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Propagation of Microwaves Through a Magneto-Plasma,
and a Possible Method for Determining the Electron

Velocity Distributions

A. L. Cullen
(March 1, 1960)

Sagdeyvev and Shafranov have shown that the absorption of microwaves in a hot
plasma in a steady magnetic field can be calculated in simple closed form with the help of
the Boltzmann equation, provided that the effect of collision can be ignored.

The present paper is restricted to the special case of propagation of circularly polarized
waves parallel to the magnetic field, and the extraordinary ray, in magneto-ionic termi-
nology, is given special attention. It is shown that the formula given by Sagdeyev and
Shafranov for this case can be deduced by considering the motions of individual electrons
by elementary dynamical methods, using the concepts of Doppler shift and velocity distri-
bution functions to obtain a macroscopic conductivity formula for a high-temperature
plasma. From this, the absorption is easily calculated.

It is emphasized that the calculation in no way depends upon the assumption of a
Maxwellian velocity distribution function. The absorption can in fact be obtained in
closed form for any arbitrary velocity distribution function.

This suggests that a diagnostic technique for the determination of velocity distribution
could be based on measurements of absorption of the extraordinary ray, and the potential-

ities and limitations of this proposal are briefly discussed.

1. Introduction

Sagdeyev and Shafranov ? have shown that the
ah%orphon of microwave energy in a hot plasma can
be calculated in simple close d form from the Boltz-
mann equation provided that the effect of collisions
can be ignored.

In the present paper, the same formula is obtained
from a simple dynamical-collisional argument, and
it is shown that if the collision frequency is small in
comparison with the Doppler frequency shift due to
thermal motions of the electrons, the value of the
collision frequency has only a second-order effect on
the absorption coefficient. Furthermore, the results
of Sagdeyev and Shafranov are extended cover
the case of an arbitrary, rather than a Maxwellian,
velocity distribution function, and a microwave
diagnostic technique for determining the distribution
functions in low density hot plasmas is proposed.

2. Equations of Motion

In these equations, the effect of the radiofrequency
magnetic field will be ignored. The electric field is
assumed in the first instance to have the form

E.=F,sin wt

‘ : (1)
E,=E; cos wt

1 Contribution from Microwave Laboratory, W. W. Hansen Laboratories of
Physics, Stanford University, Stanford, Califl., while author was on leave from
the Department of Electrical Engineering, The University of Sheffield, Sheflieid,
England. The research reported in this paper was sponsored by the Air Force
Cambridge Research Center, Air Research and Development Command,
Bedford, Mass., 1959.

2 Sagdeyev and Shafranov, Absorption of high-frequency electromagnetic
field energy in the high-temperature plasma. Proceedings of the Second Inter-
national Conference on Peaceful Uses of Atomic Energy, Geneva, September
1958. Paper P/2215.

It 1s also assumed tlmt there is a constant mag-
netic field along the z-axis of value B, If the
strength of this field is (\pu*ssod in terms of the

c.\'(l()lum frequency for electrons w.=eBy/m, the
equations of motion can be written

dv, ek, .

——=—— 81N wlFwo

dt m o ’

(2)

dv, (I,“

— = CoS wi w0,

dt m ¢ |

J

The upper sign corresponds to a magnetic field di-
rected along “the positive z-axis. Looking in this
direction, the electric vector described by (]) rotates
antzr/ockmw The natural direction of rotation of
electrons in this magnetic field is clockwise. Thus
if (1) deseribed the electric field of a circularly polar-
ized wave traveling along the z-axis in the positive
direction, the upper sign will correspond to the
ordinary ray, and the Jower sign to the extraordinary
ray, in 1onosphere theory tormmolowv

The extraordinary ray is the case “of interest here,
for this wave can be heavily absorbed by S\nchronous
acceleration of the electrons by a cyclotron-type
mechanism. In what follows, the lower sign will
be taken. To use the (\qu‘mons for the mdumr 7
ray, it is only necessary to change the sign of w,.

From eq (2) we find

']/{{; +ow 21‘1—"—*** (0+w,) cos wt
. (3)
6]4()

d*,
dt?

+w,=+ (0+w,) sin wt
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3. Collisions and Boundary Conditions

For our present purpose the details of the collision
process are not important, since it will emerge that
the collision frequency does not enter into the final
formula for absorption.

We shall assume that an electron is brought to
rest at each collision. Thus, for an electron which
makes a collision at time ¢, its motion until the next
collision takes place can be found by solving the
eq (3) subject to the conditions

=0=0 3
d@z___ eE() . ’
qdm sin wt . @)
i Gy cos wt’ J
dt m

The last two formulas follow by substituting the
first in (2). The solution of (3) appropriate to the
boundary conditions (4) is given by

E') \ 4/
v,:wi_‘w—c) [cos wt—cos{ wet+ (0—w,)t}] (5)
ﬂ”:—#iwc) [sin wf— sin {wt-+ (0—w)t'}].  (6)

Equations (5) and (6) can be expressed more com-
pactly thus

ek,

jot __ ,i{ o+ (w—w)t’}
m(w—w,) Le ¢ ] @

Vp— JOy=

Equation (7) gives the z and 7 components of
velocity at time £ of an electron which was at rest
at time ¢’.

Assuming that n, the number of electrons per
unit volume, is sufficiently large, we can assume
that, on the average, at any time ¢ the number of
electrons per unit volume whose most recent collision
occurred between ¢" and t'4dt’ is given by

dn=nve=""“=" qt’. (8)

Using this formula, which in fact defines the collision
frequency », we can calculate the current density
at any time t. The contribution to .J, from the
electrons whose most recent collision was in the

interval ¢’ to t'+4dt’ is dJ,=—nev.dn, where v, is
given by (5). Hence, using (7), we find
—mweéE, [*

Jy—jJ,=

7n(w—wc) —
[ejwl_ej{w!+(w4wc)t’}]e~y(t-t') (lt,. (9)

Carrying out the integrations in (9) and separating
the real and imaginary parts, we find

ne*Ey [ v sin wt— (0—w,) cos wt
m iy (w—wc>2

Ji= (10)

J _néE, l:v c0s wt -+ (w—w,) sin wt]
= ;

m v+ (0—w,)?

4. Effect of Velocity Distribution

(11)

So far, the formulas we have derived are familiar
in magneto-ionic theory. We now consider the effect
of thermal velocities of the electrons. If the electric
field we have been discussing is associated with a
wave of frequency w, traveling in the direction of
increasing z, with phase constant 8, then an electron
traveling in the same direction with velocity », will
be subjected to a field of angular frequency
wy— P, = w say.

If dny electrons/unit volume have a z-component
of velocity between », and »,+4dv,, and if the velocity
distribution is Maxwellian, we have

m
dn(): Ny (

/2
—mv?/2kT dv.-
2mkT ‘

(12)

Equations (10) and (11) can be used to calculate
the contribution to the current density components
J: and J, in a frame of reference traveling with the
electrons, i.e., with velocity », along the original
z-axis, if we substitute dn, for n, and interpret » as

wo—ﬂl,’z. ]‘hus
dJ =n0€2E0 m \'? o~ 2K
‘ m  \27kT

[V sin wt — (w—w,) cos wt
'+ (0—a)’
Transforming this contribution to the current back
to the original frame of reference does not affect its

amplitude but restores the frequency to the original
value w;. Thus, summing all such contributions

J :77'062E0 m N\ o~ MEI2KT
‘ m  \2xkT .

l:v sin wyt — (w—w,) oS wot

v+ (w_wc)z

:Idzfz- (13)

:ldvz- (14)

Similarly,

J:noeon LN o~ ME/%T
! m  \2rkT B

[V c0s wyt -+ (w—w,) sin wyt
VZ‘I— (w_wc)2

Note that parts of J, and J, which are in phase

with the electric field components F, and E, are

equal, and correspond to a transverse conductivity
oy glven by

1/2 +
L) -
2k T e

I:V2+ (wo—ywc_ &W] dv.. (16)

:Idvz- (15)

n062
0- —_———
- m
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Similarly, the transverse permittivity e 1s

2 12 [t
Toe” (‘_i” oM/ 2KT
wom \2mkT .
wc_BTz)

[v%(rw(o;— —5@92]% (17)

The effect of collisions on the », component of ve-
locity has not been considered, since the absorption
phenomenon is not affected by this process. We do
not need to have detailed knowledge of », for each
electron, we only need to know the number of elec-
trons in any given small range of velocities.

€] =¢€g—

5. Wave Propagation in a Hot Plasma

We assume now that the plasma temperature 7'

is large ® and the collision frequency small, so that
kT
r<B " (18)

In this case the bracketed factor in the integrand of
(16) 1s small unless », is such that

— B, <.

Within this small range of values of », the ex-
ponential factor can be given the value corresponding
to v,= (wy—w,)/B, and taken outside the integral
sign. It is then a simple matter to evaluate the
integral, and the resulting formula for the conduc-
tivity is

(19)

e [ m \Y?

Bm \2xkT

If the conductivity is small, the absorption coeffi-
cient k¥ can be calculated very simply from the
formula

o=k [(wy=w,) /81

(20)

(64 g [
== - =
2wep?

B_Qwel: b

where a and g are the attenuation and phase con-
stants respectively, and p is the real part of the

refractive index. If, in accordance with Sagdeyev
and Shafranov, we define »; by the equation

2kT
W= (22)
we find
2
‘ﬁ" ﬁ& { 0 (23)
2 jwip? vp?
Here w, is the plasma frequency (w,,2=ne2/meo), and

wp and w, are the frequency of the wave and the
electron cyclotron frequency respectively.

This formula agrees exactly with the result of
Sagdeyev and Shafranov, as stated in eq (13) of
their paper (see footnote 2).

The calculation of e, from (17) is carried out in
3 Since this is the only temperature involved, we use 7" for 7T, the effective

temperature associated with thermal motion of electrons parallel to the magnetic
field lines.
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the appendix. When this is done, we find

? e~02/0ﬁpz[(w0—wc)wo]2 < ""O—wc>
6 P\ @

Wy—wg
5 P’ ) T }

This also agrees with the form given by Sagdeyev
and Shafranov, although their result is expressed in
terms of an error integral. (The lower limit of this
integral, which is missing, is presumably zero.)
There is also an error in the sign of the second term
in their formula.

(24)

6. A Microwave Diagnostic Technique for
Determining the Electron Velocity Distri-
bution in a Hot Plasma

It is easy to see that the method employed for
integrating (16) does not depend in any way on the
velocity distribution. This need not be Maxwellian,
but can be quite arbitrary.

Let the velocity distribution parallel to the mag-
netic field be defined by formulas

> + 0
dng=nf (v.)dv,; J f (w)dv,=1 (25)

in place of the Maxwellian distribution formula eq
(12).
We find for the conductivity of the plasma the
very simple expression
Wy — W,
1(*5

The attenuation coefficient can be written

g e’
O- —
= Bm

2
_TeTHy Wy

N (wnvwc )
“om B\

Thus the distribution function can be expressed in
terms of experimentally observable quantities as
follows

af?

wo—wc>A 2m
B 7"62#1» (&0)

If the right-hand side of (26) is plotted as a function
of (wy—w,)/B, the electron velocity distribution par-
allel to the magnetic field is obtained. The area
under this curve will give the electron density. In
practical applications, the distribution function may
depend on z. If this is the case, the total attenuation

nof (26)

measured is approximately [adz along the transmis-

sion path, provided that the rate of change of
attenuation per wavelength of path is not too great.
Thus from the total attenuation we can determine,
using (26), the awverage distribution function, the
average being taken along the microwave path.



7. Wave Propagation in a Cold Plasma

Formulas for o, and e, in a cold plasma, in which
y>>/8\/kT/'m, are easily obtained from (16) and (17)
if the collision frequency can be assumed independent
of »,. The familiar magneto-ionic theory formulas
are obtained:

ne* v ]

TL T VT (w—we)?

(27)
(wﬂ_wc)

i+ (wo_wc)z

f__ne

€0 €y

Note that if » > (w,—w,), o is proportional to 1/»,
whilst if »< (wy—w,), o1 is proportional to ».

8. Discussion

The purpose of this section is to contrast the be-
havior of the conductivity of hot and cold plasmas
with respect to variation of collision frequency.

Consider first the cold plasma conductivity as
described by (27). For a large collision frequency,
the conductivity is proportional to 1/v. The physical
meaning is clear. 1t i1s easy to show from (7) that
an electron starting from rest at time =0 acquires
in time ¢ a kinetic energy given by

sin I:(w_wc>t] :
162K, | = 2
— —_— T = 2
R T (el =
2

assuming that no collisions take place. Differenti-
ating, we find

dW e2E2sin (w—w,)t

B ¢ 9

dt — m (250

(w_wc)

If the collision frequency » is large, in comparison
with (wy—w.), the time interval ¢, during which the
gain in kinetic energy described by (28a) can take
place before the process is interrupted by another
collision, is small, and (w,—w.) t<1. Hence, (28a)
can be replaced by

dW K3
WO 9
dt m (29)
ghe average rate of absorption per electron is given
iy
w_en;
dt — m

(30)

L
14

Thus the physical significance of the inverse varia-
tion of conductivity with collision frequency, when
the collision frequency is large in comparison with
the frequency difference, wy— w, becomes clear.

When the collision frequency is small in comparison
with (wy—w.), the amplitude of oscillation, and hence
the mean kinetic energy acquired by the electrons,
is not limited by collisions, but by the lack of syn-
chronism between the frequency of the alternating
force by the wave and the natural frequency of
gyration of the electrons. If w, >w,, the amplitude
of oscillation is limited mainly by electron iertia,
while if wy<w,, it is limited by the obstructing effect
of the magnetic field. If (28) is averaged over the
long time which elapsed between collision, we find

W_ 62E§

m (wo_wc> :

If it is assumed that, on the average, this energy,
or a definite fraction of it, is given up by an electron
at each collision, the average rate of absorption of
energy per electron is given by

=8,
m (wo_wc) . ’

(31)
and is clearly directly proportional to », the collision
frequency. Thus the reason for the variation of
conductivity with collision frequency predicted by
(27) is clear, and the physical mechanism by which
the energy is absorbed has been exhibited. Energy
extracted from the wave appears first as kinetic
energy of the electron, and is then transferred to
molecules or ions of the gas by collisions. This
absorption process is called collisional absorption, and
as we have seen, depends strongly on the collision
frequency.

In direct contrast to this situation, the absorption
by a “hot” plasma, in which »<8yk7/m, is inde-
pendent of » to first order, as eq (20) shows. The
reason for this is that in a hot plasma, the effective
frequency seen by an electron depends on its veloc-
ity in the direction of the propagation of the wave,
due to the Doppler shift. Since the electron veloci-
ties vary widely in a hot plasma, a wide range of
effective frequencies exists, and the hot conductivity
is essentially an average of the cold conductivity
over all frequencies. That this is independent of »
can be easily seen using (27) '

+o 2 Pt
ne 14
o dw=— Sy kY
f—m + m f—oc V2+ (w_wC)z

ne’ ((t° w J ne?
=— e i
mJ)_. v’tw? m

(32)

Provided that » is small enough, the integrand is
very small except when (w0—w,)~v, so that a very
small range of effective frequencies (and electron
velocities) contributes significantly to the absorption.
Provided that the plasma temperature is high
enough, the variation of the distribution funection
over this small range of significant electron velocities
may be neglected, and the distribution function can
be regarded as constant as was done in obtaining
eq (20).
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Further, if » depends on »,, the analysis is still
valid, provided that the dependence is not strong
in the small range of significant velocities.

The case of no collisions at all can be regarded as
the limiting case »—0; the ‘“cold conductivity”
term in the integrand of (16) then has the character
of a delta function, and eq (10) is exact.

Thus, the agreement of our analysis with that of
bdgdcvov and Shafranov is to be expected in spite
of the fact that in their treatment it was assumed ab
initio that no collisions occurred, whereas the
present analysis necessarily involves the considera-
tion of collisions.

9. Conclusions

Summarizing, the present analysis has shown:

(a) That in the absorption of microwaves by a hot
plasma in a magnetic field, collisions have a second-
order effect only;

(b) That the results of Sagdeyev and Shafranov,
obtained by solving the Boltzmann equations for
thedistribution functions by a perturbation technique,
neglecting collisions at the outset, can be obtained by
a direct ballistic analysis of the motion of individual
electrons;

(¢) That the assumption of a Maxwellian velocity
distribution function made by Sagdeyev and
Shafranov is not necessary to the analysis, and that
a closed-form solution for conductivity can be
obtained for any arbitrary distribution function :

(d) That a study of the variation with frequency of
the attenuation and phase constant of a circularly
polarized electromagnetic wave in an ionized plasma
in a magnetic field can in principle yield the velocity
distribution function for the thermal motion of
electrons parallel to the magnetic field lines. There
may be considerable difficulty in applying this
technique in some cases. For example, the extra-
ordinary ray only must be employed, and a high
degree of discrimination against the ordinary ray in
the launching and/or receiving antennas will be
necessary if errors due to the ordinary ray, which is
attenuated much less strongly, are to be negligible.
Also diffraction effects will be serious except at
microwave {requencies, so that the method can only
be applied in the simple form suggested here if the
magnetic field strength is of the order of 3,000 gauss
or more, so that the cyclotron frequency falls in the
microwave-frequency band.

As an alternative to attempting to eliminate the
ordinary ray entirely, one could start with a linearly
polarized wave and measure the ellipticity of the
received signal. This would have some practical
advantages, and the necessary theory could be
developed very simply from the equations given here.

A more serious limitation arises when the order of
magnitude of the attenuation at resonance is esti-
mated. For n=10" electrons/cm?® 7=10° °K, and
fo=10,000 Mec/s, the attenuation coefficient at
cyclotron resonance has a value of about 100 db/em
or the attenuation length is about 1 mm. For
densities of 10° electrons/cm?® under the same con-
ditions, however, the attenuation coefficient is about

0.1 db/em, and for such a low density plasma the
method might be feasible.

It should be noted that the effect of the radio-
frequency magnetic field has not been considered in
the present analysis.  While this seems unlikely to
lead to serious errors at electron temperatures of a
million degrees or so, these effects might be ap-
preciable for temperatures of the order of a hundred
million degrees, when the electron velocity is only
one order of magnitude less than the velocity of
light.

No comparison has been made with the more
elaborate theory of Drummond®, which starts from
the Boltzmann equation but retains the collision
term, for which a suitable approximation is later
introduced. It would be very desirable to make
such a comparison, which would probably shed
further light on the significance of collisions in a
practical situation.

10. Appendix

We have to evaluate

ot ,
_ —mv%[2kT (w(bﬁwc_ﬁpz) 7 1
1= e et e
Let t=+m/2kTv,: ty=~m/2kT [(wo—w,)/B8]. Let us
also put »=0. We get
1 (= e 'dt
I=- . 2
ﬂ — t[)_t ( )
Now put z=t—t,.
1 [T® g— e+t )2
:_BJ © 'f;——-o— dz. (3)

Because of the singularity at z=0, we interpret I in
the following way

_ﬂ[:e—t?y lim{f_e 2t0z([~+ e— 221 2(17 }
e—0 — o <~ +e V4

Replacing z by —z in the first integral, and com-
bining the two integrals gives

«© —22
Bl_ 4 f ¢ sinh 2tz dz. (4)
% 0 2
This integral is easily evaluated by expanding

sinh 2,2 and integrating term by term. This leads to
the result given in eq (24).

This work was done during a period spent at the
Microwave Laboratory, Stanford University, and
the author expresses his gratitude for this oppor-
tunity. He is particularly indebted to Dr. G. S.
Kino and Dr. P Sturrock for helpful discussions.

4J, E. Drummond, Basic microwave properties of hot magnetoplasma, Phys.
Rev. 110 (April 15, 1958).

(Paper 641D5-89)
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