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The transmission characteristics of certain structures belonging to the class of corrugated
guides are calculated by means of a new method. It is assumed that the guide wavelength
always is much greater than the corrugation constant (D;+ D, in fig. 1). The periodical
structure of the guide is therefore replaced by a quasi-homogeneous, but anisotropic medium.

The following structures are studied: The ‘“ring-element guide,” which consists of an
axial stack of insulated metallic rings with arbitrary surrounding medium; the “disk guide,”
which is a ring-element guide with infinite radial extension of the rings; the “disk loaded
waveguide,”” and the “corrugated waveguide.”

As a rule guides can propagate modes with a phase velocity v, >c¢ (¢=velocity of light)
and modes with v,<C¢. The capability of existence of the various modes depends on the
losses of the guide. The ring-element guide is well suited for transmission with the Hy-mode
since, except the FHy,-modes, all modes may be highly attenuated (mode filters). As delay
lines (v,< ¢), all guides have band pass characteristics.

1. Introduction

Many periodic structures can be classified under the heading “corrugated guides.” In this
class are, for instance, the “disk guide,” the “disk loaded waveguide,” the “corrugated wave-
guide,” the wire fitted with annular grooves and the “ring-element guide” (figs. 1 to 5). These
types of guide have many potentialities in communications.

The disk guide (fig. 1) which consists of an axial stack of insulated metallic rings of such
radial dimension that no electromagnetic field can exist outside the rings, can be used as a
transmission path for the Hy-mode. Of the /H-mode in the circular waveguide, it is known
that its attenuation decreases with increasing frequency. An attenuation sufficiently low for
communication purposes is obtained, however, only for a wavelength small with respect to the
guide diameter. With an inner diameter of the circular waveguide of 5 em and a wavelength
N=06 mm the attenuation of the Hy-mode is 0.134 N/km. With sufficiently small attenuation
of the Hy-mode many other modes are capable of existence in the waveguide, however. These
undesired modes can be excited by the Hy-mode, if at any place the waveguide deviates from
its round and straight form. Such undesired modes, however, have a velocity other than the
Hy-mode and the next inhomogeneity of the waveguide converts part of them back to the
Hy-mode so that signal distortion comes about. By strong attenuation of the parasitic modes
such reconversion and resultant signal distortion can be avoided. With transmission by means
of the Hy-mode a guide is thus desired along which the /;-mode has the same propagating
properties as in a circular homogeneous waveguide and where the undesired modes are strongly
attenuated. This is possible with the disk guide.

The disk loaded waveguide (fig. 2) is used as a linear accelerator. The corrugated wave-
guide (fig. 3) is used as a flexible waveguide. The wire with annular grooves (fig. 4) presents,
if the groove depth is small with respect to the wavelength, similar properties as the Goubau
guide and, if it is large, it can likewise serve as a delay line. Like the disk guide the ring-element
guide (fig. 5) consists of an axial stack of insulated metallic rings, but it has another arbitrary
outer medium and therefore an electromagnetic field is possible also outside the rings.

The ring-element guide is thus a generalization of the disk guide and the disk loaded
waveguide, and it can likewise be used for transmission with the //;-mode.

1 Contribution from the Central Laboratories of the Siemens & Halske AG, Munich, Germany.

533



i
|
(
(
1
]

AL T
“MEDIUM WITH
DIELECTRIC CONSTANT &;

Frcure 1. Disk guide. Frcure 2. Disk loaded waveguide. Fraure 3. Corrugated waveguide.
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Ficure 5. Ring-element guide.

The paper [1]2 gives a good review of the principal theories known so far concerning cor-
rugated guides. The papers [2] to [5] deserve to be mentioned in particular as individual
articles. Because of the complicated boundary conditions an exact solution of Maxwell’s
equations is very difficult with corrugated guides.

For the case that the corrugation constant is far smaller than the guide wavelength
(Dy+Dy<<<N), the author has used in the papers [6] to [8] a new method of calculating the
transmission characteristics of corrugated guides. It introduces a quasi-homogeneous, but
anisotropic medium and offers the advantage that in each region Maxwell’s equations can be
solved easily and the boundary conditions can be met with ease.

In this paper the mathematical method shall be briefly recapitulated and the results of the
papers [6] to [8] summarized.

2. Mathematical Approach

Let us consider the disk guide of figure 1. For the disk separation D);+ D, the thickness D,
of the dielectric, and the axial thickness D, of the disks there shall hold the inequalities

Dy +Dy< <N, (1)?
D1<<}§)\0\/lfo/€z‘|, (2>
D,>>49. (3)

The medium in the region a<r< «, which is termed medium 1 herein has a periodic structure
with respect to the axial coordinate z and therefore is inhomogeneous. Besides the medium
has a different structure in the direction z than in the directions ¢ and ». The medium is there-
fore anisotropic as well.

2 Figures in brackets indicate the literature references at the end of this paper.
3 A list at the end of this paper explains the symbols,
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If a mode is excited in the region 0<7< e (medium 0), the medium 1 can be considered as
quasi-homogeneous because of the inequality (1). Dielectric constant and permeability of
this quasi-homogeneous, but anisotropic medium 1 are found from the following consideration
(see also [6] and [9]).

If the mode excited in medium 0 has an electric field only in a circular direction and a
magnetic field in the axial and radial directions (H,,—mode), no energy will be capable of
propagating in the direction 7, because of the inequality (2). At the place r=a current will
flow in a circular direction. For this current, i.e., in parallel to the disk, the medium 1 is a
conductor with the conductivity

— D2
=Sy -
or the dielectric constant
€,=K,/Jw. (5)

The permeability in the direction z, i.e., perpendicularly to the disks, is given by the
permeability of the dielectric and that of the metal. If dielectric and metal have the permea-
bility wo of space, there holds accordingly

Mez==Mo. ((i)

If the mode excited in medium 0 has a magnetic field only in a circular direction, and
an electrical field in axial and radial directions (#,,—mode), energy is capable of propagating
between the disks in the direction . Because of inequality (3), the metal is field-free. Per-
pendicularly to the disks the medium 1 therefore has the dielectric constant

_ DD,
€:— €1 *[)1" ) (7)
and in parallel to them the permeability
B /D)
W=k ph (3)

Since medium 1 has the same structure in the directions ¢ and 7, the dielectric constant e,
and the permeability w, hold also for the directions ¢ and r. In the coordinate system 7, ¢, 2,
the dielectric constant and the permeability in medium 1 are thus tensors as follows

(e, 0 0

a={0 ¢ 0 9)
0 0 e
(i, 00

m={0 u, O] (10)
0 0

In medium 0 the solution of Maxwell’s equations is generally known. Because of the
eqs (4) to (10) Maxwell’s equations can be easily solved also in the medium 1, as shown in [6].
In the same way the boundary conditions at the point »=a can now be satisfied with ease.

In calculating the transmission properties of the ring-element guide, the approach
is exactly the same as with the disk guide. The difference is merely the limited extension of the
quasi-homogeneous anisotropic medium which in turn is surrounded by an arbitrary outer
medium. The ring-element guide thus is the more general case. The disk-loaded waveguide
develops from the ring-element guide, if the outer medium is a conductor.

Because of the general importance of the ring-element guide the equation set up in [7] for
calculating the propagation constants of the individual modes has been stated once more in
the eqs (83) and (84) of the annex.
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3. General Considerations

With all forms of guide shown in figs. 1 to 5, unlike waveguides, each mode type is a com-
bination of an Z-mode and an //-mode, even when losses are neglected. An exception is merely
the rotation-symmetrical modes. Accordingly the modes with m 0 are here termed HE-modes
or EH-modes. The first letter identifies always the mode type that prevails. With the
HE-modes the H-type thus prevails and with the ZH-modes the E-type.

Only the rotation-symmetrical //-modes have thus no axial electric field. As mentioned
above, no energy can thus be transported by these modes between the rings in the direction r;
energy will penetrate into medium 1 merely corresponding to the conductivity «,.

With the other modes, however, plenty of energy can penetrate into medium 1 because
of the presence of the axial electric field. If the dielectric between the rings has no losses
and if those of the metal are neglected, modes will propagate between the rings in a radial
direction without attenuation. With the disk guide these modes receive power from the
mode traveling in the region 0 <7< a, as figure 6 shows. In medium 1 the connecting line
of the points of .equal phase is oblique with respect to the axis z. There exists an axial and a
radial phase velocity. This fact corresponds also to the solution of Maxwell’s equations in
the anisotropic medium 1, where a mode propagating in the directions » and z is obtained
although the thickness of the metallic disks has been assumed as very large with respect to that
of the equivalent conducting layer. With the lossless disk guide all modes with an axial
electric field thus are attenuated by radiation.
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It is advisable to classify the mode types in the here considered guide forms by phase
velocities, for there exist as well mode types whose phase velocity », exceeds the velocity of
light ¢, as others whose phase velocity v, is less.  Modes with a phase velocity v, >¢ are termed
herein as a rule “waveguide modes” and may be HFE, ,-modes as well as //H,,,-modes. In the
same way as with circular waveguides, the subsecript m here refers to the circular, and the
subseript n to the radial dependence of the field. Modes with a phase velocity »,< ¢ give
the guide the character of a delay line and can be only KH,-modes. The subscript = is here
dropped as a rule, for in this case, unlike the waveguide modes, there exists for each ,, only one
mode with a particular field configuration. In exceptional cases v, >¢ is possible even with the
EI1,-modes.

An essential point with the modes is their capability of existence; with the modes with
v, >c¢ it differs from that with the modes with »,<Z¢.  With some types of guides it turns out,
for instance, that waveguide modes are capable of existence only if the total loss exceeds a
certain limit which depends on frequency, mode type, material constants, and dimensions of the
respective guide.

As an example for the existence capability of the modes let us now consider the ring-element
guide. Neglecting, for instance, the losses due to the rings and the insulation between rings,
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only such waveguide modes can exist, with the exception of the Hy,-modes, for which

gy Tm (£ ) ‘>’Im (ke (11)

The eigenvalue ko can be taken from the eqs (13), (18), and (22) to (24).
If the inequality (11) holds, the negative sign must always be chosen with the radial propa-
gation constant in the outer medium that is given by

_ 2 M€ | o o [ ME 2.
k2f == \/60 /Jlofo‘*—’y = \/ﬁo (Mofo >+k0 (12)

The energy then propagates into the outer medium.

If the inequality (11) does not hold, the losses of the rings and the insulation must be also
considered, followed by checking whether there results a value &, with positive real and imagi-
nary parts and in addition a value &, with positive imaginary part. If such is not the case, the
respective waveguide mode is not capable of existence. With high losses of the outer medium
the inequality (11) is always met and the losses of the rings can be neglected with all wave-
guide modes except the fy,-modes. Their losses are given by those at the inside of the guide
(see eq (31)).

If the outer medium and the dielectric between the rings are free of losses, hence are air
for instance, the losses of the rings must be taken into account for checking the existence of
the waveguide modes and calculating their losses. The existence of the waveguide modes
then depends in turn upon whether the aforementioned conditions for &, and k, are satisfied.
At any rate the positive sign must now be chosen in eq (12), i.e., k, has a positive real part and
energy flows into the rings from all sides. As a rule, however, the losses of the rings will not
suffice to secure the existence of waveguide modes. An exception is merely the /Hy,-modes
which are capable of existence, even if all losses are neglected. Apart from the /H,,-modes
the loss-free ring-element guide thus has merely modes with »,<¢, 1.e., I, or IFH ,,-modes (im #0)
and therefore is a delay line as a rule.

Like waveguide modes, modes with »,< ¢ are not capable of existence with any outer
medium. Examples in point are the disk loaded waveguide and the corrugated waveguide,
which develop from the ring-element guide, if the outer medium is metal. In these guides
no modes are possible except waveguide modes, if the corrugation depth is small with respect
to wavelength \p. Only with a corrugation depth that is large with respect to the wavelength
o waveguide modes are possible as well as modes with »,< ¢ (see section 6).

If with the ring-element guide the losses of the dielectric between the ring are so large that
the fields cannot penetrate beyond the rings, the regions 0<7< a and b<r< = are decoupled with
respect to each other. For an excitation in the region 0<_r<a the ring-element guide acts now
as a disk guide. With an excitation in the space b<_r< = surface modes are obtained on the
ring-element guide. Either mode can be calculated from the general eqs (83) and (84). With
high losses of the insulation between the rings the ring-element guide thus will act as wave-
guide or surface mode guide, depending on the excitation. Let us now proceed to a study of
the various guide varieties.

4. Ring-Element Guide

4.1. Formulas for the Propagation Constants of the Waveguide Modes

As mentioned above, the ring-clement guide is a generalization of the disk guide, disk
loaded waveguide, and corrugated waveguide. For this reason let us begin by stating the
formulas for the propagation constants of the modes in the ring-element guide. The formulas
for the propagation constants of the modes in the other guide types are then obtained as specific
cases.
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With the ring-element guide no generally valid closed formulas exist for the propagation
constants of the modes, but such formulas can be calculated under certain assumptions and
the essential properties of the guide can so be explained, as was done in detail in [7].

Under the assumptions

kat=x-+6, o<1, (13), (13a)
2x0
(Ba)? <<|: <Eﬁ> ] (14)
/ca 2 (
0 1
BOb\/<,Uo € 50(1 &
- > (15)
Iﬁob\/ £ J m
Ho€o L
m=0,1,2, etc.,

there is according to [7]

5% 2
ay1-(5) ~ \/1 Re (0), (16)
fot _(Bod
A S
e (XY
Fua \/1 (50(1)
Tmn for H- and HE-modes with [0,|< <1

X=X, for K- and EH-modes with [0,<<1 (18)
Omn for F- and EH-modes with |0 /< <1

Im (©), (17)

where

Oy for HE-modes

6=10y for EH-modes (18a)
0 for FH-modes for very large a/\,.

There denote

Z j UngO 1_\/1_F (o'mn) (22)
% we[1-(2]]
Ou= B a Zg ) ! Tmn
0. — ;B Za (20) Or=] 202, (23)
E J Xon ZO’ anZO[I—l_\‘/l_Fa(xmn)]
'éE:j Ton Z()’ (21) 6 UngO[].’{—'\/l F (Umn)] (24>
e [
0
for m=0, n=1,2,3, etc. Tmn
for m=1,2,3, etc.; n=1,2,3, etc.

The quantities F,(,,) and F,(X,,) are calculated from

o ({1

by replacing x by the quantities o, OI Xpn.

There denote further in the eqs (19) to (25)
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BoDi+ D) —
—«(1+ )\/ 27D, (26) Zs__[e Dy (28)
7 Zo_ €; D1+Dz’
145 2= tan pgd
Z 2o 2, o | Zo_sk e [l Y g
0 0 145 Z‘; Zy  €Py Mo €o Bo -

In calculating g and « of the Hy,-modes and IHE,,-modes with |0,/< <1 set X=0,, in all
equations. The same holds in calculating g and a of the K,-modes and KI,,,-modes with
|60, << 1. At very high frequencies, i.e., for large a/\,, the £j,-modes and KFH,,,-modes thus
have the eigenvalue o ,,, or rather ¢, (n1) and accordingly a phase constant approaching
that of the HE,, ,-modes or rather HFE,,, ,-modes (n7#1) (cf. eq (16)), viz, at very high fre-
quencies the electrical field configuration of the /7;,-modes and F£H ,,,-modes is practically the
same as that of the magnetic field with the corresponding #;,_,-modes and HFE,,,_,-modes
(n#1). In calculating 8 and « of the customary /,-modes and EI1,,,-modes with |0,|< <1
there must be set x=x,,, in all equations. Z;/Z, and Z,/Z, give the influence of the wall and
the outer medium onto the waveguide modes, for Z;/Z, 1s the ratio of the radial field charac-
teristic impedance of the wall to that of space with the 77,,-modes (see eq (19)). Since these
modes have only a circular electric field in parallel to the rings, no field penetrates between
the rings, and with Z;/Z;, there appears as diclectric constant merely e,=«,/jw, the outer

medium having no influence. According to eq (27) Z,/Z, is the input impedance of a guide
terminated into the impedance Z,, as referred to the field characteristic impedance Z,. This
guide has here the characteristic impedance Z; and the electrical length e, /e, d, if ¢ is real.

The magnitude Z,/Z, can thus be calculated with the aid of the known Smith chart, where,
as a function of d, the aforedescribed input impedance lies always on a circle, if ¢, is real and
the losses in the metal are neglected. In the same way as the quantity Z,/Z, appears with
the H,,-modes, the quantity Z,/Z, shows up with the /;,-modes, since they have an axial
electric field perpendicularly to the rings and the field therefore can issue between the rings
into the outer region (see eqs (20) and (21)). The £;,-modes can thus be affected very heavily
by the outer medium. From the eqs (16), (17), and (19) to (21) there results thus for the
phase and attenuation constants with the F/,,-modes

Dt
Ba= 6()\/ (Um +am (30) ‘ ag= *15_27' g (31)

and with the £,-modes

se=s=(i )+ ey o (=) (xfm 31m () 42

Bo

\/ (xon - Re (z) 33)

Bott

I
6"\/1“ ) ta () \/m <(03 (34)

*r= 2;) \/ 0(2

Boa
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In eq (31) there denotes

Ton <
= \/220 \/ (m (5a) (36)
Boa
the attenuation constant of the H;,—modes in the homogeneous waveguide. The phase and
attenuation constants 85 and ay refer to the £,,—modes with|6,/<.< 1. The quantities Bz
and ag relate to the Ej,-modes with IEE[<< 1.

With

F.00<1 (37)
the root in the eqs (23) to (25) can be expanded into a series and after insertion of eqs (22) to
(24) into eq (17) there is found

e re(Z{ G G- 12 D

B o ) |
\/1—<an ————Re(7) (39)

Bﬂf
0
- Re(7)

R ey

where amy the attenuation constant with the HL,,m-rﬂ)des, agg that with the KM, ,-modes
(16x/<<<1) and agzy that with the EH,,,-modes with [0,/<<1.

From the eqs (38) to (40) one obtains also the well-known attenuation formulas of the
modes in the homogeneous waveguide, equating Z,—Zy; and D;=0.

An example is to show, when the phase and attenuation constants with horizontal stroke
on top hold, hence when the eqs (34), (35), and (40) are valid. With the homogeneous wave-
guide there is Z,=Zy and Dl—O as mentioned. There results accordingly from the eqs (20),
(21), and (26) |0x/=15.4 and |65 =0.045 for the Ep-mode in the homogencous waveguide,

e., Xpe=5.52 and 0y;=3.83, with a=2.5 em, \¢=0.01 mm, k=57 X 10* mho/cm (copper), i.e.,
thc eqs (34) and (35) are valid. Since Z,/Z, will mostly be greater than Z,/Z,, the eqs (34)
and (35) will hold with the ring-element guide even with a wavelength in excess of A\g=0.01mm.
From the eqs (39) and (40) the following interesting function of the attenuation of the F,-
modes (n#1) and FH , ,-modes (n#1) in the homogeneous waveguide results thus: (Z,=Z,
D,=0). Initially, according to eq (39), starting at a very high value at the cutoff frequency
the attenuation decreases with increasing frequency, subsequently it passes through a minimum
and rises again. Thereafter the attenuation must pass through a maximum, since, according
to eq (40), it decreases again for sufficiently high frequencies. With the ring-element guide the
attenuation/frequency curve is basically the same, but additional variations will come about
because of the quantity Z,/Z, which, according to eq (27), is approximately periodical as a
function of frequency. With respect to the attenuation constants of the Fj,-modes of eq
(31) there can further be stated that the root term in a certain way takes into account the
penetration of the field between the rings and that, because of the inequality (2), the radiation
damping can mostly be neglected with the thicknesses d encountered in practice.

As mentioned above, an essential point is the capability of existence of the modes. In-
serting eq (13) into the inequality (11) yields that with a real ¢; and neglecting of the ring
losses there are capable of existence only the £y,-modes, HFE,,,-modes, and KH,, ,-modes (m#0)
for which

(38)

= m=0, 1,2, ete. (40)

207nn Im (eH)

i (;‘—:)b 9%, Im (0 5) (41)
o 20, Im (0).

(Bo)*

540



4.2. Application of the Ring-Element Guide as a Mode Filter in Transmission With the H;-Mode

The influence of the outer medium onto the waveguide modes is the greater, the stronger
the axial electric field of the waveguide modes, i.e., an outer medium with high losses will
attenuate the £77,,,-modes far more than the HF,,,-modes. With use of the ring-element guide
as a mode filter in transmission with the Hy-mode the attenuation of the KH,,,-modes is
always sufficient. It is, therefore, important so to design the guide that also the HE,,,-modes
are attenuated as strongly as possible. In calculating the loss of the HFE,, ,-modes the losses
of the rings and the dielectric between them can be neglected, if the outer medium has high
losses, i.e., it is possible to set k= o and thus Zz/Z,=0. From the eqs (17) and (22) maximum
attenuation results then for F,(s,,)=1, i.e., if Z,/Z, is real and has a certain value. For a
real e one obtains therefore from the eqs (25), (27), (28), and (29) the following design rules
for maximum attenuation of the //F,,,-modes:

v (1 “/.—(')’ (42)
tan <B(,\/ ) i 75: %, (43)

Z:[,’: Cms —; m,n=1,2,3, etc. (44)
0 Som \/ B,,(L> |
UI’I’I,

The quantities {7 and V" are the real and imaginary parts of Z,/7, and therefore calculated ac-
cording to eq (29) from

O'I/I;I 7 E
\/<Mlé(> Brﬂ)_( +7‘ (4'))

From the eqs (17) and (22) the maximum attenuation results then as

m,n=1,2,3, etc. (46)

m
(aHH)max: ra "I 1<y
0”[71

Equation (46) shows that the maximum attenuation is inversely proportional to the
square of the inner radius of the ring-element guide and inversely proportional to frequency
The higher thus the frequency, the lower the maximum attenuation. Neglecting the term
(m/om,)? the maximum attenuation is proportional to m (m=1,2,3, etc.). It should here be
noted that the material constants of the outer medium do not appear in eq (46). Since with
the eqs (42) to (44) e, was assumed as real and the losses due to the rings were not taken into
account, the inequality (41) must, of course, always be satisfied.

Equation (44) shows that always only for one ,,, i.e., for one mode, the conditions for
maximum attenuation can be satisfied. The condition eq (44) can be interpreted as kind of a
matching condition.

An example may show the application of eqs (42) to (46). Let us assume that a ring-
element guide is to be found with maximum attenuation of the HE,-mode. This mode is
excited with particular ease by the /;-mode in a homogeneous waveguide whenever it deviates
from its straight circular shape and it has a relatively low attenuation.

Given are the following data: Frequency f=50 kMe/s (\y=6 mm); a=2.5 cm, hence
Boa=26.2. With the HE,-mode there is ¢,,=0,=>5.33. From eq (46) there results then the
maximum attenuation of the HFE\,-mode as a;;=0.0158 N/em, i.e., 3,180 times the attenuation
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in the homogeneous circular copper waveguide. It is further assumed that a dielectric with
€/ec=10(1-)) and p=y, is available for constructing the ring-element guide. The attenuation
of the fields in the outer medium is then Im (8, v'e/es) =15 N/em. Besides it is assumed that
D,=D;. Find now the quantities ¢;/e, and d.

With the given values there results from the eqs (42) to (45): U=0.242; V=0.093; R=
0.553; Zp/Zo=0.344; tan (8, ve;/eod) =2.08, i.e.,e;/ec=2.11; d=0.74 mm. Because of D,=D), the
attenuation of the Hy-mode, according to eq (31) in this case exceeds that in the homogeneous
waveguide by the factor v2.

While in the above example the increase in attenuation over the homogeneous waveguide
is very high with the HFE,-mode, this holds no longer for the other HE,,-modes. If, however,
maximum attenuation of a specific mode is no longer demanded, an appropriate dimensioning
of the ring-element guide allows a design that the attenuation values of a number of /7FE,,,-mode
approach more closely their maximums.

Another interesting point is the basic attenuation/frequency curve of a HF,, -mode. For
the dimensions calculated in the example, the figure 7 shows the attenuation of the HK,-mode
as a function of v/e,/e, d/N\ with a fixed ye;/e d, i.e., as a function of frequency. Here, however,
there must be 1);=10,< 0.2 mm, to have inequality (1) satisfied for all frequencies stated in
figure 7. With the maximum attenuation attainable the curve plotted in figure 7 presents a
pointed peak at +'e;/e d/N=0.179 (f=50 kMc/s). The other extremities of the curve are no
such peaks, but ordinary maximums. They are all lower than this peak, since according to
eq (22) Bya and thus the frequency is in the denominator of the attenuation constant. On the
frequency axis the first maximum is away from the peak by 0.25. The subsequent maximums
are spaced 0.5 from each other. Since the losses of the rings were neglected, the attenuation
at the cutoff frequency is here zero.

0.020
N/cm
0015 '
T 0010 :
(i : Ficure 7. Altenuation of the HEp-mode as a function
I of frequency with a ring-element guide with /e
: =10(1-j), p=po, €i/e=2.11, d=0.74 mm, a=2.5 cm,
0005 i \/\ D1=Dg.
I
: \/\
i ~—
0 : 05 10
. a ‘/_EL —
; Aol &
0/ 50 100 200 Gz 300
,=1018 BHz
—

At this point let us also make some statements concerning the capability of existence of
the waveguide modes. If the outer medium and the dielectric between the rings are free of
losses, the quantity Z,/Z, is in the left half-plane of the complex number plane when the ring
losses are neglected, according to eq (27). Only with a consideration of the ring losses and a
very large thickness d the quantity Z,/Z, lies in the right-hand half of the complex number
plane, so that Re (Z,/Z;) >0, and a sufficient condition is so satisfied for the capability of
existence of waveguide modes.
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4.3. Properties of the EH,-Modes
a. General Considerations

The term KH,-modes (m=0, 1, 2, etc.) is understood herein as comprising modes of
L-character whose fields disappear in the region 0=<r=<a in the axis (r=0) or at the point
=a at most (the Bessel functions have then no zeros in 0<r<a). For »>b the fields disappear
only in the infinite. The subseript n therefore can be dropped with these modes. The surface
modes, 1.e., modes most of whose fields are outside the guide, hence in the region 7>b, are counted
as a rule as KM ,-modes. As will be shown below, the surface modes with H-character have
no practical significance because of their high attenuation. As a rule the phase velocity of
the £H,-modes is less than the velocity of light. With the £H,,-modes the ring-element guide
thus is, as a rule, a delay line. The principal characteristics of the IH,,-modes are obvious
already from the special case of the rotation-symmetrical modes (m=0). Let us thus consider
above all these modes. With

-

[pral

\feoc

|esb| F>1, (47)
1Beb=Fub ’\/Mf J

Im (koa) >2 (48)

there results from eq (87)

. H—j tan pud
ko _Za_ {;1 _,/A_, for m=0. (49)

Bo 7[) Zy 1+ Z4 ton I)F(l

Insertion of eq (29) into eq (49) and resolution for tan pud yields
/('() E < > /Cn>2
50 60 Mo€o Bo
Zz € Zoko \/< _ )
70 €0 ZE Bo Mo€o ﬁo

The root in eq (50) is ky/Bo.  If [Tm((ko/Bo)?)|>| Im(ue/(moeo))| the upper sign of eq (50) holds.
If, however, [Im((ko/By)*)[< | Im(ue/(uoeo))| the lower sign holds in eq (50).
With

for m=0. (50)

tan prd=—j

m 3\

kot
<1

e [(2271]

(Bo)* [\ ket J

equation (50) holds approximately also for m==0. With use of eq (50) it should always be
borne in mind, however, that the inequality (47) must be satisfied.
Because of the losses of the guide the eigenvalue ko is complex and there is set accordingly

(51)

=123, ...

ko
8, =£+7n. (52)
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b. Behavior of the E-Mode When the Losses are Neglected (¢,e;,u Real, k= =)

The quantity ky/B, 1s imaginary, i.e.,
ko

Bo =jn (53)

and there holds the upper sign in eq (50). The quantity k¢/8, must also be imaginary, i.e.

' k”)t Mofo (54)

For a real we/(me)#1 the ring-element guide is a delay line with a periodic band pass
character, because of the imaginary k¢/B, and the condition of the inequality (54). Apart
from the H;,-modes no wave guide modes are capable of existence. The limit of the pass band
and stop band of the delay line is found from eq (54) with [(ko/B0)%|=wue/(uoe) —1 and lies at

< \/ (l) =arc tan — \/ =1, (55)
Mo €

For ye— o there is \/% d/N=0.25+70.5; »=0,1,2, etc.
In the special case ue/(ugeo) =1 there is ky,=k, and eq (50) yields

_ 0
@ AE m™ \/61 .
B Zo B\ % Ve, ¢

Also in this case the ring-element guide is a delay line, but without band pass character.

As an example, figure 8 shows the relative eigenvalue n with the Fy-mode as a function of
VeiJeod /N for p=pu,, but different ¢; and e.  Figure 8 is to be thought of as continued periodically
in the direction of increasing +/e;/ed/N,, the period amounting to 0.5. The mode will travel
the slower, the higher the dielectric constant of the outer medium and the closer Z; approaches
Zo, 1.e.,1f Dy/D; is small.  With a high D,/D, e.g., for D,/D,=5, the relative eigenvalue at the
beginning of the pass band is almost independent of d/X\, but increases the more steeply later on.

; (56)
2

07777777 10

I IS, c=g=5¢ [l
0 | 0 : |
. D=0 | e=5¢, l|
7 £-5f | ° e } |
// | D,=5D, ili
1]
7 7 | g D= lSD1 |
NO SOLUTION : D, D, II :
74 - i 74 B 51
Z &0 | / /7]
| : |
5 /‘/
2 25// % 2 No soLUTION 2T
4 | |
"
0 01 02 03 0L 05 0 01 02 03 04 05
& d |/§i _—
l o & N

F1Gure 8. The relative eigenvalue ko/Bo= jn with the Eg—mode in the ring-element guide as a function of Veileod /Ao
for various €, €; and Dy/D;.

The presentation is to be thought of as periodically continued with the period 0.5 in the direction of increasing?+/e;/eod/Ao.
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c. Behavior of the Ei-Mode With a Lossy Outer Medium (ue/(uoey) Complex)

For the special case d=0 there results from eq (50)

~—1

_Ha€o (57)
o

It should here be noted that the inequality (48) must always be satisfied and £, must have a
positive real and imaginary part. With a real e the eq (57) thus yields no solution even if u
complex. From the propagation constant y there results with |[k2[>82 in the case d=0 a
maximum attenuation for tan 6=1e¢/e,, if €/eg=e./e,(1—7 tan o).

In the special case ve;/exd/No=0.25 eq (50) yields

iV () G )+ () (2 @

Unlike eq (57) the eq (58) holds for real we/(ue,) as well.

Setting u=p,(1—7 tan §,) and e=¢,(1—j tan é.), and if the outer medium has but small
losses, there holds tan §,+tan §.<1. In such case the imaginary part of the eigenvalue,
ie., 7 of eq (52) practically agrees with the solution for a real ue. Figure 9 shows under these
assumptions for =y, and tan §,=tan 6 the quantity &/tan § as a function of v/e;/ed/\, with the
Egymode. The dielectric constant ¢; and the real part of e agree with figure 8. The quantity
n can be taken from figure 8. A comparison with this diagram shows that with an increasing
n the quantity £ increases correspondingly. The periodic band pass character has been retained.

If the outer medium is very lossy, the real part of the eigenvalue and accordingly the
quantity ¢ will be larger than in figure 9. As an example the figure 10 shows the relative
eigenvalue k,/B8, with the Ey-mode as a function of d/\, for e;=¢, and e/e;=>5; 5(1—70.3);5(1 —7).
The periodic band pass character remains also in this case, but in the pass bands there exist
as a rule for each d/\, two different eigenvalues which are plotted in the figures 10a and 10b.
Only with a real e there results only one eigenvalue for each d/\,. According to figure 8 it is
imaginary, and therefore it is on the imaginary axis in figure 10b. In figure 10a there is
[ko|<< By and in figure 10b |ko| >B,.

8- \ ] I I
(a) D,=D, i (b)
6 € =¢g,(1-jtan 6) | 6
€~ ,81' // |
|
K L
&[tané / ! £/tan 6
£/& =10 ‘
2 R ‘ 2
»’% x
e 5 I NO SOLUTION
o - -
0 01 02 03 0L 05 0 01 02
gd & d
v su o

FrGure 9. The real part £ of the relative eigenvalue Ko/Bo=£-+jn with the Eop-mode in the ring-element guide as a
Sfunction of Vei/eed/No for various e, €, and Dy/Dy under the assumption tan §<_<_1 (5 loss angle of the dielectric
oulstde the rings).

Because of tan §<<1 n is to be taken from figure 8. The presentation is to be thought of as periodically continued with the period 0.5
in the direction of increasing +/e;/eod\.
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Ficure 10. The relative eigenvalue Kko/By with the - 14 1 D,=51D,
mode in the ring-element guide as a function of d/N 3 g =& |
for e;=ey, Dy=>5D; and various e. | j | ;
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The eigenvalue in figure 10b corresponds to that in figure 8. The pass bands of figures
10a and 10b differ slightly. With e/e,(=5(1—7) for example, the pass band is given in figure
10a by 0<<d/\<0.03 and 0.28<d/\0.5. In figure 10b the pass band is given in this case
by 0.235<d/\0.5. In either case the pass bands recur with the period d/\,=0.5.

The solution in figure 10a is very easily found, since the quantity k% can here be neglected
with respect to B2(ue/(uoe) —1). The relative eigenvalues k,/8, lie therefore on a circle of which
only the part in the first quadrant of the complex number plane (Im (k) >0) gives a physically
reasonable solution.

The solution in figure 10b is more difficult to find (see [7]). With ¢/e,=5(1—7 0.3) the solu-
tion in figure 10b practically agrees with the values 5 and £ resulting from the dashed curves
of the figures 8b and 9b.

Besides the £H,-modes and the Hy,-modes which are always capable of existence, even
waveguide modes can propagate, if the inequality (41) holds (see sec. 4.1 and 4.2).

4.4, Special Case a=0, E;-Mode

For a—0 the ring-element guide changes into the guide discussed in [10] (fig. 11, in [10]
there (has indeed been assumed p=p, and e=¢). With this guide most of the wave energy
travels outside indeed, hence in the region 7>b, and these modes thus are typical surface modes.
The quantity &, and thus the propagation constants of these modes are obtained from equation
(89). There results that with an outer medium consisting of a dielectric (in particular with
e=¢ and u=upy) only the Ky-mode is of practical interest. The H,, HE,,, and IH,-modes
(m#0) have very high attenuation and correspond to the spurious modes on the Sommerfeld
guide. Compare hereto also the statements in [9].

For the Ej-mode one obtains with B,=p/ ue/(uoe) from the eq (89) to (92) for the cal-
culation of k,

Bs Hlm(lhb)_ ;; D,+D, Ji(pzb)

k—2 HyV(ks0) Ve Dy JO(pEb).
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” . ot

b Ficure 11. Ring-element guide with a=0.

Also the ring-element guide with a=0 has practically a periodic band pass character. Since
ks always must have a positive imaginary part, there result from eq (59) with the lossless
guide the stop bands:

X0n<Bo \/:_; b<oow (60)

and pass bands:

€; .
00, Bo o b<Xomyy m=1, 2, 3, etc.
0

For e=¢ and p=p, the eqs (59) and (60) have been stated already in [10].
With

[k2b]
>>1 (61)
[pxb|
one obtains from eq (59)
AJ: 1 ﬁ D, T\ 3
At El}ﬁl')}““ <1)Eb+1> (62)

Without consideration of the losses there are then the stop bands:

n7r—7—r<,60\/ﬁ b<mr—}—I (63)
4 € 4
and the pass bands:

< By 2 b< (n+-Dr—2 n=1, 2, 3, ete.
4 € 4

A comparison between the inequalities (60) and (63) shows that the inequality (63) is
sufficiently accurate for practical purposes.
After inserting eq (62) into eq (12) one obtains with

=" (1—jtans),  (64) Bb=Por [ b, (66)
0 €0

€0

tan 5,< <1, (65) Re (k)| < <|Tm (k)| (67)

for the phase and attenuation constants with e=e¢, and u=py,

B= B()\/1+[ 60 1{1)’1]) tan (Blb+4>:| (68)

Bn
a=pb D, ban.ds +D \/OZI)K
" Dy+-D,
: zcos2 <ﬁ1b+9 \/14{ 6” D”LD cot (Blb—l— >—|

0

(69)




The eq (68) shows that the phase velocity of the E-mode as a rule is less than the velocity
of light. Ineq (69) the minute losses of the metal at the surface of the guide, i.e., for »=b have
been neglected. The attenuation-versus-frequency response is analogous to th(, one shown in
ficure 8 of [9]. Compare hereto also [10].

If

[Tm (psb)|>2 (70)

with e=¢ and u=y, eq (62) can be written as the simple formula

ky_ko_ \/__ D _Zs -
B2 Bo e Di+D, Z,

Equation (71) yields the special case that, under the condition of the inequality (70), the -
mode as a surface mode has a phase velocity higher than the velocity of licht. See hereto also
the examples at the end of section 5.

5. Disk Guide (Ring-Element Guide With d =)

For calculating the propagation constants of the modes in the disk guide (fig. 1) the
formulas for the ring-element guide are used, replacing Z,/Z, by Zz/Z,. With the waveguide
modes the eqs (13) to (40) hold accordingly, i.e., the Hj,-modes have the same attenuation as
with the ring-element guide. With the £y,-modes there is under the assumption

X()n

<< n=12:3etc? (72)

the attenuation
/"> n=1,2,3, etc. (73)
)
Boaf
The phase constant practically equals that in the lossless homogeneous waveguide.
Corresponding to the eqs (48) and (49) there appears under the assumption

tm (2:)> 5 @

ko_Zs,
BO 70

the equation

Because of the inequality (74) the Bessel functions have no zeros in 0<7< @ and the sub-
sceript n is therefore not needed. The Fy,-mode has changed into an Fyi-mode. Note that
eq (75) agrees with eq (71). With

ZE' 1 =
B o 6
2 >>Boa (76)
there is then
i1 ZE) 7)
V= .7 (1) Z()

Some examples are to show the applications of the eqs (73) and (77) for the [jy-mode and
Eymode. There is xo,=xn=2.41. The frequency is always assumed as f=50 kMec/s, hence
A=0.6 cm and the inner radius is ¢=2.5 cm.

For D,=50 D; and ¢;/e,2=3 the inequality (72) is satisfied and there results from eq (73)
the attenuation az=4.54><10"% N/em. This attenuation comes about merely by radiation
into the inhomogeneous medium and is 72.5 times larger than the attenuation of the Ky -mode
in the homogeneous circular copper waveguide.
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For D,=50 D, and ¢;/eg=3(1—7) the eq (72) can be used as well and there results ay=23.52
1073 N/em. Despite the lossy dielectric the attenuation is now lower, since Z, deviates
from Z, more heavily than with ¢;/e,=3 (poorer matching of the radial impedance).

With D,=D, and ¢;/e,=3(1—7) the inequalities (74) and (76) are satisfied and there results
from eq (77) an attenuation az=0.223 N/cm, i.e., 3.55>10% times as much as the attenuation
of the Ey-mode in the homogeneous circular copper waveguide. The phase constant is 1.8
percent less than that in the homogeneous waveguide. Compared to the case D,=50 D, the
propagation constant thus has changed much more strongly relative to that in the homogeneous
waveguide. In particular the attenuation has inereased very heavily (superior matching of
Zg to Zy).

With D,=D, and ¢;/e=2.5(1—7j) there results then an even higher attenuation, i.e.,
ap=0.269 N/cm, since Z; has approached Z; even more. In this case the phase constant is 2.1
percent less than that in the homogeneous waveguide.

With the examples for the £;-mode the fact is remarkable that the phase velocity is not only
greater than the velocity of light, but also greater than the phase velocity of the £j-mode in
the homogeneous waveguide. This is in contrast to the general behavior of the Fy-mode which
is characterized by »,< ¢ (see notes in sec. 4).

6. Disk Loaded Waveguide and the Corrugated Waveguide (Ring-Element
Guide With e=«/jw and u=y). E,-mode and E,mode with ¢ =¢ and =

The ecigenvalues for the modes in the disk-loaded waveguide and corrugated waveguide
are obtained from the eqs (83) and (84) by setting e=«/jw and p=pu,. All formulas derived in
discussing the ring-element guide can thus here be used as well.  To bring out clearly the funda-
mentals of the disk loaded waveguide and the corrugated waveguide, let us here consider
merely the £y, and Ei-modes with e,=¢,, neglecting the losses (k= o).

As a first step there results quite generally that for 8,b<1 no propagating modes exist in
the disk loaded waveguide and corrugated waveguide, but merely statically attenuated fields
of the type of the waveguide fields.

With ga<1 and Bb>1, however, the disk loaded waveguide is a delay line with filter
character and very narrow pass bands. For the Z-mode there result the eigenvalues kg and
the pass bands from

Tl s Do w1
lL()G/ Jl(k('a/)——<ﬂ(](l> ])1_}_])2 b} éu k—-l,vg,(), (,t'c oo GO (78)

Bob—7—k 5

The pass bands are given accordingly by
BT b <k T+ T4 (B0) 2 T k=1,3,5, ete (79)
2 47" 7724 D,+D, 4 e '

Particularly interesting is the behavior of the line with B>1. This case shall be con-
sidered alone hereinafter. The eigenvalues ki are now obtained from

k) D, ,
ot 7, (k(ﬂ)—ﬁ(;a, DD, tan Byd. (89)

With d=0, the solutions of eq (80) are the zeros of J; (ko). There result the Z,,-modes for the
homogeneous waveguide.

With d/N=0.25 the solutions of eq (80) are the zeros of J{(k.) and the £, ;,-modes have
the same phase velocity as the Hy,-modes. (The notation £+, derives from the fact that
with d—0 the waveguide mode £, comes about, see also figs. 12 and 13.) Physically,
this can be explained as follows. With d/\=0.25 the input impedance for r=a is infinite for a
mode in the radial direction. This means that no current flows at this point and H,=0 accord-
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ingly. Since, however, with the Z-modes H, follows the same function as E, with the F-
modes, and since with these the field strength £,=0 for 7=a, the same phase constant results
with d/N=0.25 for the F;,+,-modes as for the H,-modes. The figures 12 to 15 show a further
evaluation of eq (80).

The figures 12 and 13 present the eigenvalues ky of the £j,-modes and the £,-mode as a
function of d for a given By, i.e., for a given frequency. The figures 12 and 13 must be thought
of as periodically continued in the direction of increasing d/X\, with the period 0.5, corresponding
to the period of tan B,d. With d=0 one obtains the solutions for the homogencous waveguide.
With increasing d the real kya decreases with the ££,,-modes and the imaginary kg increases with
the Fy-mode, i.e., the mode triwcls the Slower, the higher d.

Ficures 12 and 13. The eigenvalues Kkoa
with the Ey,-modes (n=1,2,3,4,) and with
the Eomode (koa imaginary) in the disk
loaded waveguide as a function of d for Dy=
D, and fized Boa.

The presentation is to be thought of as periodically

3(/mtinued with the period 0.5 in the direction of increasing
Ao.

ND PROPAGATING
WAVES WITH
REAL kya

L IMAGINARY

| REAL

. 0
d/}"[l —_— d/xu —_—
FIGURE 12 FIGURE 13

As an example let us once more consider figure 12.  All values kw >Ba=>5 give no prop-
agating modes, only statically attenuated fields. This is shown in ficure 12 by cross-hatching.

Let us now study more closely the curve marked E;. For d=0 there results k=24,
i.e., the eigenvalue of the Fj-mode in the homogeneous waveguide. With increasing d the
quantity k¢e decreases (the mode travels more slowly) to reach finally zero for d/\,=0.11.
The phase velocity of the mode now equals the velocity of light. The curve marked Ej can
now be thought of as continued by the curve marked £, i.e., the more d increases, the more
the £y-mode changes into the /-mode whose phase velocity is less than the velocity of light.
The guide now is for this mode a delay line, the eigenvalue ke is imaginary and increases
with increasing d. With d/N\=0.25 the quantity kw=je. In the range 0.25<d/\<0.5
no Ky-mode and no Kyr-mode are present. For d/N>0.5 this repeats itself periodically with
the period 0.5.

Let us now study closely the curve marked Ey. With d=0 there results ka=5.52, i.e.,
the eigenvalue for the Fy-mode in the homogeneous waveguide. With %y >B.@ no propagating
mode is possible, however. With increasing d the quantity kg decreases to attain finally the
value 5 for d/\=0.12 so that a propagating mode exists for d/x\,>0.12. For d/N\=0.25 the
quantity ke is=3.83. The Fy-mode now has the same phase velocity as the /,,-mode. With
a further increase of d the quantity £ finally changes for d/\=0.5 into the eigenvalue of the
Ey-mode in the homogeneous waveguide, i.e., ka=2.4. For d/x\,_>0.5 it is the Ey-curve
shifted by d/A\=0.5 in a horizontal direction that continues the curve.
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The curve marked £, is of a similar shape; for d=0 there results from it the eigenvalue
8.65 of the Fy-mode, for d/\;=0.5 the eigenvalues 5.52 of the Ej,-mode, and for d/\,=1 the

eigenvalue 2.4 of the /;-mode in the homogeneous waveguide.
FEy, shifted horizontally by d/N=0.5 thus continues the curve.
subsequently the Ij-curve shifted by d/N=1.

SO on.

Fig. 13 shows the behavior of the guide for g.a=26.2.
and Fy-modes are here capable of existence, in contrast to figure 12.
changes into the Fy-mode already for d/x,=0.025.
line thus comes about already for d >0.15 mm.

by circular furrows due to roughing.

The figures 14 and 15 show the eigenvalues k of the Z,-modes

as a function of the frequency (d/\).

This gives a straight line through the origin.

ratio d/a (see the figs. 14 and 15).

With a waveguide radius a=2.5
Such a depth of d=0.15 mm may result already

For 0.5<d/\<1 the curve
For d/x,>1 there follows

The curve Ey,, ete. runs correspondingly, and
) b

Because of the large By, the Ey
Besides the Ej-mode
5 cm a delay

and of the Kymode

The associated Bya is also shown for each frequency.
The higher the slope of this line, the smaller the
Above this straight line the real eigenvalues kqa are greater
than By so that no propagating modes with real %y are here possible.

The curves do not

hold for any desired small values d/\,, for the condition gy >>1 is then no longer satisfied.
Since By here is a function of d/\,, the figures 14 and 15 are no longer periodical, unlike the
This is most distinet with the values ka=0.
(p=1, 2, 3, etc.).

figures 12 and 13.
these values lie at d/N=p 0.5

Byalkyal

5

NO PROPAGATING
WAVES WITH
REAL ky0

—IMAGINARY
REAL

0
FORBIDDEN AREA
OF LOW By

Frcure 15.  The eigenvalues koa with the Eo,-
modes (n=1,2,3,4) and with the Ey-mode
(koa 7maginary) in the disk loaded wave-
guide as a function of the frequenq; (d/No)
in the range 0.16<d/N=1.5

Here D2=Dy; d=af2; a=2.5 cm,

Frcure 14.

The higher d/X\,, the more

The eigenvalues koa with the
Eop-modes (n=1,2,3,4) and with the Eg-
mode (kea tmaginary) in the disk loaded
waveguide as a function of the frequency
(d/No) in the range 0.03<d/N= 1.5.

Here D;=Dy; d=a/10; a=2.5 cm.
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If we consider the range of validity of the curves in the figures 14 and 15, it is evident
that d/\, can always be so chosen that only one Ej,-mode is capable of existence. For ex-
ample, in figure 14 (d=a/10) only the Ey-mode is capable of existence with d/N=0.08. In
figure 15 (d=a/2) only the Ey-mode is capable of existence for 0.28<Cd/N<0.45.

If d/N, is so chosen that the Ey;—mode is capable of existence, the ranges of validity of the
figures 14 and 15 yield that in addition at least the Fp-mode is capable of propagation. This
holds, for instance in figure 14, for the range 0.095<Cd/\<_0.13 and in figure 15 for 0.58<d\,
<0.64. For larger d/\, the Egz-mode comes to these as well.

The figures 16 to 21 show in the region 0=r=a the field configurations of the modes
capable of existence at gya=5, a=2.5 cm (\¢=w cm), Dy=2D, for a number of d/\,.

Figure 16 shows the well-known field configuration of the /-mode in the homogeneous
waveguide. The guide wavelength N\ exceeds the wavelength X\, in space. The electrical field
is perpendicular to the surface r=a. S

In figure 17 there is d/N=0.11 and A=X,. The electrical field is not perpendicular to the
surface r=a.

The figures 18 and 19 show the field configurations with d/\;=0.2. Two solutions exist
here for kga, i.e., one for the Ey-mode and one for the Fy-mode. With the Fy-mode there is
N=6.35 cm, hence more than N\, (fig. 18) and with the Eyrmode there is A=1.95 em, hence less
than N\, (delay line, fig. 19). Figure 18 does not represent the full field configuration of the
Ep-mode in the homogeneous waveguide; the electrical field is here not perpendicular to the
surface r=a. Figure 19 is similar to figure 17, but the wavelength is smaller.

Figure 20 shows the field configuration with d/A\=0.25. The ecigenvalue ke is again
associated with the Fy-mode and is 3.83. The wavelength is therefore A=4.88 e¢m and thus
greater than N,. Since the eigenvalue here agrees with that of the //,-mode in the homo-
geneous waveguide, the electrical field configuration is here the same as that of the magnetic
field with the Hy-mode.

Figure 21 shows the field configuration with d/\=0.4. The wavelength is A=3.86 cm-

FIGURE I6 FIGURE 17 FIGURE 18 FIGURE 19

z ~r-— — -z — z
MAGNETIC | ,
FIELD LINES |
d“‘{ i g'5g"c”n; = d/kf i 2;?; foa - 0 0hy=02. ko =435  d/As= (11925 koo =63
I e =635 cm A= 195 cm
For- WAVE Eg= Eq - WAVE LRk o

FIGURE 20 FIGURE 2|

Ficures 16 to 21. Configurations of the
electrical field lines of the possible modes for
Boa=5, a=2.5 cm (N=m cm) and Dy=D;.

The magnetic field lines are circles around the z-axis.

d[Ng=025. kya=383 d/hg=04 koo =29
A=LB875cm =386 cm
Eqo- WAVE £q,~WAVE
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The electrical field is perpendicular to the surface 7=0.83a, but no longer perpendicular to the
surface r=a.
With the corrugated waveguide, which is often used in practice as a flexible guide section,
8o always is very small. The eigenvalues ko therefore are near the eigenvalues x,.
Corresponding to eq (13) there is then equated kya=xo,+0z. With ¢,=¢ and k— eq
(20) yields
Ba D,
Xon D1+ D,

Op=— tan Byd- (81)

This reveals that a corrugated waveguide with the inner radius @ has for the £, modes
the same propagating constant and therefore the same field characteristic impedance as a
homogeneous waveguide with the inner radius a*, if

Boa D,
(1—';(2)‘ m tan ﬁo(l)' (82)

If, for instance, a=2.5 cm, d=0.1 ecm, Ny=4 cm (8)a=3.93), D;=D, there results for the /-
mode a= 0.946a*.

7. Appendix. Equation for Calculation of the Eigenvalue k,a

According to [7] part B, eqs (18) to (20) the following equation results with the ring-
element guide for calculation of the eigenvalue kya

I:m’Y Mo ):'2
kze r,n(koa') ko ,u'pkH

kofz m(lfoa) .UO 1 Jm(koa) i]
: ]L(J m(koa)

H' (pua) [PH; (peb)—H Y (pub) |+ Hy " (pwa) [HP' (psb) —PH;? (pgb)]

TP (pea) [PHY (psb)—HY (psb)1+ HY (pra) [ (pb) —PHP (pgb)]’ (83)
b 5 i) |
P T T M i | et &
S ey T (kb) e ﬂ]
where
b= (1) 4 [#5. (83)
In the following the quantities uo/(u,k%) are neglected with respect to 1/kf and 1/ki. With
[pzal > { ! (86)
m, m=0,1,2, ete.
there results then from the eqs (83) and (84)
5 —kTanti Z R Tenz] morre @

where
T s B pEd—l-

Z‘,:‘7 Zy P+tan pgd

(88)

Under the assumption of the inequality (15) eq (27) is obtained from eq (88).
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The eqs (83) and (84) yield

mo T8 H ) 2 (B R G 2]
<k§b>_ [kz HPUb) 7 |k B hb) Z] Rk

(89)
where - _
e .u
— L 0 Z=n\ %)
b=t 22 (90) L o)
.y Ju(peb)
Zi=12ig =7
J4m Jm(pE'b) (92)

A very similar equation may be obtained from the results of Wait [11] for a corrugated cylinder
excited by a dipole.

8. Principal Symbols

e —=dielectric constant of space,
wo=permeability of space,
Zoy=+ pofeo=field impedence of space,
e;=dielectric constant of the dielectric in the corrugations,

e=dielectric constant of the surrounding medium (can be complex),

w=permeability of the surrounding medium (can be complex),
k=-conductivity of the metal,

a=inner radius of the guide,
b=outer radius of the guide,
d=b—a=depth of the corrugations,
D,=width of the corrugations,
D,=spacing of the corrugations,
D, -+ D,=corrugation constant (analog to optics),
M=wavelength of a plane wave in space,

A=wavelength of the guide modes,

ﬁoz)\“:phase constant of a plane wave in space,
0

v=+j(B—ja) = £ jBoy1— (ko/Bs)*=axial propagation constant of the waves on the guide,
6:%:phase constant,
a=attenuation constant,
f=frequency,
w=2mf=angular frequency,

d=-equivalent thickness of the conducting layer of the metal,
r, o, z=cylindrical coordinates,

v,=phase velocity,
c=velocity of light,

koa=-eigenvalue associated with the respective mode,
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Xmn=¢eigenvalue associated with the #,,-mode in a lossless circular waveguide, i.e.,
n-th not disappearing root of .J,,(p),

ann=-eigenvalue associated with the /,,-mode in a lossless circular waveguide, i.e.,
n-th not disappearing root of J (p),

J.=Bessel function of m-th order,

J,=derivative of the Bessel function with respect to the argument,
HP =Hankel function of first kind and m-th order,
H» =Hankel function of second kind and m-th order,

HY' H®’=derivatives, with respect to the argument, of the Hankel functions of 1st and
2d kind,

pE:kE“j‘S'E;
kEzﬁo\/ff/fm
1 Jou \/ei
Sp= —_— =t
Z()l)l 2k €9

IN =neper=8.7 db.
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