to integral Valuos,
In Sherman’s result, L.=7(e) is an even function and
&> ¢ >0 implies f(ez) >f(e). More special cases in-
volving the design of optimal filters under nonmean-
square-error criteria have been considered by Bergen
[1957] and Wernikoff [1958]. A time-weighted mean-
square-error criterion which can be used to reduce the
settling time of an optimal linear filter was em-
ployed by Ule [1957].

An extension of Wiener’s theory to random para-
meter systems was described by Beutler [1958]. In
Beutler’s formulation, the signal and noise are as-
sumed to have passed through a time-invariant ran-
dom linear system before being available for applica-
tion to a filter or predictor. The linear system is
assumed to be characterized by a transfer function
H(w, v), in which v is a random parameter with a
known distribution. In effect, this amounts to
modifying the statistical characteristics of the
original signal and noise processes.

The multiple series prediction problem for the in-
finite memory case was considered by Hsieh and
Leondes [1959]. In their paper, Hsieh and Leondes
deseribe a simplified method of solving the simulta-
neous integral equations for the weighting functions.
Their technique is not applicable, however, to the
finite memory case.

The optimization of continuous-time filters and
predictors is frequently carried out by discretizing
time and then letting the interval between successive
samples approach zero. There are many published
papers in which limiting processes of this type are
used without adequate justification. A careful and
rigorous analysis of the problems involved in obtain-
ing optimum continuous-time linear estimates as

limits of discrete-time estimates was given by
Swerling [1958].
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Subcommission 6.2—Circuit Theory

Circuit Theory

Louis Weinberg*

In this paper a report is presented on the research in circuit theory in the United States

during the period 1957-1960.

The paper was prepared as a progress report for submission
to the XIII Triennial General Assembly of URSI, held in London in September 1960.

The

following subdivisions of circuit theory are treated:

. Introduection.

. Synthesis by pole-zero techniques.

Active systems.
Concluding remarks.

NSOt W=

. Topology or linear graphs, including associated matrix formulations.

. Realizability conditions and positive real matrices.
. Systems with time-varying and nonlinear reactances.

The discussion considers problems that have been solved in these areas as well as a
number of important problems for which answers are still not available.

1. Introduction

In the past decade the boundaries of circuit
theory ' have expanded explosively; as a result the
pu‘sont range of circuit-theory research is enormous.
It is thus manifestly unpossﬂ)lv to give a short ac-
count of this research in the United States for the
psst three years. This would be true even if the
“old” or more conventional definition? of ecircuit
theory were used; use of a “new’ or more encom-
passing definition * makes it hold a fortiori. The
best one can do is to offer a few examples to suggest
the vigor, pertinence, and extent of the present
research in circuit theory. For this purpose we have
chosen to concentrate on the following subdivisions
of circuit theory; (2) Topology or linear graphs,
including associated matrix formulations, (3) Syn-
thesis by pole-zero techniques, (4) Realizability con-
ditions and positive real matrices, (5) Systems with
time-varying and nonlinear reactances, and (6)
Active systems.

The above divisions are obviously overlapping.
We subdivide them in this way merely for conven-
ience of discussion and we shall not hesitate to point
out lllt(‘l'l'(‘l&thHS.

In addition, we omit from detailed consideration a
number of research areas that fall within the field of
cireuit theory and also overlap other fields. Among

*Hughes Research Laboratories, Malibu, Calif.

1 We use this term synonymously with network theory.

2 Such a definition was proposed by Professor B. D. H. Tellegen at the 1957
URSI General Assembly held at Boulder, Colo. He suggested that the following
definition be used to guide the deliberations of Subcommission 6.2:

Circuit theory is the theory of networks composed of black boxes character-
ized by relations between the currents and voltages at the terminals, which
relations contain only time as an independent variable, and contain neither space
nor temperature coordinates.

3 In the ensuing disenssion of Professor Tellegen’s definition it appeared that
many of the delegates of Subcommission 6.2 considered the definition too restricted.
An ad hoc group, of which the writer was a member, proposed the following
definition of circuit thoory in the wide sense:

Circuit theory is the theory of networks of black boxes which are character-
ized by relations between the \oltdg(-s currents, or other variables at their termi-
nals, and which are in general abstractions of ph\ sical components of electrical
systems.

There appears to be slight difference between the definitions as stated.
However, the discussion made clear that the proponents of the second definition
wished to include areas like sequential circuits and networks with probabilistic
elements (and in general such areas that overlapped the interests of Subcommis-

sion 6.1 on Communication and Information Theory), whereas those holding to
the first definition would exclude these areas.

them are: (a) contact networks and digital com-
puters; (b) data processing; (¢) noise theory; (d)
('quvntml circuits; (e) sy nthesis of distributed-
parameter systems; and (f) matched filters. How-
ever, we will not (om])letol\' neglect these areas, but
will lnloﬁv mention some of the outstanding work in
a few of them, though without a precise formulation
of the problem% It is (l('al th&t these subdivisions
of the circuit theory field, the research in data
processing, have great 1(‘1(‘\’&“((‘ to the problems of
interest to URSI, and it is recommended that some
provision be made for their detailed discussion in the
next triennial report.

It is difficult if not impossible to discuss the re-
search accomplishments of the past three years in
the United States without reference to much ante-
cedent work and to work done in other countries; we
see farther than our predecessors only by standing
on their shoulders, and it is thus essential to refer to
some of the accomplishments of the giants of former
days. The presentation given here should be con-
sidered more in the nature of a portrait rather than
a photograph.* We shall have to invoke the artist’s
privilege of emphasizing certain aspects of the sub-
ject to the exclusion of other aspects. To mix a
metaphor, in some respects, as is true for any at-
tempted summary of a vast subject, this report takes
on the character of a personal odyssey through the
present circuit-theory research in the United States.

Finally we hasten to point out that the references
are intended to be merely representative, not ex-
haustive. Because of the fact that parallel lines of
endeavor are going on at many research centers, al-
most an entirely different set of references could be
given to illustrate the identical discussion. TIf we
succeed in indicating the problems that have been
agitating research workers and in elucidating some
of those that have been solved and others that re-
main unsolved, we will have accomplished our
purpose.

4 The writer borrows this useful metaphor from his friend, Professor R. M.
Foster.
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2. Combinatorial Topology or Linear
Graphs

The past decade has witnessed advances in circuit
theory that are expressed in different ways. Much
of what is being said about these advances becomes
merely a babel unless the circuit theorist is multi-
lingual. This should be interpreted in each of two
ways. First, the same problems are being consid-
ered by competent scientists in many countries of the
world. Second, different mathematical languages
are being used to attack and gain insight into these
problems. The use in circuit theory of the languages
of function theory and some elementary aspects of
matrix theory is fairly well established; new lan-
guages that have been introduced in the recent past
are the language of linear graphs, the language of
lattice theory, the language of vector spaces, and the
language of sophisticated matrix theory [Trans. IRE
1959b].  We discuss below the field of limear graphs
and associated matrix formulations of circuit-theory
problems.

Though the basic concepts of linear graphs and
their applications to network theory were introduced
by Kirchhoff himself [1847], it is only recently that
their great power for both analysis and synthesis has
been widely recognized. A large part of this recog-
nition stems from attempts to solve the synthesis
problem for networks without transformers. One
evidence of the intense and widespread interest in
this field is the issue of the IRE Transactions of the
PGCT that was devoted to this field [1958b]; another
is the number of letters and industrial publications
that treated this subject [Nerode and Shank, 1957,
Nakagawa, 1958; Weinberg, 1958¢; Kim, 1958;
Calabi, 1956; and Hatcher, 1958].

A good proportion of the publications on graph
theory are devoted almost exclusively to a reformu-
lation of Kirchhoff’s “Third and Fourth Laws,” by
which laws we mean his rules for writing down a
network function almost by inspection. Some, how-
ever, do give basically new material. Mason [1956;
1957], for example showed how to determine system
functions of active networks by topological rules.
This represents an important extension, since Kirch-
hoff’s techniques were restricted to the solution of
passive networks without transformers. There were
also a number of others who formulated topological
rules for solving active networks [Boisvert, 1958;
Coates, 1957; Mayeda, 1958b].

Mason’s graphs, it should be pointed out, differ
from Kirchhoft’s; Mason ecalls them signal-flow
graphs. 'These graphs are similar to the block dia-
grams used in system analysis; thus one difference
from Kirchhoft graphs is that the algebraic sum of
the signals at a node of a signal-flow graph is not
zero, and a second difference 1s that signals flow
along a branch in only one direction.

Two other problems that were solved are the
realization of a loop matrix or cut-set matrix by a
graph and the realization of a homogeneous poly-
nomial as the discriminant of a network. The first
problem is related to the still unsolved problem of

realizing a real matrix as the resistance or conduct-
ance matrix of an n-port network containing only
resistances and no ideal transformers [Slepian and
Weinberg, 1958b]. Indeed, it may also be said to
be a problem in any field where linear graphs are
applicable, e.g., information theory and linear pro-
graming [Elias et al., 1956; Dennis, 1958, 1959;
Jewell, 1958]. For a long time this problem was
unsolved ° and then as so often happens a number -
of solutions appeared almost simultaneously. Two
solutions were presented at the 1959 International
Symposium on Circuit and Information Theory.
One paper by Guillemin is motivated by problems
in network theory [Guillemin, 1959]; the second by
Loferen (of Sweden) is stated in terms of contact
networks and appears to be fairly simple to apply
[Loferen, 1959]. If we exclude the work of the
Russians, it is probably true that Gould was the
first to solve this problem [Gould, 1957, 1958];¢
his solution appears to be complicated in its appli-
cation. Subsequently Auslander and Trent gave an
alternative solution (1959).7

We have thus gone from poverty to an embar-
rassment of riches with regard to this problem; we
now have what could be considered a plethora of
solutions.® It 1s ecritically necessary at this point
to consolidate our advances. All these procedures
should be compared for their generality and ease
of application; their merits and advantages for solv-
ing different types of problems should be illustrated.
It would also be desirable that they be stated in a
common simple language so that their differences
and similarities become evident. Finally, if it is
possible, an everyday design procedure should be
formulated. Perhaps part of this task will be ac-
complished at the Fifth Midwest Symposium on Cir-
cuit Theory: Topology in Circuit Theory to be held
on May 8 and 9, 1961 at the University of Illinois.

The problem of realizing a specified homogeneous
polynomial that was mentioned above and the story
of one of its solutions illustrate the fact that the
pace at which we are finding solutions to problems
of long standing is an accelerating one. An exceed-
ingly difficult problem in the past [Foster, 1952]
was the determination of the necessary and sufficient
conditions for a homogeneous polynomial of n vari-
ables to be the discriminant of a realizable network—
that is, the determinant of the system matrix of
the loop or node equations. Some only partially
successful attacks ® on this problem were previously
made by Cohn [1950],Shannon and Hagelbarger [1956],
and Melvin [1956]. Dr. Campbell of BTL: had also
been interested in this problem around 1917, but he is

5 Perhaps it would be more accurate to state that the problem was not even
formulated, since an awareness of the problem became explicit only in the last
few years.

6 The Russians have written many papers on contact networks; the writer
believes there is a high probability that solutions to this and other “‘unsolved’”
problems are waiting to be exhumed from the Russian literature.

7In their paper Auslander and Trent [1959] give what could be considered
an abstract solution. They have subsequently written a paper (as yet unpub-
lished) that gives a constructive procedure for realizing the graph.

8 The reader should not assume that we have mentioned all the solutions.
There are, for examples, a solution by Harry Lee in his MIT master’s thesis
done under Professor Guillemin’s supervision, and a solution by W. Mayeda,
which he has submitted for publication to the Transactions PGCT.

¢ The writer is indebted to Professor R. M. Foster for this discussion of the
earlier attacks on the problem.
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not known to have reached anysignificant conclusions.
Only one necessary condition was put forth in the
three cited papers. If we let D be the homogene-
ous polynomial in the n variables 2, and further
let Dy be the partial derivative of D with respect
to Ry, then the expression (D,D,— DD, is the
square of a homogeneous function of the R, of degree
one less than D and with coefficients that may be —1
as well as +1. Cohn’s paper attempted to show
that this condition was also sufficient, but a counter-
example can demonstrate this to be impossible.

The problem was then mentioned by the writer
in a talk he gave at Princeton. Dr. F. Harary, who
was present at the talk, casually passed the problem
on (during the 1959 International Symposium on
Circuit and Information Theory) to Tom Crowley
of BTL, who was commentator for the session on
Switching Theory. Using the techniques of Lof-
gren’s paper, Crowley announced he had solved the
problem. Subsequently the writer discovered that
Mayeda had previously solved the problem [1958a].
It also appears that another solution has now been
given by Duffin [1959].

This is not the only instance of a problem’s being
solved at the Symposium. A different problem that
arises in linear programing [Heller and Tompkins,
1956; Hoffman and Kruskal, 1956] is the specifica-
tion of a set of necessary and sufficient conditions
on a real matrix for it to be a unimodular matrix,
where a unimodular matrix is defined as a rectangular
matrix all of whose subdeterminants (including each
element considered as a subdeterminant of order one
and also the determinant itself, if the matrix is
square) are equal to +1 or 0. This problem also
arises in network theory and in the theory of contact
networks, and generally in any discipline that can
be described in graph-theoretic terms; for example,
the incidence matrix introduced by Kirchhoff is a
unimodular matrix and so is the loop matrix based
on a fundamental set of loops. The writer men-
tioned that this problem was unsolved in chairing
the session on Graph and Matrix Theories; the
following day D. Anderson of the Hughes Aireraft
Company (who, it should be mentioned, had also
been introduced to this problem previously) indi-
cated he had a solution.!

The research mentioned above—that 1is, the
realization of a loop or cut-set matrix, the complete
characterization of the unimodular matrix, and the
realization of a homogenecous polynomial—are all
important in what the writer considers to be the
crucial network problem at the present time, namely,
the realization of networks containing no ideal trans-
formers. Distinguishing classes of networks with
regard to the inclusion or exclusion of ideal trans-
formers is a fundamental method of differentiation.
For example, it can be shown that the exclusion of
transformers makes the realization of the n-terminal
network a problem distinet from that of the n-port

10 Though the writer has a copy of the paper that Crowley wrote, he does not
believe it has yet been published. .

11 Again this solution has not yet been published but has been studied by the
writer.
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network, whereas when transformers are allowed a
solution to one class of problem also solves the other.
It is felt, furthermore, that solution of the problem
of realizing transformerless networks will throw light
on the problem of equivalent networks, and on how
to obtain them by linear transformations.

As Cederbaum [1958] points out, most of the syn-
thesis procedures for n-port networks use the artifice
of the ideal transformer to solve the realization prob-
lem; to use his apt simile, the ideal transformer has
been used like the deus ex machina of classical drama.
By a suitable arrangement of transformers one can
get combinations of voltages and currents which
otherwise would be impossible. It is clear that new
types of synthesis procedures are required; instead of
assuming the network configuration in advance, as is
done when we use one of the presently known pro-
cedures, the configuration will be derived from the
mathematical characterization of the network. The
resulting structure will probably be a complex inter-
connection of elements, a network in the true sense
of the word, rather than one of the known canonical
configurations. All of this indicates to the writer
that the concepts of linear graphs will become
increasingly important.

To mention one result for which no derivation is
known other than a graph-theoretic one, we have
the necessary condition that an impedance matrix
or an admittance matrix of a pure resistance n-port
must be a paramount matrix, where by a paramount
matrix we mean a real symmetric matrix each of
whose principal minors of order p(p=1, 2, )
is not less than the absolute value of any pth-order
minor built from the same rows. Tellegen [1952]
derived this result for a three-port by use of the
fact that the voltage ratio of a resistance network
cannot exceed unity; he also showed the condition
to be sufficient for a three-port. However, for an
n port with n >3, this method does not suffice and
Cederbaum [1958] was forced to use linear-graph
concepts for his derivation. These results and others
on dominant matrices for resistance networks are
summarized by Slepian and Weinberg [1958a].  The
latter authors also derive a sufficiency condition on
dominant residue matrices for two-element kind
networks; this result was subsequently useful in
the realization of active RC' networks [Kinariwala,
1959]. In the above we use the term dominant
matrix to mean a real symmetric matrix each of
whose main-diagonal elements is not less than the
sum of the absolute values of the elements in the
same Tow.

2.1. Future Research Activity and Evaluation

The writer feels that the problem of realizing an
n-port resistance network will be solved before the
next General Assembly; implicit in this solution there
will probably be a method for realizing RLC net-
works without transformers. This may appearto
be a rash prediction since it was way back in 1952
that Foster wrote [Foster, 1952], “There is room for
much further progress in the investigation of general
n-terminal pair networks, especially the delineation
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of just what can be done without ideal transformers,
without mutual inductance, or with only two kinds
of elements. Furthermore, even the theory of the
true 3-terminal network (without pairing of terminals)
for two kinds of elements (without mutual inductance
or ideal transformers) is almost wholly unknown.”
Today each of these problems is still unsolved.
However, we should recall that the problem of the
discriminant that Foster also mentions is now
solved. Furthermore, such men of the calibre of
Guillemin and Darlington are now looking at prob-
lems of this nature. Guillemin is using linear trans-
formations of matrices [1960a; b| as his method of
attack, whereas Darlington has informed the writer
in informal conversation that he was using vector
spaces in his analysis of the problem.

The topologl('nl approach (as presented mainly in
Cederbaum’s papers) is also a promising one and
should not be neglected. It has led to the brink of
a major breakthrough on this problem—e.g., the
statement of the paramountey condition on imped-
ance or admittance matrices of n ports containing no
transformers—and provides a formulation of the
problem in matrix terms that is elegant. Cederbaum
[1958] has shown that a necessary and sufficient con-
dition for a given symmetric nth-order matrix 7 to
be the impedance matrix of an RLC n port contain-
ing no real or ideal transformers is that it is a prin-
cipal submatrix of the inverse of the triple matrix
product BY,,B’, where Y, is a diagonal matrix whose
main-diagenal elements are a, bs, ¢/s with a, b, ¢ >0,
s is the complex variable s=o¢+4jw, B’ is the trans-
pose of B, and B satisfies the conditions for a cut-set
matrix corresponding to an adequate system of
node-pair voltages—that is, B can be realized as the
cut-set matrix of a graph by one of the procedures
mentioned previously. A necessary condition on B
1s that it be a unimodular matrix. A complete
statement of the necessaryv and sufficient condition
on B for it to be such a matrix is that there exists a
decompcesition of B of the form

B=KqQ

where ¢ is a reduced incidence matrix of the desired
connected network and A i1s a reduced incidence
matrix of the tree of node-pair voltages (that is, of
the tree that is formed by drawing a branch for each
voltage variable). An analogous condition can of
course be stated for the admittance matrix of an n
port.

This necessary and sufficient condition differs
from those ordinarily given in synthesis, where suf-
ficiency is demonstrated by a synthesis procedure.2
Here no synthesis procedure exists because no method
is known for decomposing 7 into a principal sub-
matrix of the desired congruent transformation of a
diagonal matrix. Solution of this matrix problem
would be a contribution of the first magnitude.

12 For this reason it has been objected that such a form of necessary and suf-
ficient condition is not of great value, that it in effect merely restates the prob-
lem. The writer does not agree since the restatement of the problem allows
other mathematical artillery to be used in the solution. As an illustration of
the value we should note that it has led to a solution of the problem of realizing
a resistance n-port network that has only (n+1) terminals, Cederbaum [1957].

To make this statement apply to two-element kind

networks—e.g., to the RC case—we merely require
that the elements of Y,, be of the form a and bs.
m . & L .
I'o convert it to the problem of realizing a pure re-
sistance n port, we stipulate that the diagonal ele-
ments of },, be positive numbers. In this case the
elements of Z are of course no longer rational func-
tions of s but are real numbers.

Some necessary conditions on Z are known: Z
must be a symmetric positive real matrix; in addi-
tion, Z must be a paramount matrix for each value
of s in the range 0<s<Zw. However, a set of neces-
sary and sufficient conditions is not known even for
n=2, that is, the two-port network without trans-
formers; it is "also not known for the RC or LC case
with n=2.

For the case of the resistance network when the
n port is formed from the links pertaining to a tree,
Cederbaum [1959] has furnished a solution. For the
admittance case this represents a solution for the
resistance network when the n port network has
only (n+1) terminals. The solution consists of an
algorithm whereby the decomposition

2=BY, B’

if 1t is possible at all, can be carried out. Here we
note the problem is simpler in that Z is not required
to be a principal submatrix of the triple product but
is equal to it. However, Cederbaum’s techniques
may be suggestive in solving the more general
problem

It should also be mentioned that a similar formu-
lation as a triple matrix product is given by Bryant
[1959a]. He shows that the necessary and sufficient
condition for a real symmetric matrix Z to be the
impedance matrix of a resistive n port is that Z be
of the form

Z=S"ENS

where S’ is the transpose of S, S is a submatrix
of a reduced incidence matrix of a tree, and G is
a dominant matrix with nonpositive off-diagonal
elements. Again this should not be looked upon
as a mere restatement of the problem. It may
have an advantage over the Cederbaum formulation
in that G can be recognized by inspection; however,
the problem to be mentioned below of recognizing
G~! (the inverse of a dominant matrix with non-
positive off-diagonal elements) still remains. The
transformation matrix S can also be recognized by
inspection since the necessary and sufficient condi-
tions for a matrix to be the reduced incidence matrix
of a tree is that it be nonsingular, have elements +1
or 0, and in each column have at most two nonzero
elements, specifically, one 41 and one —1. Ceder-
baum’s transformation matrix, it should be recalled,
must be unimodular, a test for which is laborious;
and even if it is unimodular it may still not be
realizable by a graph. Of course, the unimodular
test may be omitted when this is convenient and

690



the procedure for realizability as a graph may be
apphed directly. Bryant [1959b] considers additional
formulations for resistance networks in his doctorate
thesis.

We mention, finally, one more approach that
may vield useful insights for solving the problem
of realizing a resistive n-port network. We might
prefer to assume that the network possesses accessible
terminals rather than n ports—i.e., terminals paired
into ports or terminal pairs—or we might find it
convenient to switch between the two representa-
tions. There is a simple formula relating system
functions in one representation to system functions
in the other. This formula, which is given below,
is not so widely known as it should be; its first
appearance and proof in the literature are somewhat
in doubt, and it is continually being rediscovered.
One of the conceptual advantages of the 2n-terminal
network representation is that only driving-point
measurements need be made; these characterize
the n port uniquely. Thus an obvious necessary
condition on each measurement is that it is a non-
negative number.

Consider a resistance 7 port with an open-circuit
resistance matrix R=[R;]. Of course, since the
n port obeys reciprocity, of the n? driving-point
and transfer resistances only n(n-+41)/2 are inde-
pendent—that is, the matrix is symmetrical. Now
consider this network as a 2n-terminal network
with the terminals numbered from 1 to 2n, and with
the ports so numbered that port 1 comprises ter-
minals 1 and (n-+1), the assigned positive direction
being from terminal 1 to terminal (n-+1). In
general port £ will run from terminal £ to terminal
(n+k).

For the representation of the 2n-terminal network
let S, ; denote the measured driving-point impedance
between terminals 7 and k, all other terminals being
left free. Then we define S} =0, since this measure-
ment corresponds to both of the measuring leads
connected to the same terminal. It 1s elear that

)
Rix==Sk, ntr

The general formula for the elements of matrix
R is

l &
Il)ik:.)' [Si,n‘fﬁLksk,nf,—Si,k“Sn;.f,nq-]

which reduces to the previous formula when 7=#.
A simple proof of this formula that uses Kirchhofl’s
topological rules has been given by Professor Foster
in a private letter to the writer.

There are some other unsolved problems raised by
graph-theoretic considerations. For example, can 2
simple test for a paramount matrix be devised? A
direct test that follows from the definition is to check
the required conditions on each principal minor of
order p<n—1 and each of its correspording non-
principal minors. The evaluation of all possible
minors, however, can be laborious, and the question
naturally arises whether all minors must be tested.
In other words can a simplification be effected as,

for example, in the test for a positive definite matrix?
We recall that for an nth-order matrix to be positive
definite, 1t is necessary that all the principal minors
are positive; it is sufficient, however, to test only a
subset of » principal minors. It has been shown by
Slepian and Weinberg [1958] that we must test all
minors of order two. It can be shown, furthermore,
that not much can be done to shorten the work of
testing a matrix for its paramount character.'

Another matrix problem is the formulation of a
simple method for determining whether the inverse
of a nonsingular paramount matrix is a dominant
matrix with nonpositive off-diagonal terms. This
would then give a set of necessary and sufficient con-
ditions for the realization of a real matrix as the im-
pedance matrix of a (n-1)-terminal network contain-
ing only pure resistances. Also, with regard to a
dominant matrix, though we know that the condition
of dominance 1s sufficient for realization of a given
matrix as the admittance matrix of a resistive n port,
we still don’t know whether this is true for realization
as the impedance matrix.

A final problem may be mentioned for the para-
mount matrix. As indicated previously, it is known
that paramountey is sufficient for the realization of
an n port for n<3; though the writer conjectures
that it is not sufficient for n >3, this has never been
demonstrated. A method that has been suggested ™
for proving or disproving the sufficiency for n—=4 is
to consider the dominant admittance matrix

7 1 2 3
e 12 4 5
o 4 15 6

3 5 6 18

This is realizable by a general procedure [Slepian
and Weinberg, 1958a], but (as has been shown by
Cederbaum [1959]) not by a four-port with only five
terminals.  Now suppose that Y is reduced to the
irreducible ' paramount matrix

3 1 2 3

)7 o 1 5 4 -)

| 4 6 6
3 b) 6 53/7

Now the question is whether there exists any four-
port with Y, as its admittance matrix. It may be
worth while to investigate this particular case and
perhaps by the use of the possible geometrical con-
ficurations [Foster, 1932] for a four-port, the fact
that a nonplanar network has no dual, and by the

13 An example to illustrate that we cannot eliminate testing minors of order
n—1in an nth-order matrix was furnished the author in a private letter—ete. (See
letter).

14 This suggestion was made to the writer in a private letter from Professor
R. M. Foster.

15 By reducing a paramount matrix we remove main-diagonal elements without
destroying the paramountcy condition. Then the reduced matrix is inverted
and this reduction, if it is possible, is repeated. This yields shunt and series
elements in the corresponding network. When a matrix is reached for which
this is no longer possible since the paramountey condition will be violated by such
a step, this matrix i lled irreducible. A detailed discussion of the reduction
of a third-order matrix is given in chapter 8 of the author’s book, ‘‘Network
Analysis and Syntnesis,” to be published by the McGraw-Hill Book Co.

691



process of complete induction, it can be demon-
strated that no such network exists and consequently
that paramountey is not sufficient.

Another irreducible paramount matrix suggested
by Foster is

3 2 1 3

2 3 2 3
) '2 ==

1 2 3 3

3 3 3 5

Does any four-port exist with Y, as its admittance
matrix? Not only can this example throw light on
the question of paramountey, but it may also furnish
an answer to an unresolved aspect of equivalent net-
works—specifically, do there exist matrices which
are admittance matrices of networks without trans-
formers but not impedance matrices, and vice versa?
We recall that any matrix realizable as an admittance
matrix can also be realized as an impedance matrix,
if ideal transformers are allowed; however, this is an
unanswered question for transformerless networks.
For the matrix given above as Y, there is a simple
network if this matrix of numbers is considered as an
impedance matrix, namely, a chain of five one-ohm
resistances, with the ports chosen as indicated in
figure 1.

E|

P<< ? Es

O << o
Eq

Ficure 1. Chain of five 1-ohm resistances realizing the given

impedance malrixr.

Some important analysis problems still remain with
regard to graph theory. We know that the driving-
point and transfer functions of an » port may be
expressed in terms of the independent driving-
point functions of the network considered as a 2n-
terminal network. Thus a simple method for
determining these driving-point functions is required.
This 1s known [Weinberg, 1958a] for those driving-
point functions measured across a branch of a
symmetrical graph; however, the problem of speci-
fying the driving-point function across two nodes not
connected by a branch is still unsolved. Solution of
this problem is important since it would permit
simple calculation of the currents and voltages of
large graphs used to simulate other physical systems.
For an indication of the extensive computations that
are presently required the reader is referred to
Branin’s paper [1959].

Another aspect of graph theory that should see
wider use in the future is Wang Algebra [Duffin,
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1959]. This appears to be ideally suited for the
application of digital computers to network investiga-
tions. One of the troublesome problems that
previously held up digital-computer research on
networks by use of graph-theory concepts is the
direct determination of all the trees of a network
without duplication [Hobbs, 1959; Mayeda, 1959];
a method has now been given by Fujisawa [1959].

It is felt that the applications of graph theory to
physical systems will increase rapidly in the next
few years. The rate of increase will depend on the
size of the cultural lag—that is, the length of time
before linear graphs is taught in the schools as a
routine tool of the engineer. In the past, network
theorists have assimilated mathematical disciplines
like function theory, matrix theory, and Laplace
transform theory, and have developed general
methods for analyzing exceedingly complex net-
works without becoming lost in a maze of detail.
Then these concepts and techniques that were
developed in network theory were recognized to be
of great value to the applied mathematician and
physicist [Mathews, 1959], irrespective of his field
of specialization. Network concepts such as imput-
output and others have even found their way into
a recent book on pure mathematics [Kaplan, 1958].
In addition to their use in exact sciences, the input-
output concept and the ubiquitous black box have
yielded rich rewards in such fields as biology and
economies [Leontief, 1959]. Thus network theorists
have insisted that their subject had a great deal to
offer other fields and hence that engineers and
physicists should learn the language of network
theory [Weinberg, 1960].

This situation may now be changing; the change
is illustrated by the field of graph theory. Graph-
theory applications are being made with great speed
in other engineering fields such as linear programing,
information theory, and switching circuits. It may
now become necessary for engineers and physicists
to use the common language of graph theory rather
than redefine the concepts in a manner appropriate
for their own specialty. Perhaps future teachers of
electrical engineering instead of stating Kirchhofl’s
current law in the old form that the algebraic sum
of the currents at a node i1s zero will teach the
equivalent linear-graph statement that the 1-chain /7
is orthogonal to the coboundary of each point of a
egraph G. 1In any case, however it is taught, we can
be fairly certain that graph theory will eventually
become as established as funection theory or matrix
theory in the educational background of the engineer
and physicist.

3. Synthesis by Pole-Zero Techniques

Though Darlington’s [1939] work was done about
20 years ago his techniques are still not being used
by the average engineer. Following the lead of
Grossman’s paper in early [1957], which attempted
to make Darlington’s results on elliptic function
filters more readily available, Henderson published
nomographs [1958], Weinberg published tables of
element values for Butterworth, Chebyshev and



Bessel-polynomial networks [Weinberg, 1957a; b; ¢],
and Henderson and Kautz presented a whole series
of graphs [1958] of the transient response of such
networks. The large demand for reprints of these
papers with the letters of comments attest to the
cultural lag between what is known about filter
theory by workers in this field and the methods
used to design filters by the engineers in the labora-
tory.

The research activity in this area for the past
three years has been devoted largely to an applica-
tion of the classical RLC synthesis techniques to
new types of systems and secondly to the extension of
svnthesis procedures to include rational functions
with nonreal coefficients.  We shall discuss these
two trends, mention a new synthesis procedure,
and then briefly consider the approximation problem.
Finally, we shall give a fairly thorough discussion of
the problem of finding explicit formulas for the
element values of ladder networks.

The design of crystal filters has generally been
treated by image-parameter techniques. Kosowsky
[1958] has extended these techniques in his treatment
of methods for realizing such filters. O’Meara
[1958a; b; ¢] in a series of papers has attempted to
show the value of modern synthesis techniques by
applying them to particular crystal-filter configura-
tions. With the increasing stress on transformation
techniques for achieving desired network configura-
tions [Saal and Ulbrich, 1958]—ec.g., the so-called
zig-zag filter—it 1s felt that general synthesis pro-
cedures for crystal filters may yet be formulated.

A new RLC synthesis procedure is that of Macnee
[1958]; this may be useful in frequency-multiplexing
problems. The network yielded by Macnee’s pro-
cedure has open-circuited inputs and paralleled
outputs. He thus realizes a set of transfer imped-
ances in contrast to Guillemin’s related procedure of
realizing a transfer admittance by means of ladder
networks paralleled at both ends.

Lewis applied RLC synthesis techniques to the
realization of pulsed networks [1958], whereas
Levenstein [1958] showed that the realization of
networks with linearly varying resistances—i.e., po-
tentiometer networks—was analogous to the RC
synthesis problem. This correspondence will prob-
ably be extended in the future and has already led
to the analysis of positive real functions of two
variables [Ozaki and Kasami, 1959].

Baum has made a significant contribution to the
design of narrow-band filters [1957; 1958a]. He has
extended the techniques of synthesis to apply to
-ational functions whose polynomials have nonreal
coefficients; this requires that he consider as addi-
tional types of elements in the low-pass domain
fictitious frequency-independent positive and nega-
tive reactances; when the transformation to the
band-pass domain is made, the networks become
physically realizable. Baum [1958b] has also shown
how to use fewer elements than in the Brune pro-
cedure in the realization of driving-point functions
with geometric symmetry, such as are obtained in
the low-pass to band-pass reactance transformation.

The application of RLC synthesis techniques to
transmission-line networks by means of Richards’
transformation was considered by Grayzel [1958].
A useful summary and extension of methods for
handling this problem are given by Welsh and Kuh
[1958].

In considering the approximation problem we find
that Kuh has presented an additional solution for
approximating the ideal delay function [1957]. The
solution, which is found by means of the potential
analogy, vields a tandem connection of a low-pass
ladder network and an all-pass bridged network.
It is more efficient than the maximally flat time
delay yielded by Bessel polynomials in the sense
that a wider bandwidth is achieved for a prescribed
number of singularities and time delay. However,
the Bessel-polynomial approximation is of course
much simpler.

Papoulis [1958] considered the approximation of a
magnitude characteristic and found the class of
polynomials that has the maximum cutoff rate
under the constraint of a monotonic response. Thus
his polynomials give a magnitude function that com-
bines the monotonic property of the Butterworth
polynomials and the optimum cutoff’ property of the
Chebyshev polynomials.  Again, as in the case of
Kuh’s approximation, some measure of simplicity is
lost: the Butterworth polynomials are much simpler
than the set of new polynomials.

We now come to the discussion of ladder networks
and explicit formulas for their element values. This
problem has tantalized research workers ever since
Norton [1931], who was the first to contribute to
this problem, derived the formulas for the element
values of ladder networks with a Butterworth char-
acteristic and with a resistance termination at only
one end. Bennett [1932] extended Norton’s work
by giving the formulas for the element values for
the maximally flat ladder that is terminated in
resistance at both ends.”® However, Bennett’s for-
mulas are restricted to the case of equal resistance
terminations.  About 20 vears later Beleviteh [1952
derived the formulas for the Chebyshev-polynomial
or equal-ripple ladder. Again, the formulas are not
general: Belevitch’s apply only to the matched
ladder network. Orchard [1953] then extended
Belevitch’s formulas to the open-circuited or short-
circuited Chebyshev ladder.

In 1954 a major breakthrough came when Green
[1954] provided a generalization of all the preceding
work; he discovered the formulas for ladders with a
Butterworth or Chebyshev characteristic and with
any ratio of resistance terminations. These formulas
did not solve the complete problem since they apply
only when the zeros of the reflection coeficient are
chosen to lie in one half-plane. Depending on the
choice of the zeros of the reflection coeflicient, a
number of other networks is possible. For a transfer
function whose denominator is of odd degree, Wein-

18 Bosse [1951] who appeared to be unaware of Bennett's work independently
solved the same problem. In addition, Bosse was the first to give complete
proof of the formulas. Bennett had his proof practically complete and Norton’s
analysis gave general formulas for 1st, 2nd, 3rd, ete., element of ladder for any
total number of elements without proving the general formula for the mth ele-
ment in n-element structure,
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berg [1957¢] solved the case of a symmetrical distribu-
tion of the zeros of the reflection coefficient —that
is, for zeros chosen to alternate in the left and right
half-planes.

These formulas have led the writer and others to
conclude that we are somehow “missing the boat”
on the ladder network. Though in a mathematical
sense the Darlington method 1s an elegant solution
to the general problem of realizing a lossless network
terminated in resistances, the computations seem
unusually complicated when applied to a simple
configuration like the ladder. The writer has felt
for a long time that the simplest methods of analyz-
ing and synthesizing a ladder are still to be found.
The discovery (and proof) by Indjoudjian [1954] of
formulas for the element values of an n-stage RC
amplifier have bolstered this feeling.

One of the disconcerting aspects of most of the
above results on the Chebyshev and Butterworth
ladders is that they were never rigorously proved,
although their correctness was universally accepted.
The formulas were derived by carrying out the
calculations in detail for cases of low degree and then
guessing the general result. An attempt to prove
the general case, in the hope that such a proof
would show how to solve related problems, resulted
only in a proof for the Butterworth case [Doyle,
1958]. As remarked by Doyle, his proof is a “ham-
mer-and-tongs’ one in that it gives no clue to the
reason for the amazing simplicity of the final formu-
las. It is thus not possible to extend the proof to
formulas for the Chebyshev case or for other zero
distributions of the reflection coefficient or finally,
to formulas for the elliptic-function filter.

The above was the state of knowledge on the ladder
network at the time of the last URSI General Assem-
bly in 1957. What followed reads almost like a
detective story. At a meeting of Sub-Commission
VI-2, the writer mentioned the significant problems
of finding formulas for the inverse Chebyshev and
the elliptic-function filters and in passing commented
that the formulas given by Green for the Chebyshev-
polynomial case had never been proved. One of the
participants in the discussion was Dr. H. Takahasi.
After the meeting the writer and Dr. Takahasi had
supper at which the latter casually mentioned that
he had derived and proved the formulas in 1951.
It must be admitted that the reaction of the writer
was disbelief; it was so hard to imagine this to be
true that he felt he hadn’t explained the problem
clearly to Dr. Takahasi. However, the ensuing con-
versation showed that Dr. Takahasi was aware of
all facets of the problem. He promised to send a
copy of his paper [Takahasi, 1951], and some time
later he did.

Thus one of the unexpected effects of this URSI
meeting of scientists from different countries is the
uncovering of Dr. Takahasi’s paper. This gives
another illustration (if any are needed) of the desir-
ability of more such international conferences.

In this paper Takahasi derives the formulas that
were later independently given by Green. The
wealth of new results, the elegance of the proof, and

the implications for future work are adequately
covered in the paper by Weinberg and Slepian [1960a]
based on Takahasi’s paper. Suffice it to say here
that it is literally incredible that these results could
have remained unknown to workers outside of Japan
(and, it may be added, to many Japanese also) for
so long a time. Perhaps the history of this problem
as presented here can make some small contribution
to eliminating a repetition of similar occurrences.
The amount of duplication in research and calculat-
ing effort that could have been eliminated and the
additional progress that could have been made in
this field by widespread knowledge of Takahasi’s
paper are incalculable.

3.1. Future Research Activity

Though some work has been done on therealization
of true RLC networks—that is, where the coupling
network contains resistance elements inserted in a
controlled manner—we are still in need of a general
synthesis procedure. The state of knowledge even
on the problem of incidental dissipation is not
complete. We still don’t know how to realize a
network where each inductor is not restricted to the
same dissipation factor. Perhaps graph theory may
be useful here; some work has already been done on
showing how equivalent ladder networks can be
derived by the use of graph theory [Simone, 1959].
The procedures of Darlington [1939] and Bader
[1942] apply to the case of nonuniform dissipation
where dq 1s the dissipation factor of the capacitors
and dp) is the dissipation factor of the inductors.
Darlington did not present his procedure in detail ;
as a result a generation of readers has probably had
difficulty in applying it. Desoer thus performs a
useful service in giving a clear interpretation of
Darlington’s procedure [1959]. When the network
is terminated at only one end, the problem is greatly
simplified. Geffe [1959] considered such a singly
loaded network whose reciprocal voltage ratio is
a polynomial and gave formulas for the coefficients
of the polynomial after predistortion; thus the need
for the Darlington or Bader procedure is eliminated
in this case.®s As is remarked by Bennett, in his
proof appended to Geffe’s letter, the fact that this
closed-form solution for the coeflicients is obtained
should not be taken to imply that the general case
can be treated similarly. However, further investi-
gation of a possible simplification of the doubly
loaded case would be worth while.

The writer also feels that formulas for the element
values should exist for the uniformly predistorted
Butterworth and Chebyshev cases. We know these
formulas when no dissipation is introduced. One’s
sense of propriety is outraged when he finds that
making a simple translation of thefrequency variably
forces him to carry out the computationally awk-
ward continued-fraction expansion. Nature 1is
generally not so perverse. After all, the poles of
the Butterworth and Chebyshev functions still lie

16a It might be added that Orchard maintains (in a letter to the Editor, Trans.

PGCT, June 1960) that direct calculation of the element values is simpler than
using the closed-form expression for the coefficients of the polynomial.
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on a circle and ellipse, respectively, except that the
figures are shifted to the right. Perhaps the deep
insights of Takahasi on the properties of the con-
tinued-fraction expansion for Butterworth and
Chebyshev functions should help in this problem as
well as in some of the other problems mentioned
below.

[t appears that there is no end to the closed-form

formulas that can be found for the Butterworth
and Chebyshev functions. For the Butterworth
transfer function given by
.
(K (jo)| e

the time delay T,=—dB/dw (where K(jw)=|K(jw)|
¢”) has been found to be

n—1 w2m
T sin (2m—+1)x/(2n)
e " m=0 77];20271

For the Chebyshev function given by

o sl 1

K= e

where 7, (w) 1s the Chebyshev polynomial of the
first kind (i.e., 7T, (w)=cos (n cos ! w)), the time
delay in closed form!' is

n—1 ("3,,,’@) S,i,!},h (2n—2m—1)¢,
€’ sin (2m—+1)w/(2n)

el
rlv :’m:(i ) g
“ 14272 (w)

In the above U/, (w) is the Chebyshev polynomial
of the second kind—i.e., U, (w)=sin (n-41)¢/sin ¢,
where w=cos ¢—and ¢, is the imaginary part of
¢ given by ¢,=1/n sinh™" 1/e. It should now not
be difficult to go further; perhaps the time delay
for the inverse Chebyshev may be found in closed
form, and even that of the elliptic-function filter.
One of the other problems where the insights of
Takahasi should be helpful is the determination of
formulas for the element values of an inverse
Chebyshev transfer function—that 1s, the function
obtained by a simple transformation of a Chebyshev-
polynomial function which yields a low-pass filter
with a maximally flat pass band and an equal-ripple
stop band. Again it should be possible to determine
the effect of the transformation on the formulas for
the element wvalues of the Chebyshev transfer
function. Of course, the inverse Chebyshev has
finite transmission zeros so that each arm of the
ladder network no longer consists of a single induct-
ance or capacitance, but the finite zeros are known
in closed form so that it should be a simple matter to
add proper resonating elements to an element given
by a formula. The difficulty that is introduced by
the steps of the continued-fraction expansion may
now be removed by the properties derived by

17 Both of these formulas for the time delay were sent to the writer in a private
letter from H. J. Orchard.

Takahasi. One should perhaps start with the
simplest ladder network, that is a ladder with a
resistance at only one end.

The problem of greatest moment with regard to the
derivation of formulas for the element values is the
ase of the elliptic-function filter—that is, the filter
with an optimum cutoff characteristic and equal
ripples in both the pass and stop bands. This
problem is exceedingly difficult,”® but well repays
long study. Discovery of the formulas could well
bring about a revolution in the applications of
modern filter theory. It is suggested that some of
the relationships presented by Helman [1955] may
be useful here since they relate the elliptic-function
filter to the Chebyshev filter (for which formulas are
known) without the introduction of elliptic functions.

Most of the above could be looked upon as an
attempt to achieve a general understanding of the
ladder network, one aspect of which is to answer the
question whether formulas for the element values can
be found when the reciprocal transfer function is a
polynomial many of whose properties are known
analytically. For example, can such formulas be
found for the transfer function with a maximally flat
time delay, that is, the function yielded by use of the
Bessel polynomials? The continued-fraction expan-
sion about the origin of the ratio of the even and odd
parts of the polynomial representing the reciprocal
transfer funection is simple, the rth coefficient of
1/s being given by 2r—1; perhaps a related fune-
tional form also exists for the coefficient of s in the
expansion about infinity. The transfer function
corresponding to the so-called synchronously tuned
ampliiier, treated by Indjoudjian [1954], should be
investigated for any insights it may offer. Indjoud-
jlan derived and proved formulas for the singly
loaded case; the doubly loaded case is thus still
unsolved.

Finally, formulas for the element values of the
network with a distribution of zeros of the reflection
coeflicient other than all in one half-plane are known
in only one case [Weinberg, 1957¢]; some effort will
probably be expended in determining the formulas
tor other zero distributions.

Perhaps future research in this area will demon-
strate that each type of function must be investi-
gated individually, that fortuitous circumstances
permitted the determination of the known formulas.
At any rate, it would be desirable to establish some
conclusion; such investigations will surely yield
insights valuable for further research in network
theory.

It appears that research on network functions
expressed as functions of fwo complex variables may
be accelerated in the next few years. Such func-
tions arise in many different investigations. An
analysis of the positive real functions of two var-
iables that arise in potentiometer circuits has already
been mentioned [Levenstein, 1958]. Reference to
Takahasi’s work will show that he makes elegant use
of the properties of symmetrical polynomials in two

15 One should be optimistic, however. In a private communication H. J.

Orchard writes that he believes he has found the formula for the first reactance of
the elliptic-function filter.
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variables. Furthermore, the functions describing
networks containing resistances, inductances, capaci-
tances, and transmission lines of commensurable
length are functions of two complex variables after a
substitution has been made to remove the exponen-
tial terms. Such functions also arise in control
theory when systems containing a transportation lag
(i.e., a pure time delay) are treated.” It has also
been suggested * that the realization of networks
containing inductors with unequal dissipation factors
might be attacked by the use of rational functions of
two variables.

The positive function introduced by Baum in his
theory of narrow-band filters, as contrasted with the
positive real function, will get further study and
application in network theory. Already Belevitch
[1959a] has used it to obtain what he feels to be ¢
more natural derivation of the Brune eycle.

Finally, the analysis and synthesis of nonlinear
networks will come in for increasing attention. A
start on this problem is represented by the treatment
of the piecewise linear case obtained by using net-
works of diodes and resistances; some work in this
area is that by Stern [1956] and Dennis [1959].

4. Realizability Conditions and Positive Real
Matrices

In the section on graph theory we discussed the
still unsolved problem of characterizing the second-
order impedance or admittance matrix of a grounded
RC quadripole. Some necessary conditions have
been derived using function theory rather than
oraph theory. It has been shown by Slepian and
Weinberg [1958b] that the order relationships that
hold for the numerator coeflicients of the z, before
cancellation of possible common factors—mamely,
that the coefficients of z,, must be positive and not
greater than the corresponding coefficients of z;; and
zo—must hold even after cancellation for the 2, or
the 7, in the case of a network with less than six
nodes; in other words, for such a network it is
impossible for both sets to violate the conditions.
These results have been extended in a doctorate
thesis by Olivares [1959]. Some additional results
have been obtained in other countries [Bryant, 1959;
Adams, 1958], but the general problem still remains
unsolved.

For the case when only a transfer function of the
RC three-terminal network is specified, some addi-
tional work has been done. Kuh [1958] has given
an alternative synthesis procedure, and Kuh and
Paige [1959] have determined the maximum possible
multiplier for the voltage ratio of an RC ladder
network.

Some recent work has been done on characterizing
networks containing negative elements in addition
to positive resistances, inductances, and capacitances.
A general theory for the synthesis of networks con-

19Tt should perhaps be pointed out that stability problems in this case can be
treated precisely by Pontryagin’s [1955] theorem. It appears that this is not
known to workers in feedback control theory since a search of many of the leading
books in this field reveals that complicated approximate techniques are used for

determining stability.
20 This suggestion was made to the writer by Prof. N. DeClaris.
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taining negative elements becomes more urgently
needed with the widespread use of the negative-
impedance converter and especially with the dis-
covery of the tunnel diode. A basic attempt at the
formulation of realizability conditions for such
networks is given in Bello’s doctorate thesis [Bello,
1959]. Some additional papers are scheduled for
presentation at the Polytechnic Institute of Brooklyn
Symposium  on  Active Networks and Feedback
Systems to be held in April 1960. Further dis-
cussion of the synthesis aspect of this problem is
given in the section on Active Systems.

The problem of characterizing the matrices of
passive n ports has received much attention. The
paper of Youla, Castriota, and Carlin [1959] uses
the scattering matrix and attempts to derive a
rigorous theory of linear, passive, time-invariant
networks on an axiomatic basis. Their discussion
is heavily mathematical, being replete with the
concepts of Hilbert space. The papers of Weinberg
and Slepian [1958; 1960b] use the impedance and
admittance characterizations and thus discuss the
positive real matrix. They give new realizability
conditions on different types of networks; in addi-
tion, they attempt to establish simple tests for
checking the realizability of specified matrices whose
elements are rational functions. One of the prop-
erties of their tests is the elimination of the usually
required step of solving for the roots of polynomials.
Some other work on the positive real function was
done by Seshu and Balabanian [1957]; they consider
transformations of a positive real rational function
that keep the positive real property invariant.

4.1. Future Research

Enough has been said in the graph-theory section
on the unsolved problems of finding necessary and
sufficient conditions for the realizability of trans-
formerless networks, where these conditions include
a synthesis procedure. We have only to add here
what should be obvious, namely, that the techniques
of function theory can be used to supplement those
of graph theory for answering these knotty problems,
and we mention one problem whose solution may
give significant insight. Then we discuss positive
real functions.

The problem on the RC grounded quadripole is
the proving or disproving of a conjecture made by
Darlington [1955].  He has stated his belief that the
series-parallel network constitutes a canonical sub-
class for the general three-terminal RC network—
that is, every second-order matrix realizable by an
RC grounded quadripole may be realized in series-
parallel form. Darlington has proposed the realiza-
tion of the following impedance matrix to test his
conjecture:

§2—s+1

i 24651

T
2s(s+1) s2—g+1

§2}6s-+41

Though this matrix satisfies all the known necessary
conditions on the impedance matrix of an RC
grounded network, no realization as a series-parallel



structure is possible and no other type of grounded
quadripole has yet been found [Olivares, 1959].
Olivares has stated his belief that the matrix is
unrealizable as a three-terminal network; however
the matrix is readily realizable as a symmetrical
lattice.

[t is inevitable that much research effort will be
devoted in the future to the positive real funection
and the positive real matrix. The definition that is
usually given [Weinberg and Slepian, 1960b] is satis-
factory provided we are dealing with matrices whose
elements are rational functions. However, the
concept of a positive real function is important enough
to be defined in general; such functions arise when-
ever passive systems are considered. For example,
the matrices treated by Wigner and von Neumann
[1954] are positive real matrices except for a trivial
rotation of the axes of the complex plane. The
authors show the necessary and sufficient conditions
on their matrices, but these are given in a non-
constructive form; in other words, no simple way of
testing these matrices is given. The question arises
whether tests can be devised for these matrices as
was previously done for matrices of lumped-param-
eter electrical networks [Weinberg and Slepian, 1958;
1960b).

A general definition of a positive real function
(PRE) is even needed # in electrical theory, for use
with distributed systems or with the limits of finite
lumped systems as the number of elements increases
without limit.  Under such circumstances for
example, the simple function /s should obviously be
PRF; here we see that the function is real only for s

real and nonnegative. Furthermore, with many
transcendental functions, the definition of the

function differs for s real and positive and of zero
angle from s real and positive and of angle 27.
Accordingly, Professor Foster proposes that the
fundamental definition of a positive real function be
expressed in terms of the argument of the complex
variable rather than in terms of a half-plane. The
proposed definition of a PRE F(z) is as follows:

(1)  F(z) is an analytic function of z for
—m/2<arg 2< /2

(i1) F'(z) is real tor arg z=—0

(1i1) Re[F(2)] >0 for
—m2<arg z<m/2

(iv) F(z) to be defined by analytic continuation
when possible beyond the sector in which
it is defined by (1)—(iii).

Remark 1. 'The restriction in (1) may possibly be
too strong, but at the present moment, the restriction
to analyticity seems to be the only feasible assump-
tion to make. Further study may be needed on
this point.

Remark 2. 1f the restriction i (i) were made
stronger, that is, Re[F(z)] >0, the only effect would
be to exclude the special case of #(2) being identically

21 For the remaining discussion on positive real functions the writer is indebted
to Professor R. M. Foster, who communicated these ideas in a private letter.

He writes that his ideas are tentative, but the whole note is so suggestive for
future research that it is used (with permission) in its entirety.
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zero.  From a certain point of view, this might be
an advantage, since then, in quite a number of
theorems, this particular case would not have to be
excluded by a special statement. On the other hand,
this would exclude the simple case of a short circuit
(if we were talking of impedances). On the other
hand, in normal mathematical procedure, we would
have automatically excluded the case corresponding
to /(z) identically infinite. This particular impasse
might perhaps be completely avoided if we defined
an entirely new sort of function W(z) corresponding
to

W(z) _@)=1

TF()+1
This corresponds to what is accomplished by using
the scattering matrix as opposed to either the short-
circuit admittance matrix or open-circuit impedance
matrix. More study with respect to this particular
point also seems desirable.

Remark 3. Note that nothing is postulated
explicitly concerning the behavior of the function on
the imaginary axis. For a study of this behavior
we depend entirely on analytic continuation from
the sector —7/2< arg z<x/2. Also note that we
do not include the suggestion of Richards that essen-
tial singularities on the imaginary axis be specifically
excluded.

Remark /. An example of a PRF:

=2

where —1<r<1. Interestingly enough, the physi-
ologists have investigated the electrical properties of
many different organic materials where the impe-
dance over a very wide frequency range is of the
form F;(z) with a constant value of » characterizing
ach particular kind of material, the actual numerical
values somewhere in the neighborhood of —0.7 for
the most part.

Remark 5. An example of a PRE with an essential
singularity at the origin:

Fa(2)=1—exp(—1/2).

That this function is PREF may readily be seen by
noting that

. . —z e Y
R( [[g(T-F?!/)]*l exp <_, +)/‘)> SO8 .l'z—*‘]/:

Hence the positive character when z is positive.

Remark 6. Another example of PRF with an
essential singularity at the origin which is not
isolated, being a cluster point of poles:

1 1 1 1

Fo(s)——— [ . el
3(2) l+2‘+2(1+2:)+4(1+4:‘)+8(1+H;‘)+
Here each component in the infinite series is itself a
PRF, and the series is seen to be absolutely and



uniformly convergent in the sector —m/2< arg
2< /2 since in that sector

1 1
N(+N) N
Remark 7. An example of a PRF with all poles

and zeros on the imaginary axis (i.e., i PRF to use
Richards’ notation [1947]:

Fi(z)=tanh z.

That this function is PRF may readily be seen by
noting that
e
> [Py (x4
Re [Fa(z+ay)]= (e cos 2y+ 1)+ (e¥ sin 2y)?

which is positive when x is positive.

Remark 8. An example of a PRF with a natural
barrier on the imaginary axis:

F;(z) =tanh .2+rts}—n—hf?‘?—}—

tanh 4z  tanh 8z
5 +

Here each component in the infinite series is itself a
PRF. That the series is absolutely convergent and
represents an analytic function in the sector — m/2<C
arg z< /2 is seen by the following consideration :

—2¢* cos 2y+1

4’+ 2¢¥ cos 2 +1

41_+_2p21_5’_1
— -1.1: 2(/”_’_1

| tanh (z+1y)|*=

and now assume that z is in the domain

0<r<uw
where 7 is some fixed positive number. Then
tanh N(z+y) (lnh Nz (‘tnh ]\r<@lj r
N N N N

l
Thus the function is well defined.
To show the existence of a barrier,
value of y of the form

:7r(2m +1)

on+1

consider any

where m 1s any integer, positive, negative, or zero,
and 7 is a positive integer. And then consider the
term in F;(z) which is

ta 1__111 _Z\ 2
N

where N=2" and for this particular value of 7.
ctnh Nz

The real part of this term is equal to — and

becomes positively infinite as x approaches zero
keeping ¥ at this same fixed value.

It is believed that these thoughts of Professor
Foster on positive real functions will stimulate
future research on this important problem.

5. Systems With Time-Varying and Non-
linear Reactances **

During the past three years networks containing
nonlinear rea(‘tnn((‘s have been used as amplifiers
these amplifiers have been called parametric ampli-

Siers.  The concept of sustained oscillations in
nonlinear systems is an old one, Lord Rayleigh

having described in 1877 the stability conditions
for a system excited at twice the frequency of the
unstable vibrations [Valdes, 1958]. Similar be-
havior was studied in connection with -electro-
mechanical systems. In addition, nonlinear reactive
modulators were used in radiotelephony before
1914. It wasn’t until 1957, however, that the
present-day flurry of activity on parametric ampli-
tiers started. At that time Suhl [1957] suggested
using the anomalous dispersion effect in ferrites
to make a variable-inductance parametric amplifier.
In the succeeding three yvears much literature and
many devices have appeared under the title of
parametric amplifier.  Most of the theoretical
works during this period, with a few notable excep-
tions, are reviews, rediscoveries, and adaptations of
theories already known. The device technology,
however, started from zero and made startling
advances. We do not discuss devices here since
this will be reported on by Commission VII.

The theoretical background for parametric ampli-
fiers can be divided into two fairly distinet categories.
The first is the energy-conversion properties of
nonlinear reactances, and the second 1s the circuit
theory of linear networks with periodic time-variant
parameters.

The fundamental energy-conversion property of
nonlinear reactances is characterized by a set of
energy relations known as the Manley-Rowe equa-
tions [1956].%

Manley and Rowe showed that when a nonlinear
capacitance imbedded in a linear fixed-parameter
network is excited by sources at two frequencies
wo and wi, the power flow P, , into the capacitance at
the wvarious combination fu*quonmos mwy+nw, 18
characterized by the equations

2 P

>t 3% Dime g

m=1 n=—ow Mw)+Nw,

© ©

P
NPrn

m=—o n=1 771w0+ nw,

22 The writer thanks Dr. B. J. Leon for his help in the preparation of this
section.

23 The so-called Manley-Rowe equations go back further than this paper.
They were contained in a paper by J. M. Manley, ‘“Some General Properties
of Magnetic Amplifiers,”” Proc. IRE, 39, 259 (1951); this paper was based on un-
published work done by Manley much earlier, at least going back to the late
1930’s.
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Many subsequent papers have appeared deriving
the Manley-Rowe equations in  various ways.
Manley and Rowe used a method of Fourier analysis.
Penfield [1959] used an energy-function approach.
From this he was able to extend the equations to
reactive n ports with £ noncommensurable exciting
frequencies. Haus [1958] showed that the \Ianh\\-
Rowe equations apply to the power « carried by an
electromagnetic field in a nonlinear lossless medium.

To see how the Manley-Rowe equations are applied
to a parametric amplifier problem, let us consider the
circuit of figure 2. For this circuit the powers
P, ., are zero ) for (m,n) #= (1,0), (0,1), (1, 1) because
the capacitance faces an open circuit at these fre-
quencies. Thus the Manley-Rowe equations become

r 1.0 P, -1
Wo W
P EE _+_1)ﬂ,l:r)

w«)'—wl W)

+ =0

Since there is no source at frequency w,—
must be negative (flowing out of the capacitance)
if at least one of the ”’s is nonzero. If wy<Zw,
Py, 1s also negative and energy is converted from the
frequency w, to both @, and wy—w,. With this con-
dition the “signal” at frequency o, is “amplified.”

)
Wy, It 1y—1

w,

JANTN

‘”°‘“’j

O

WHERE :
;g IS A NONLINEAR CAPACITANCE
00 FOR W# wj
IS A FILTER WHOSE IMPEDENCE IS |Z; WITH
Re[Z;]>O
g FOR W=wWj

wj 1S A STEADY - STATE

— SINUSOIDAL VOLTAGE AT FREQUENCY w;
Frcure 2. [Idealized parametric amplifier.

In general the Manley-Rowe equations give an
indication of feasibility for a particular amplifier with
sharply tuned filters, and, in addition, they give
quantitative information on the conversion -effi-
ciency. They do not give any information on the
possible gain and bandwidth for a particular circuit
model.

In order to get quantitative information about the
performance of a parameteric amplifier one must
analyze a complete ecircuit model. No general
theory exists for analyzing nonlinear circuits “of the
type used in parametric amplifiers. However, if the
excitation at one frequency, known as the pump, is
much larger than the other excitations called the

signal, a linear model characterize this small-signal
performance. The general class of circuit models
which characterize the small-signal performance of
parametric amplifiers are linear circuits with a few
periodic time-variant parameters imbedded in a
network of time-invariant parameters. The most

. complete proof of this statement is given by Duinker

[1958].  We shall refer to networks of this type as
linear parametric networks (I.PN).

The case of linear parametric networks with
limped elements (LLLPN) has been studied in great
detail. The time-domain equations that character-
ize these networks are linear differential equations
with periodic coefficients. Homogeneous equations
of this type have been discussed quite extensively
in the mathematical literature (Starzinskii, 1955;
McLachlan, 1947]. The techniques used on these
equations are so involved that they cannot con-
veniently be used to obtain the general transient and
steady-state solution to |nho1no(v(n(\ous equations.
It is the latter type of equation that is of interest for
the design of an amplifier.  Bolle [1955] pointed out
that when the excitation to an LLPN is a stes ady-
state sinusoid, one can write down the frequencies of
all the resulting currents and voltages. He dis-
cussed the case of one variable element and showed
that if the element were deseribed by a finite number
of sinusoids and if the network were such that all but
a finite number of the voltage and current terms
were zero, then the amplitudes of the nonzero voltages
and currents could be computed. Duinker [1958]
extended Bolle’s method to include more variable
elements, but he did not eliminate the two qualifving
conditions. Virtuallyall of the recent paperson LLPN
use Bolle’s method [Rowe, 1958; Heffner and Wade,
1958; Seidel and Hermann, 195 ‘)]

For the case of an LLPN with a single variable
element described by a finite number of sinusoids,
Desoer [1959] presented a method of steady-state
analysis.  His method, which is exact for these
circuits, consists of an algorithm l'()l' computing the
amplitudes of the voltages and currents in the same
manner as Bolle, but Desoer proved, in addition,
that the neglected terms do not have to be zero.
Desoer gave a bound for the error introduced by neg-
lecting the higher-frequency terms, and he showed
that this bound tends to zero as we increase the
number of terms used.

A more general method of analysis has been pre-
sented by Leon [1959; 1960 (in press)]. He showed
that the frequency-domain equations that character-
ize both the transient and steady-state behavior of
LLPN’s are linear difference equations with rational-
function coeflicients. The difference-equation ap-
proach yields exact computational techniques for
analyzing specific circuits. It also gives formal
solutions that can be discussed in general terms.
Although the two papers of Leon have answered a
lot of questions about the analysis of LI.PN’s, there
are many more to be solved before a synthesis proce-
dure for these networks can be formulated. The
second paper states many of these problems in detail
[Leon, in press].
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For distributed LPN’s Tien and Suhl [1958] showed
that the approximations of Bolle’s method lead to a
pair of coupled equations similar to the equations
for traveling-wave tubes. This has led to a number
of devices of both the forward and backward travel-
ing-wave type. For iterative LLPN’s consisting
of a cascade of single variable-element circuits Currie
and Weglein ** of the Hughes Aireralt Company
have shown that Bolle’s method also leads to a pair
of coupled equations similar to traveling-wave tube
equations. A number of other analyses of distrib-
uted LPN’s has appeared [Roe and Boyd, 1959;
Bell and Wade, 1959; Kurowawa and Hamasaki,
1959; Pierce, 1959; and Shafer, 1959].

The theory of LPN’s is far from complete and
many interesting problems exist. A bigger problem
is that of obtaining a quantitative LPN approxima-
tion to a pumped nonlinear circuit. To find the
model, one must analyze the nonlinear circuit with
a single-frequency (pump) excitation. All solutions
to date have been very approximate and apply only
to very special cases.

6. Active Systems

It is well known that a passive finite lumped-
parameter network can achieve all the characteristics
of any stable active finite lumped-parameter network
except possibly for the gain; in other words, the
transfer function of the active network cannot be
more complicated than a rational function. Thus
figure 3 represents a possible realization of any active
transfer function, where the purpose of the amplifier
1s merely to supply gain.

PASSIVE
NETWORK

AMPLIFIER

Possible form for realization of any active
transfer function

Ficure 3.

It 1s useful to remember this fact; 1t saves our
chasing rainbows for the proverbial pot of gold.
We can add feedback loops within feedback loops al-
most ad infinitum (and often ad nauseam) ; alas, we still
cannot get more than a quotient of two polynomials
as the transfer function. Recognition of this fact
makes us determine precisely why we are using
feedback in a configuration—e.g., in the adaptive
systems to be discussed below; surely not for achiev-
ing a desired transfer function that has, for example,
a fast response. An open-loop configuration would
do as well. _

A similar simple characterization applies to an
active stable driving-point function. It can always
be realized by a passive driving-point funetion plus
a negative resistance, either in series or in parallel.
This is schematically illustrated in figure 4. Though

2 A paper on these results is being prepared.
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Frcure 4. Representation of an active driving-point function.
this is not suggested as a practical means for realizing
such a function, it is a feasible one.

We will not discuss systems such as those shown
in figure 3, where the active element furnishes only
gain (and perhaps isolation when a number of such
networks are cascaded as, for example, in a flat
staggered n-tuple amplifier). We will discuss two
classes of active networks. In the first class the ac-
tive element is used in a feedback configuration to
achieve some desired result that cannot be achieved
by a passive system upon which some restriction has
been placed.  Such a restriction may be the require-
ment of using no inductances in a network:; here feed-
back is used as a tool in the synthesis of an RC net-
work to achieve RLC characteristics. Another
restriction can be the specification of a fixed network
(called the plant) whose parameters vary in some
manner; this network is required to yield a specified
transfer function that is insensitive to the parameter
variations of the fixed svstem. This sensitivity
requirement necessitates the use of feedback: we
shall discuss this in the context of the research on
adaptive systems.

The second class of systems that we discuss in-
volves negative elements that have not been achieved
by a feedback circuit; more specifically, we consider
networks containing tunnel diodes.

6.1. Active RC Synthesis

The use of inductances at low frequencies intro-
duces many difficulties. Thus to achieve RLC
characteristics—e.g., complex poles close to the
imaginary axis—attempts have been made to use
only resistances and capacitances with an active
element to achieve a desired pole-zero pattern. The
first active RC synthesis in the literature is due ap-
parently to Fritzinger [1938] and Scott [1938]. The
principle of their method is shown by the signal-flow
diagram in figure 5; this approach is now often called
the classical method or the feedback method in dis-
tinguishing it from the approach that uses the

A

¥B

Signal-flow diagram of the classical method of
active RC network design.

Ficure 5.



/»u/ufurzmpw/an(( converter (N1C). The amplifier
gain A 1s assumed to be a constant independent of
frequency and g represents the transfer function of
the RC network in th(' feedback path. The poles
of K are the zeros of 14+ Ag; we can thus get com-
plex poles that cannot be ac hi(‘\'ul with the RC
network alone.  The assumption of idealized prop-
erties should be noted: the active element is ideal
with infinite input impedance, zero output impedance
and zero reverse transmission. This field of active

synthesis remained dormant for a long time—for
2ood reasons. The passive elements, namely, the

])()blll\(‘ resistance, the positive inductance, and the
positive capacitance, are rugged, long-lived and can
be designed to be quite stable with respect to ambient
conditions; networks containing tubes, on the con-
trary, are less rugged, bulkier than passive networks,
and have characteristics that may deteriorate for
any of a number of re: asons, among them being in-
sufficient eathode emission, the malmn of an active
parameter, or a change in the power-supply voltage.
The concept of a ll(‘(”lll\(‘ vlolnvnl or a negative
driving-point function is, as we've mentioned above,
useful in the synthesis of active circuits. It was
used by Merrill to design an NIC using vacuum
tubes [1951]. This, however, possessed the disad-
vantages of any other vacuum-tube circuit.

The advent of the junction transistor changed this
situation. It made possible a small, luggu(l long-
lived active package that can be used in an NIC to
give the (ll.u‘l(lmlstl(s of a negative driving-point
function over an operating range of lwaun(ws.
J. G. Linvill was the first to exploit the transistor in
the design of an NIC [Linvill, 1953, 1954]. This
brought the NIC into prominence as a tool for active
network synthesis.

Linvill achieved a transfer function whose poles
were not restricted to the negative real axis by the
use of RC networks and an NIC. The denominator
polynomial with unrestricted zeros was decomposed
mto the difference of two polynomials whose roots
are confined to the negative real axis; the subtraction
is achieved by the N.C. The zeros of the transfer
function were achieved by passive networks.

Kinariwala [1959] also used the NIC to achieve
RLC characteristics with RC networks. He showed
how to realize any driving-point impedance by
means of resistances, capacitances, and only one NIC'.
In his (Onhgumlmn the NIC could achive the sub-
traction required in both the numerator and the
denominator. Horowitz [1956] pursued a different
course in applying the NIC: he extended the classical
work of Brune, Darlington, and Dasher—i.e., synthe-
sis by means of a cascade connection of canonical
sections—to active RC synthesis. He didn’t, how-
ever, solve the general problem, since he realizes
onlv a positive real RC driving-point impedance in
order to achieve an associated transfer impedance
with unrestricted zeros; the network configuration
is that of active RC ladders. The general problem
of realizing a positive real RLC (lrlvlno -point func-
tion, or even going further, a driving- pomt function
that is not poslll\c real, by means of a cascade of
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canonical RC sections is still unsolved. 1In d(l(“(i()ll
Horowitz’s method does not show how to realize
large gain; achieving a large constant multiplier 's
often an important consideration.

Horowitz [1957, 1960 (in press)] also pursued
research on the classical method. Contrary to the
original attacks on this problem, where as we pointed
out ideal active elements were assumed, Horowitz
took into account the active-element parasitics and
found the limitations due to them.

6.2. Adaptive Systems

The past three years have seen a great deal of
activity in pl(mt— or process- .ulapln‘v systems.
Much of the motivation appears to be due to the
large and rapidly changing parameters of modern
supersonic aireraft and the resulting problems im-
posed on the autopilot.

Nearly all workers in this field have divided up
the problem into three phases:

(1) Identification of plant or process parameters

(2) Computation of required corrective action

(3) Modification of system parameters or of sig-
nals to achieve corrective action.

The differences in the research have been in the
methods used in one or more of these three phases.
In phase (1), the following methods have been used:

(a) correlation of noise input with plant output
to obtain the plant impulse response [Anderson
et al., 1958; Goodman and Hillsley, 1958];
sampling of plant input and output, and
solving the difference equations relating input
and output [Kalman, 1958; Mishkin and
Haddad, 1959].

(¢) construction of a model of the plant and using
the differences between the output of the plant
and its model to vary the parameters of the
model so as to minimize the differences [Mar-
golis and Leondes, 1959].

In general the resulting systems are nonlinear and

thereby difficult to (111.11.\*/‘0. Hence most of the
analysis has neglected the nonlinearities.  Even the
linear alhll\\ls comes forth with few basic conclu-
sions on the reasons for the adaptive systems. A
critique  on th('sv adaptive systems [Horowitz,
1960] implies that there has been a singular lack of
continuity between this research and fundamental
feedback theory. The workers give as motivation
for their work the problem of large parameter varia-
tions. Some suggest that ordinary time-invariant
linear feedback is unable to cope with large parameter
-ariations.  Horowitz feels this is not true. Others
suggest that ordinary feedback may be inadequate
because of noise or saturation limits [Staffin and
Truxal, 1958]; Horowitz feels this eriticism may often
be valid. It appears, however, that more analytic
work is needed in this area of research.

(b)

6.3. Tunnel-Diode Networks

Except for the active RC synthesis, the field of
active synthesis is largely unexplored; though some
problems have been solved, there does not exist a



body of synthesis procedures comparable to that
for passive networks. Some new approach is needed ;
it has often been felt by network theorists that the
development of a pure negative resistance might
stimulate such an approach. This is one reason why
the discovery of the tunnel diode is exciting [Som-
mers et al., 1959; Lesk et al., 1959].

Much of the work on linear amplifiers using tunnel
diodes has represented attempts to build a stable
single-stage amplifier [Sommers et al., 1959]. Ac-
cording to most discussions in the literature it appears
that the problems in the design of tunnel-diode am-
plifiers are how to achieve isolation in order to build
two-stage amplifiers and how to make the tunnel
diode wunilateral. The writer questions whether
these are the real problems. Perhaps the available
synthesis procedures for passive networks can be
adapted to the design of active networks.

What synthesis emphasizes is the realization of a
preseribed gain-bandwidth by essentially a single
process; or to be more specific, it attempts the exact
realization of a prescribed function of frequency—its
magnitude, its phase, and its constant multiplier.
This requires a change in philosophy from that being
used in present design; instead of worrying about
1solating the active device, one should attempt to
take advantage of its parameters in achieving a
desired frequency and gain characteristic. Instead
of bemoaning the fact that the tunnel diode is a two-
terminal device, one should take advantage of this:
our passive synthesis procedures employ two-terminal
elements.

One method of adaptation of a synthesis procedure
has been proposed by the writer [Weinberg, in
press]. It applies to the synthesis of tunnel-diode
networks, where the equivalent circuit is taken to
to be a parallel connection of the junction transition
capacitance and a negative resistance.

This technique is an adaptation of predistortion.
The use of the predistortion technique in reverse
may be useful for realizing active networks incor-
porating the new devices. Instead of substituting
s=p—d into the given system function, we sub-
stitute s=p-+d, where d is a positive constant,
s=o¢-+jw is the original complex variable, and p is
a new complex variable.

It is recalled that in ordinary predistortion the
pole of the given system function that is closest to
the j axis hmits the size of d that can be chosen.
In reverse predistortion, however, stability con-
siderations no longer limit the size of d, since poles
of the original function, instead of moving closer to
the j axis, move away from the axis. A number
of other advantages are obtained by this shift of
the critical frequencies to the left. For example,
nonminimum-phase functions can be made minimum
phase by choice of an appropriate value of d; thus
procedures that can be used only for minimum-
phase functions—Ilike Dasher’s procedure for the
realization of resistance-capacitance (RC) networks,
or even simple ladder networks—now become
applicable.

It is not true, however, that, since the shift is to
the left, there are no constraints on the value of d.

As shown in [Weinberg, 1958b], for a normalized
design d is the reciprocal of ); thus the value of the
¢} that can be achieved with the tunnel diode may
be a limiting factor for some applications. For a
negative-resistance device it is desirable that the
absolute value of ¢ be as small as possible; for
example, a small capacitance and a large absolute
value of negative conductance yield a high-quality
tunnel diode.

A most important effect of this procedure of
reverse predistortion is that the final network, which
will require negative resistances for its realization,
vields what could be called a flat gain. This gain
can be computed in a manner similar to that given
in the reference [Weinberg, 1958b] for computing
the flat loss.

A simple example illustrates the technique. In
this example the tunnel diodes, in effect, substitute
for an ideal transformer. The voltage ratio

E, H
K = :: TR
Ey (s+1)(s+3)

is realized by the network in figure 6 with H=15.
The maximum possible H for a passive network
without transformers is 3. Each of the RC parallel
networks within the dashed lines can be replaced by
a tunnel diode.

o—AAMN— —AA— E —0
| J_ I i i _|_ | 30!
1 5 -2 | €0 !
1 | 1 i
T T
o— T T T i ==
Frcure 6. Nelwork realizing the given RC wvoltage ratio.

(Values in ohms and farads.)

Nonuniform predistortion can also be used to
realize RLC networks containing tunnel diodes. In
addition, it appears possible to control the number
of tunnel diodes used in the design.

6.4. Future Research Activity

There are two approaches that have been explored
in active RC synthesis using feedback techniques.
One is the NIC approach exemplified by the work
of Linvill [1953] and Kinariwala [1959]. Here com-
plex poles that are unrealizable by RC networks and
zeros that are inconvenient to realize by such net-
works are achieved by polynomial subtraction. 'The
other approach, as carried forward by Horowitz
[1957, 1960 (in press)], is basically the classical
method; this is achieved by the addition of poly-
nomials. This classification is interesting from the
point of view of sensitivity. Because of the sub-
traction in the first approach the resulting sensitivity
of the filter to the active- and passive-element vari-
ations is very large. The optimum NIC synthesis
from the point of view of sensitivity to both active
and passive elements was found by Horowitz [1959.]
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The second class of procedures leads to considerably
less sensitivity to the active elements but sensitivity
to passive elements is of the same order of magnitude
as in the first class.  While the ultimate in sensitivity
in the first class has been solved,” in the second
class it has been achieved only for specific configura-
tions. Also no study has been made to determine
configurations which lead to minimum sensitivity
to passive-element variations. It should be men-
tioned, moreover, that this has not even been done
in passive network synthesis.

In the matter of extending modern network
synthesis to active RC systems, a significant re-
search problem is to apply the Brune and Darlington
methods to active RC realization of any input im-
pedance by means of a cascade of canonical sections.
This appears to be a very difficult problem.

With regard to active synthesis procedures using
negative elements, more study should be applied to
extending and applying the work of Bello [1959].
In addition, optimum tunnel-diode synthesis pro-
cedures with respect to gain-bandwidth and other
criteria will probably be worked out. An inevitable
problem that will arise when active synthesis
becomes practicable is the sensitivity problem.
Finally, it is desirable that an understanding of the
deceptively simple negative resistance become more
widespread ; for example, one sees again and again in
the literature the incorrect statement that a negative
resistence cannot be both open-circuit stable and
short-circuit stable.

Much basic work remains to be done in the theory
of adaptive systems. Up to now the mass effort has
been cn building systems. This is evident from the
references previously cited and a perusal of the Pro-
ceedings of the Symposium on Self Adaptive Flight
Control Systems, held at Wright Air Development
Center on January 13-14, 1959. To quote Lit.
Gregory of the Flight Control Laboratory, Wright
Air Development Center, which government organi-
zation sponsored and organized the Symposium
[Gregory, 1959]: “I think there is one general state-
ment we can make about most of our systems and
that is, they work; but why do they work? 1In the
futvre we intend to try to establish the basic funda-
mentals of why our systems work and how we can
analyze them better We intend to devote
more of our program to the development of the basic
fundamentals.” To this statement of future plans
one can only say: amen. If at least a small part of
government money used to support work in adaptive
systems is devoted to basic research in this area,
a firm analytical base will be placed under future
designs.

7. Concluding Remarks

To round out our discussion of circuit theory, we
make some brief comments on books, special issues
of journals, and Symposia devoted to areas of circuit
theory.

% . J. Orchard in a private communication to Dr. Horowitz shows an elegant

and simple mwethod of decomposing the polynomial; this method eliminates the
need of the nonlinear-equation approach used by Horowitz [1959].
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Previously the student of network synthesis was
forced to pick up much of his background in the field
by consulting old issues of journals. This unsatis-
factory situation no longer exists. The field of net-
work synthesis has now received a wealth of docu-
mentation in book form. This will undoubtedly
accelerate research in extensions of RLC' synthesis
techniques to active systems, to nonlinear systems,
and to analogous nonelectrical systems. The
driving-point problem is painstakingly treated at
some length by Tuttle’s book [1958], whereas
Balabanian [1958] has covered both driving-point
and transfer function synthesis. The book by Kuh
and Pedersen [1959] attempts to introduce synthesis
at the undergraduate level. These books, coupled
with those of Guillemin [1957] and Storer [1957] give
an adequate picture of many aspects of synthesis.
At least three of the above books not only collect
the significant material that could formerly be found
only in technical journals, but also contain previously
unpublished results or results published only as
theses.  Another significant event was the transla-
tion into English of Cauer’s [1958] important book;
this will serve as a reference and important scientific
document for many years to come. It appears that
there will be a continuing flow of books on the
subject, now that the tap has been opened. At
least two more are planned for the next year, one
by Van Valkenburg [1960] and the other by Weinberg
[in press]. Finally, another book that should be
mentioned in this connection is the one on control
systems edited by Truxal [1958]; this book contains
sections on signal-flow theory, network synthesis,
and sampled-data systems.

Of course, the circuit theorist will still require to
read the journals in order to keep up;in fact, he will
be hard put to it to keep his head above water even
in his own particular area of circuit theory. The
field is so fast-moving that no sooner is a new idea
broached than it receives a ecritical comment, an
extension, or a new application; an example was
previously cited on Baum’s introduction of the
positive function and Beleviteh’s applying it to the
realization of a Brune network. The problem of
bringing circuit theorists up to date in their com-
prehension and application of what is now known
has been a cause of some concern to the Adminis-
trative Committee of the PGCT. A number of
remedies has been proposed, one of them being the
sponsorship of Symposia and another being the
publication of special issues of the Transactions
PGCT.

Though one of the purposes of a special issue has
been tutorial, most of them have in large part con-
tained new material. The special issue on topology
has already been mentioned [IRE Trans., CT-5,
1958b]. Therehave also been such issues on sequential
circuits [IRE Trans., CT-6, 1959], active systems
[IRE Trans., CT-4, 1957], and modern filter design
techniques [IRE Trans., CT-5, 1958a]. Special issues
are planned on the applications of electronic com-
puters to network design and on nonlinear networks.
The latter 1ssue had Dr. B. van der Pol as Guest




Editor until his untimely death; it will be published
as a memorial to the late distinguished scientist.

In the past three vears the Transactions PGCT
has consolidated its position as the foremost network-
theory journal in the country. Under Dr. W. R.
Bennett, who took over the Editor’s job from Dr.
W. H. Huggins, the Transactions has continued to
publish the outstanding papers on the circuit-theory
research that is being done in the U.S. The journal
has also attracted such papers from all over the world.

The International Symposium on Cireuit and
Information Theory held at UCLA in June 1959,
has been previously noted [TRE Trans., CT-6, 1959b].
In addition, an important International Sympo-
sium on the Theory of Switching was held at Harvard
University on April 2-5, 1957 [Vols. XXIX and
XXX, Harvard University Press, 1959]. This
Symposium included three Russian papers, one of
which summarizes the research on relay networks
in the U.S.S.R. and gives an interesting chart com-
paring the numbers of articles on switching theory
published in various countries [Gavrilov, 1959].
There is also a paper by Belevitch that attempts to
bridge the gap between the theory of contact net-
works and RLC network theory by taking account
of equations of current flow in contact networks
[Belevitch, 1959b].

Finally, a special Transactions issue on matched
(or conjugate) filters is being planned by the Profes-
sional Group on Information Theory [IRE Trans.,
PGIT, 1960]. This area appears to be one where
sophisticated network design techniques are urgently
needed. The TW (time-bandwidth) product for a
signal or its matched filter arises in this theory; it
is a most important parameter since in general a
better signal requires a larger T'W product. Not
much has been done at the present time to realize
matched filters with TW products greater than
several hundred. Achieving products an order of
magnitude larger by practical networks represents
one of the unsolved network-theory problems.
Detailed statements of the other problems in this
field are given in the special issue of the Transac-
tions PGIT.
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